PCR引物设计汇总
- 格式:ppt
- 大小:607.00 KB
- 文档页数:29
PCR引物设计要点PCR引物设计要点1. 书写规则设计引物时,5’端引物与目的序列正义链相同,而3’端引物则与目的序列正义链互补,书写时从引物的5’端至3’端(即5’端引物不变,3’端引物与目的序列互补并相反);2. 引物长度一般引物长度为18~30碱基(不包括5’端添加的修饰),引物太长和太短都不好;3. GC含量一般引物序列中G+C含量一般为40%~60%,不要有聚嘧啶或聚嘌呤,尤其3’端不应超过3个连续的G或C。
若是引物存在严重的GC倾向或AT倾向则可以在引物5’端加适量的A、T或G、C尾巴,上下游引物的GC含量不能相差太大;4. 退火温度可以用软件PrimePrimer来计算退火温度,在引物短于20bp时,可以用公式Tm=4(G+C)+2(A+T)-5估计Tm值(解链温度),有效引物的Tm为55~65℃之间较好,如果待扩增基因的GC含量较高(超过50%),引物的退火温度可设计得高一点,例如接近65℃,因为提高退火温度可以降低非特异性扩增。
一对引物的退火温度应尽量接近,相差范围应在5℃之内;一般初次PCR使用的退火温度比计算出的解链温度低5℃,如果扩不出,可试着将退火温度降低5℃和升高5℃再试一下,但一般不要1℃1℃升,或1℃1℃降,因为这样效果不大;5. 避免与靶DNA的错配引物要具有特异性,与非特异扩增序列的同源性不应超过70%或有连续8个互补碱基同源,可针对基因组BLAST检测,看是否能错配到其它非特异顺序上;6. 避免引物及模版的二级结构区域引物自身避免有连续4个碱基的互补,若不能避开这一区域时,可尝试7-deaza-2’-脱氧GTP取代dGTP。
若有可能,也应尽量避免扩增含稳定二级结构的目的片段(可用软件估计,一般待扩区域自由能△G小于58.6lkJ/mol时,扩增往往不能成功);7. 避免引物二聚体引物之间避免有连续4个碱基的互补以免形成二聚体,尤应避免3’端的互补重叠;8. 引物3’端1) 3’端不应超过3个连续的G或C,以免使引物在G+C富集序列区错误引发;2) 除在特殊的PCR(AS-PCR)反应中,引物3’端不能发生错配;3) 如扩增编码区域,引物3’端不要终止于密码子的第3位,因密码子的第3位易发生简并,会影响扩增特异性与效率;4) 避免在引物的3’端使用碱基A,以免增加使用Taq酶时的错配效率;5)如果片断连入表达载体或转基因载体,基因后面带有其它tag,如His tag,或Fast tag, GFP, GUS 等,注意设计引物时一定要去掉基因的stop codon,否则tag 就没有了;但如果这些tag是在基因之前,则注意去掉基因的start codon,因为此时基因跟在tag之后,用的是载体上tag的start codon。
PCR引物设计原则总结PCR引物设计的目的是为了找到一对合适的核苷酸片段,使其能有效地扩增模板DNA序列。
因此,引物的优劣直接关系到PCR的特异性与成功与否。
要设计引物首先要找到DNA序列的保守区。
同时应预测将要扩增的片段单链是否形成二级结构。
如这个区域单链能形成二级结构,就要避开它。
如这一段不能形成二级结构,那就可以在这一区域设计引物。
现在可以在这一保守区域里设计一对引物。
一般引物长度为15~30碱基,扩增片段长度为100~600碱基对。
让我们先看看P1引物。
一般引物序列中G+C含量一般为40%~60%。
而且四种碱基的分布最好随机。
不要有聚嘌呤或聚嘧啶存在。
否则P1引物设计的就不合理。
应重新寻找区域设计引物。
同时引物之间也不能有互补性,一般一对引物间不应多于4个连续碱基的互补。
引物确定以后,可以对引物进行必要的修饰,例如可以在引物的5′端加酶切位点序列;标记生物素、荧光素、地高辛等,这对扩增的特异性影响不大。
但3′端绝对不能进行任何修饰,因为引物的延伸是从3′端开始的。
这里还需提醒的是3′端不要终止于密码子的第3位,因为密码子第3位易发生简并,会影响扩增的特异性与效率。
综上所述我们可以归纳十条PCR引物的设计原则:① 引物应用核酸系列保守区内设计并具有特异性。
② 产物不能形成二级结构。
③ 引物长度一般在15~30碱基之间。
④ G+C含量在40%~60%之间。
⑤ 碱基要随机分布。
⑥ 引物自身不能有连续4个碱基的互补。
⑦ 引物之间不能有连续4个碱基的互补。
⑧ 引物5′端可以修饰。
⑨ 引物3′端不可修饰。
⑩ 引物3′端要避开密码子的第3位。
PCR引物设计的目的是找到一对合适的核苷酸片段,使其能有效地扩增模板DNA序列。
如前述,引物的优劣直接关系到PCR的特异性与成功与否。
对引物的设计不可能有一种包罗万象的规则确保PCR的成功,但遵循某些原则,则有助于引物的设计。
1.引物的特异性引物与非特异扩增序列的同源性不要超过70%或有连续8个互补碱基同源。
(完整版)PCR技术(包含引物设计)聚合酶链式反应(PCR)原理:DNA的半保留复制时,双链DNA在多种酶的作用下可以变性解链成单链,在DNA聚合酶与启动子的参与下,根据碱基互补配对原则复制成同样的两分子挎贝。
在实验条件下,DNA在高温时也可以发生变性解链,当温度降低后又可以复性成为双链。
因此,通过温度变化控制DNA的变性和复性,并设计引物做启动子,加入DNA聚合酶、dNTP就可以完成特定基因的体外复制。
PCR类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。
PCR由变性 - 退火(复性)- 延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至94℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至40~60℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板- 引物结合物在DNA聚合酶的作用下,于72℃左右,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA链互补的半保留复制链,重复循环就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。
每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。
PCR技术分类(常用)(1)反向PCR技术(Inverse PCR, IPCR):反向PCR是克隆已知序列旁侧序列的一种方法.主要原理是用一种在已知序列中无切点的限制性内切酶消化基因组DNA.后酶切片段自身环化.以环化的DNA作为模板,用一对与已知序列两端特异性结合的引物,扩增夹在中间的未知序列。
该扩增产物是线性的DNA片段,大小取决于上述限制性内切酶在已知基闲侧翼DNA 序列内部的酶切位点分布情况。
用不同的限制性内切酶消化,可以得到大小不同的模板DNA,再通过反向PCR获得未知片段。
PCR引物设计方法综述PCR引物设计方法综述PCR(聚合酶链反应)是一种重要的分子生物学技术,在基因工程、生物医学研究、疾病诊断和基因表达分析等领域得到广泛应用。
PCR引物设计是PCR实验成功与否的重要因素之一,它对PCR反应的特异性和效果有着关键影响。
本文将综述PCR引物设计的一些常见方法。
1. 引物的长度和碱基组成合适的引物长度一般在18-30个碱基对之间,过短可能导致非特异性扩增,过长则可能降低扩增效率。
此外,引物中碱基的组成也要考虑。
GC含量通常应在40-60%之间,因为GC碱基对的热稳定性较高,有助于提高PCR反应的效果。
2. 引物的Tm值Tm值(熔解温度)是引物设计中重要的参数,表示DNA链的熔解温度。
引物对应的Tm值应该相似,一般在50-65℃之间。
Tm值的计算可以使用公式Tm= 2(A + T) + 4(G + C),其中A、T、G和C分别表示引物中的腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶的个数。
3. 引物的特异性引物的特异性是PCR引物设计的关键。
在设计引物时,必须确保引物与目标序列的互补区域没有重复序列或能够和其他非目标DNA序列结合。
可以使用计算机软件进行引物特异性检查,如BLAST等。
此外,设计引物时应考虑引物的位置,尽可能避免设计在重复序列上。
4. 引物的杂交温度引物的杂交温度是PCR反应的另一个重要因素,影响PCR引物与模板DNA的结合和扩增效率。
一般情况下,引物的杂交温度应在Tm值的2-5℃之间。
较高的杂交温度有助于提高特异性,但也可能降低引物与模板DNA的结合能力。
5. 引物的设计工具和软件现代生物信息学提供了许多实用的工具和软件用于PCR引物设计。
比如,Primer3软件是一种常用的引物设计工具,能够自动设计引物,计算引物的Tm值和特异性等参数。
其他常用的软件还包括OligoAnalyzer、Beacon Designer和GeneFisher 等。
6. 引物的修饰在一些特殊的PCR反应中,引物的修饰可以提高PCR扩增效率和特异性。
引物设计知识点归纳图表引物设计是一项重要的实验技术,在分子生物学、基因工程和遗传学等领域中具有广泛的应用。
合理设计和选择引物能够保证实验结果的准确性和可靠性。
本文将对引物设计的各个知识点进行归纳总结,以图表的形式展示,方便读者理解和应用。
1. 引物的长度长度是影响引物特异性和扩增效率的重要因素,合理选择引物长度能够提高PCR扩增的特异性和效率。
根据目标序列的特点,引物长度的选择范围一般为18-30个碱基对。
2. 引物的GC含量引物的GC含量对扩增的特异性和效率有重要影响,GC含量过高或过低都会影响PCR反应的结果。
通常可以选择引物的GC含量在40% - 60%之间,以提高PCR反应的成功率。
3. 引物的熔解温度(Tm值)引物的熔解温度是指引物在PCR反应中解链的温度,它与引物的碱基对组成、长度和浓度等因素相关。
合理选择引物的Tm值能够提高PCR的效率和特异性。
一般来说,两个引物的Tm值应该接近,以保证二者同时发挥作用。
4. 引物的互补性引物之间的互补性会导致二聚体的形成,影响扩增效果。
因此,设计引物时需要避免引物之间的互补性,以免产生非特异性扩增产物。
5. 引物的特异性引物的特异性是指引物只与目标序列互补而不与其他非目标序列互补。
特异性的引物设计可以通过使用比对软件进行序列比对来保证。
6. 引物的交叉反应引物的交叉反应指的是引物与非目标序列发生非特异性扩增。
为了避免引物的交叉反应,可以通过检查引物的互补性和特异性来进行预防。
7. 引物的杂交效率引物的杂交效率会影响PCR扩增的结果,因此合理设计引物的杂交效率可以提高PCR反应的特异性和效率。
杂交效率可以通过计算引物的形成结构和碱基对数目来预测。
总结:引物设计是PCR技术中至关重要的一步,合理的引物设计能够保证PCR扩增的有效性和特异性。
在设计引物时需要考虑引物长度、GC 含量、熔解温度、互补性、特异性、交叉反应和杂交效率等因素。
通过合理选择和设计引物,可以最大程度地提高PCR扩增的准确性和可靠性。
引物设计知识点总结图引物设计是在分子生物学研究中常用的实验技术之一,用于扩增目标DNA序列。
本文将就引物设计的相关知识点进行总结和图示,以帮助读者更好地理解和应用该技术。
一、引物设计的基本原理在引物设计之前,我们需要了解PCR(聚合酶链式反应)的基本原理。
PCR是一种快速扩增DNA的方法,其关键在于引物的选择和设计。
引物是PCR反应中的两段寡核苷酸序列,分别与目标DNA序列的起始点和终止点互补配对。
通过PCR反应,引物与目标DNA序列结合,聚合酶随后从引物的3'端开始合成新链,形成所需扩增的DNA。
二、引物设计的关键要点1. 引物长度:引物长度通常为18-30个碱基,过短的引物可能无法特异性地结合目标DNA,而过长的引物则可能导致不必要的非特异扩增产物。
2. 引物序列:引物的序列应与目标DNA的互补序列相匹配,确保引物能够特异性地结合目标DNA并进行扩增。
3. 引物峰值温度(Tm值):Tm值是引物设计中非常重要的参数,它表示引物与目标DNA的解链温度。
引物的Tm值应相似,以确保二者能够在相同的温度下扩增。
4. 引物GC含量:引物的GC含量直接影响其Tm值,较高的GC 含量通常意味着较高的Tm值。
适当调整GC含量可以帮助优化引物的扩增效率。
5. 引物间的相互作用:在引物设计过程中,需要避免引物之间的互补性,以免引物间发生二次结合导致非特异性扩增。
三、引物设计的步骤示意图[图示]四、引物设计的实际应用引物设计广泛应用于分子生物学领域中的DNA克隆、基因表达分析、突变检测等实验中。
具体应用包括:1. DNA克隆:通过引物设计扩增目标DNA序列,可用于获得目标基因的全长序列或特定片段。
2. 基因表达分析:通过引物设计扩增特定基因的编码区域,可用于研究该基因的表达水平和调控机制。
3. 突变检测:通过引物设计扩增包含突变位点的DNA片段,可用于检测目标基因的突变类型和频率。
五、引物设计的常见问题及解决方法1. 引物的Tm值差异较大:可通过调整引物的长度和GC含量来优化Tm值,使其相似。
PCR引物设计汇总PCR(聚合酶链反应)引物是PCR反应中的两个核酸序列,它们分别位于待扩增的DNA片段的两端。
合理设计的PCR引物是PCR反应成功的关键,它们决定了PCR扩增的特异性和效率。
1.引物长度:一般选择18-25个碱基的引物长度。
引物过短可能导致非特异性扩增,引物过长则降低扩增效率。
2.引物碱基组成:引物中尽量避免使用连续的同类碱基,如连续的A、T、C或G。
同时,引物设计中应尽量均衡使用四种碱基,避免GC含量过高或过低。
3.引物Tm值:引物的Tm值(解链温度)是很重要的参数,它决定了PCR反应的温度条件。
一般,引物的Tm应在50-60摄氏度之间,且相互之间的Tm值差别不应超过两度。
4.引物特异性:引物应具有足够的特异性,以确保只扩增目标DNA片段,避免扩增到非特异性产物。
5.引物末端:引物的3'末端不应含有碱基修饰物,以免影响引物的扩增效率。
下面是几种常见的PCR引物设计方法:1.传统引物设计方法:传统引物设计方法主要是基于DNA序列的特点进行设计。
根据待扩增DNA片段的序列信息,可以选择合适的引物位置,并确保引物的长度、碱基组成和Tm值满足设计原则。
2.引物设计软件:引物设计软件是根据一系列预先设定的算法和规则,自动设计合适的引物。
常用的引物设计软件有Primer3、Primer-BLAST等。
这些软件可以根据用户输入的目标序列信息,自动生成合适的引物序列,并提供引物的Tm值、特异性等信息。
3.引物库:引物库是包含大量已设计好的引物序列的数据库。
研究人员可以直接从引物库中选择合适的引物序列,以节省时间和精力。
常用的引物库有NCBI的PrimerBank和UCSC的Primer Database。
4.引物修饰:5.引物交互作用:引物交互作用是指多对引物之间的交叉杂交,形成二聚体或多聚体结构。
通过设计引物之间的相互作用,可以提高PCR的特异性和扩增效率。
常用的引物交互作用方法有引物交叉互补法、引物竞争法等。
引物设计原则最全汇总1.特异性:引物应与所需扩增的目标序列特异性结合,避免与非目标序列发生非特异性结合,以确保产生准确结果。
2.高GC含量:引物的GC含量应高于50%,以增加引物与目标序列的稳定性和特异性。
3.避免酶切位点:在引物设计过程中,应避免引物与目标序列中的酶切位点重叠,以防止扩增产物的酶切降解。
4.引物长度:引物的长度通常在18至30个核苷酸之间,过长的引物会降低特异性,而过短的引物则可能导致非特异性扩增。
5.引物的Tm值匹配:引物的熔解温度(Tm)应在同一PCR反应中保持一致,以确保引物能同时结合于目标序列并发挥作用。
6.避免互补性:在引物设计过程中,应避免引物之间存在互相互补的情况,以防止互补引物之间的杂交,从而导致错误的扩增结果。
7.引物末端修饰:常用的引物末端修饰包括磷酸化、末端标记和引物的截断,通过这些修饰可以提高引物的选择性和特异性。
8.引物的GC平衡:引物的GC含量应在一定范围内均衡,以避免在PCR反应中产生二聚体或无效的扩增。
9.引物序列的重复性:引物设计中应避免引物序列的重复性,以防止引物产生二聚体或与非目标序列互补结合。
10.引物的独特性:在引物设计中,应确保引物序列在目标基因组中的唯一性,避免与非目标序列存在相似区域。
11.引物的结合位点:引物的结合位点应尽可能位于目标序列的保守区域,以增加引物与目标序列的稳定性和特异性。
12.引物的交叉反应:在引物设计中,应避免引物之间存在交叉反应,即两个不同引物同时与同一目标序列结合。
13.引物与模板序列的一致性:在引物设计过程中,应将引物与目标序列进行比对,确保引物与目标序列的一致性,避免在扩增过程中形成不可扩增的结构。
14.避免自相互补性:在引物设计过程中,应避免引物序列存在自相互补性,防止引物自结合或形成不稳定的结构。
15.引物的GC间隔:在引物设计中,应使引物中的GC核苷酸尽可能均匀分布,以避免形成不稳定的结构。
16.引物的无副产物性:在引物设计过程中,应避免引物产生具有毒性或干扰扩增的副产物。
《PCR引物设计及软件使用技巧》篇一一、引言聚合酶链式反应(PCR)是现代生物学研究中常用的一种技术,而引物设计则是PCR反应成功的关键。
本文将详细介绍PCR 引物设计的基本原理、方法和注意事项,同时介绍几款常用的引物设计软件及其使用技巧。
二、PCR引物设计的基本原理和方法1. 引物设计的基本原理PCR引物是一段人工合成的寡核苷酸序列,作为PCR反应的起始点。
引物设计的核心思想是寻找合适的序列,使得引物能够有效地与模板DNA结合,从而在PCR反应中扩增出目标DNA 片段。
2. 引物设计的方法(1)选择合适的模板DNA:根据研究目的选择合适的模板DNA,确保其包含目标DNA片段。
(2)确定引物位置:根据目标DNA片段的序列信息,确定引物的位置。
通常,引物应位于目标DNA片段的两侧,且应避免位于重复序列或复杂区域。
(3)确定引物长度和碱基组成:引物的长度一般在18-25bp 之间,GC含量应适中,且碱基组成应具有随机性,以增加引物的特异性。
(4)避免形成二级结构:引物序列中应避免形成发夹结构、二聚体等二级结构,以免影响PCR反应的进行。
(5)设计内外引物:为了提高PCR反应的特异性和灵敏度,常需要设计内外两对引物。
内引物位于目标DNA片段内部,用于提高扩增的准确性;外引物则用于起始PCR反应。
三、PCR引物设计软件及使用技巧1. Oligo软件Oligo是一款常用的PCR引物设计软件,具有操作简便、功能强大等特点。
使用Oligo进行引物设计时,需注意以下几点:(1)输入目标DNA序列:将目标DNA序列导入Oligo软件中。
(2)设置参数:根据需要设置引物长度、GC含量、退火温度等参数。
(3)寻找引物:软件将自动在目标DNA序列中寻找符合条件的引物。
(4)评估引物:对找到的引物进行评估,包括二级结构预测、特异性分析等。
(5)保存并使用引物:将选定的引物保存并用于PCR反应。
2. Primer Premier 5软件Primer Premier 5是一款功能强大的引物设计软件,具有直观的操作界面和丰富的功能。
miRNA RT-PCR引物设计原理对于miRNA RT-PCR实验来说,最核心的实验原理和步骤就是miRNA引物设计思路。
之前大家熟知的miRNA RT-PCR引物主要有两种类型:1、Oligod(T)特异的RT引物(QIAGEN产品为主)由特异序列+(T)20左右+兼并碱基V或VN组成。
(所有miRNA可以公用一个Oligod(T)的RT引物,但是RNA在反转录前需要进行末端Poly(A)加尾)2、茎环状结构的RT引物(ABI产品为主)由可以自身呈环茎状的特异序列+6到8个miRNA3’端反向互补碱基组成。
(一条miRNA序列特异对应一个茎环状结构的RT引物)。
这里主要给大家介绍美国signosis公司的一种新方法。
基于自有专利技术,美国Signosis开发了一种高灵敏、高分辨的实时PCR 方法,用于检测miRNA的表达,其应用寡核苷酸连接和基于实时PCR的SYBR green。
该方法可用于总RNA或细胞裂解物中的miRNA表达的定量分析,无需进行cDNA转换。
该方法中,靶miRNA分子与二对oligo连接,形成RNA/DNA复合物。
当序列完全匹配时,这二对oligo与miRNA连接,二对oligo的节点通过DNA酶连接。
miRNA之间单个寡核苷酸的差异就会阻止杂交或连接。
寡核苷酸对连接上后,连接分子可进行实时PCR。
以下是signosis新方法的原理图:Signosis的新方法有效地解决了许多同源miRNA中只有单个碱基的不同而无法分辨的问题。
并且省去了反转录成cDNA的步骤,同时配有相应的细胞裂解液产品使实验更简便、更可靠。
想了解更多关于该方法的信息可登陆signosis官方网站:/中国总代网站:/。
PCR引物设计方法综述PCR(聚合酶链反应)是一种常用的分子生物学技术,可以在体外快速扩增DNA序列,具有高度的特异性和敏感性。
PCR的成功与否很大程度上取决于引物的设计。
引物是PCR反应中的关键部分,其设计的合理性直接影响PCR扩增的效果。
因此,正确选择和设计引物对于PCR的成功至关重要。
PCR引物设计的原则主要包括以下几点:1. 引物长度:引物的长度通常在18-30个碱基对之间。
过短的引物可能导致非特异性扩增,而过长的引物则可能影响PCR反应的效率。
2. 引物序列:引物的序列应该与目标序列的两端互相衔接,保证引物与模板DNA的互补性。
同时,引物的序列应该防止高度重复的区域和易产生二级结构的序列。
3. 引物间的互补性:引物之间的互补性会导致引物二聚体的形成,从而影响PCR的特异性。
因此,在设计引物时需要防止引物之间的互补性。
在PCR引物设计中,有多种方法和工具可以援助探究人员选择和设计合适的引物。
1. 序列比对与分析:起首,我们需要从已知的目标DNA 序列中选择一段适当的区域进行扩增。
通过序列比对和分析工具,如BLAST、EMBOSS等,我们可以找到与目标序列高度一致的区域,然后依据该区域设计引物。
2. 引物设计工具:许多在线工具可用于设计引物,如Primer3、Beacon Designer等。
这些工具可以依据给定的目标序列信息自动生成一对适当的引物。
3. 引物碱基组成的计算:引物碱基组成的计算可以援助评估引物的特异性和二级结构问题。
通常,引物的GC含量应在40%-60%之间。
4. 引物特异性的验证:引物特异性的验证是PCR引物设计过程中的重要一步。
可以通过引物在目标序列以及可能存在的非特异性目标上扩增的试验来验证引物的特异性。
PCR引物设计对于探究人员开展PCR试验和相关探究具有重要意义。
合理设计的引物可以保证PCR反应的特异性、敏感性和扩增效率。
虽然目前有许多方法和工具可用于引物设计,但探究人员依旧需要依据详尽试验需求和目标序列的特点灵活选择和设计引物。
引物设计一、软件使用●推荐软件:Primer Premier 5.0●优点:操作简单、显示各种参数改变和可能的二聚体、异二聚体、发夹结构等●缺点:没有明显缺点●本地同类软件:DNAClub;Oligo 6.22;Vector NTI Suit;Dnasis;Omiga;Dnastar;DNAMAN(Lynnon Biosoft, Quebec, Canada).●网上同类软件:Primer3(Whitehead Institute 开发);JaMBW(European Molecular BiologyLaboratory of Heidelberg 开发)。
http://210.72.11.60网站已引进并调试好这两种软件。
独特之处在于:对全基因组PCR的引物设计,可以将设计好的引物对后台核酸数据库进行比对,发现并排除引发错配的引物。
因此建议经常做全基因组PCR的用户试用。
二、推荐操作●引物搜索:Primer Premier 5.0●引物评价:Oligo 6.22三、引物设计的原则首先引物要跟模板紧密结合,其次引物与引物之间不能有稳定的二聚体或发夹结构存在,再次引物不能在别的非目的位点引起DNA聚合反应(即错配)。
围绕这几条基本原则,设计引物需要考虑诸多因素,如引物长度(primer length)、产物长度(product length)、序列Tm值(melting temperature)、ΔG值(internal stability)、引物二聚体及发夹结构(duplex formation and hairpin)、错误引发位点(false priming site)、引物及产物GC 含量(composition),有时还要对引物进行修饰,如增加限制酶切点,引进突变等。
以使用Oligo 软件分析设计引物为例,笔者总结出以下的要点:1.引物的长度一般为15-30bp,常用的是18-27bp,但不能大于38,因为过长会导致其延伸温度大于74℃,即Taq 酶的最适温度。
PCR引物流程设计详解PCR(Polymerase Chain Reaction)引物流程设计是在进行PCR反应过程中引物的设计。
PCR反应是一种体外的DNA复制技术,可在短时间内扩增特定DNA序列。
引物在PCR反应中起到了至关重要的作用,因此设计合适的引物是成功进行PCR反应的关键。
1.目标序列选择:首先需要明确PCR反应的目标序列,即要扩增的特定DNA序列。
选定目标序列后,需要使用相应的软件分析该序列的特性,如GC含量、碱基组成、互补性等。
这些特性将有助于引物的设计和优化。
2. 引物长度:引物的长度通常在18-30bp之间。
较短的引物能提高PCR反应的特异性,但较长的引物能提高PCR反应的特异性和效率。
引物长度不宜超过30bp,以免在PCR反应过程中产生副产物。
3. 引物序列设计:PCR反应通常需要设计两个引物,一个称为前向引物(forward primer),另一个称为反向引物(reverse primer)。
两个引物应该在目标序列两侧的互补区域上设计,以确保引物能够结合在目标序列的两端。
为了提高特异性,引物的3'端应尽可能与目标序列互补,而5'端则可根据需要进行一定的修改,如添加限制性酶切位点、引入Tm值调整等。
4.引物Tm值计算:Tm值可用于估计引物与目标序列结合的稳定性。
Tm值是引物在PCR反应中的解链温度,通常在50-60°C之间。
使用软件计算引物的Tm值时需要考虑引物的长度、碱基组成和浓度等因素,确保引物的Tm值相近。
5.引物特异性检验:根据引物设计的序列,使用引物设计软件进行特异性检验,确保引物只结合在目标序列上而不结合在其他非特定序列上。
特异性检验可通过引物序列的BLAST分析和二聚体结构预测等方法进行。
6.引物修饰:在一些情况下,可以根据需要对引物进行特定的修饰,以增强PCR反应的效果。
常见的修饰方法包括添加引物标记(如荧光标记)、引物末端修饰(如磷酸化)等。