实验设计与数据分析
- 格式:doc
- 大小:87.00 KB
- 文档页数:3
医学研究中的临床试验与数据分析方法在医学领域中,临床试验是评估药物、治疗方法或预防措施有效性和安全性的关键步骤。
同时,数据分析方法的选择和应用对于评估试验结果的可靠性和科学性也至关重要。
本文将介绍医学研究中常用的临床试验设计和数据分析方法。
一、临床试验设计1. 随机对照试验随机对照试验是最常见且最可靠的试验设计。
在随机对照试验中,研究人员通过随机分配研究对象到不同的组别,比较新药物或治疗方法与对照组的差异。
随机分组可以有效减少个体差异对结果的影响,提高研究结果的可靠性。
2. 盲法盲法是保证试验结果客观性和可靠性的重要手段。
单盲试验中,研究对象不知道自己所在的组别;双盲试验中,研究人员和研究对象均不知道组别信息;而在最严格的三盲试验中,连数据分析员也不知道组别分配情况。
采用盲法可以减少主观因素对试验结果的干扰,提高评价的客观性。
3. 平行设计和交叉设计在平行设计中,研究对象被随机分配到不同组别,并且各组独立接受不同的干预措施。
而在交叉设计中,研究对象在不同时间点接受不同组别的干预措施。
平行设计适用于需要长期追踪观察的试验,而交叉设计则适用于对干预效果迅速评估的试验。
二、数据收集与管理1. 数据收集工具在临床试验中,通常使用标准化的数据收集工具,如调查问卷、数据表格等,以确保数据的准确性和一致性。
研究人员需要明确指导研究对象进行数据的记录,并对数据进行审核和校对,以减少数据的错误和缺失。
2. 电子数据采集系统随着科技的发展,越来越多的临床试验采用电子数据采集系统来收集和管理数据。
电子数据采集系统可以提高数据的准确性和完整性,并且便于数据的存储、分享和分析。
同时,电子数据采集系统还可以提供实时监测和错误检测功能,帮助研究人员及时发现数据异常和错误。
三、数据分析方法1. 描述性统计分析描述性统计分析是对试验数据进行概括和描述的方法。
常用的描述性统计指标包括平均值、中位数、标准差、百分比等。
通过描述性统计分析,研究人员可以对样本的基本特征有一个直观的了解,并初步探索不同组别间的差异。
高效的试验设计与数据分析优化实验设计与数据处理的方法高效的试验设计与数据分析——优化实验设计与数据处理的方法试验设计是科学研究和实验领域中的重要环节,它直接影响到实验结果的可靠性和实验过程的高效性。
同时,在实验过程中,对实验数据的处理和分析也至关重要,它能够揭示数据背后的规律、验证假设,并为决策提供有力支持。
本文将介绍一些高效的试验设计与数据分析的方法,以优化实验设计和数据处理的效果。
一、试验设计1. 设定明确的目标:在进行试验设计之前,需要明确实验的目标和问题。
识别出实验想要解决的具体问题,并确定评价指标和预期结果。
这样可以避免盲目设计和数据收集,确保实验的针对性和有效性。
2. 因素选择与水平确定:根据实验目标,选择影响结果的关键因素,并确定每个因素的水平。
在选择因素时,应避免冗余和重复的因素,以减少实验的复杂性和成本。
同时,要保证因素选择合理,能够揭示影响结果的主要因素。
3. 设计合理的实验方案:基于已确定的因素和水平,选择合适的实验设计方法,如完全随机设计、随机分组设计等。
确保实验方案的科学性和可行性,并考虑到实验过程中可能存在的随机误差和其他干扰因素。
4. 控制实验条件:为了获得准确的实验数据,需要严格控制实验条件,包括环境条件、设备状态等。
通过标准化实验条件,减少不确定因素对实验结果的影响,提高实验数据的可靠性。
二、数据处理与分析1. 数据收集与整理:在实验过程中,需要采集各个因素对结果的观测值,并按照实验方案进行数据整理和记录。
确保数据的准确性和一致性,使得后续的数据处理和分析工作能够进行顺利。
2. 统计分析方法的应用:根据实验设计的特点和数据类型的不同,选择适当的统计分析方法。
常用的统计分析方法包括方差分析、回归分析、t检验等,它们能够有效地揭示因素对结果的影响程度,并提供统计学上的支持。
3. 假设检验与置信区间:在数据分析中,通常需要验证假设的成立和效果的显著性。
通过假设检验和置信区间分析,可以判断因素对结果的影响是否显著,并进行科学的推断。
临床试验统计学设计与数据分析临床试验是评估治疗手段或药物疗效的重要研究方法之一,而统计学设计和数据分析是保证临床试验科学可靠的关键环节。
本文将对临床试验统计学设计和数据分析的重要性进行讨论,以及常用的方法和技巧。
一、临床试验统计学设计的重要性临床试验的统计学设计起着决定试验能否得出可靠结论的作用。
合理的统计学设计能够最大限度地提高试验结论的科学性和可靠性,帮助研究者准确判断治疗手段或药物的疗效。
一个良好的统计学设计应该具备以下特点:1. 随机分组:通过随机分组可以确保每个研究对象有相等的机会被分配到不同的治疗组或对照组,从而减少偏倚的可能性。
2. 控制组和对照组设置:合理的控制组和对照组设置可以帮助研究者评估治疗手段的相对疗效,并排除其他因素对结果产生的干扰。
3. 样本容量计算:通过合理计算样本容量,可以确保试验结果具有统计学意义,并减少结果偶然性导致的误判。
二、临床试验数据分析的重要性临床试验数据分析是从试验数据中提取有关治疗效果的有效信息的过程。
准确、客观地对试验数据进行分析,可以帮助研究者得到准确的结论,指导临床实践。
一个好的数据分析应该具备以下特点:1. 描述性统计分析:通过描述性统计分析,可以对试验数据的分布、中心趋势和变异性进行描述,从而初步了解实验结果。
2. 推断性统计分析:通过推断性统计分析,可以根据样本数据推测总体参数的取值范围,并判断观察到的差异是否统计学上显著。
3. 子组分析和亚组分析:在进行数据分析时,需要对不同子组或亚组的结果进行比较,以确定治疗效果是否在不同人群中存在差异。
三、临床试验统计学设计与数据分析的常用方法1. 假设检验:假设检验是一种用于判断统计样本是否能代表整个总体的方法。
在临床试验中,常用的假设检验方法包括T检验、方差分析和卡方检验等。
2. 生存分析:生存分析适用于研究患者生存时间或特定事件发生的时间,常用的方法包括Kaplan-Meier曲线和Cox比例风险模型。
科学研究中实验设计与数据分析方法科学研究是一项重要的活动,而实验设计和数据分析则是科学研究中不可或缺的环节。
实验设计包括确定实验的目标、设计实验方案、选择实验对象和确定实验变量等步骤;数据分析则是对实验所产生的数据进行统计和解释的过程。
本文将探讨科学研究中常用的实验设计和数据分析方法。
在实验设计中,有几个重要的步骤需要注意。
首先是确定实验的目标,即明确研究问题和要探究的现象。
在确定目标后,需要设计实验方案,即确定实验的具体步骤和流程。
实验方案要尽量遵循科学研究的原则,如随机分组、对照组设计等。
另外,在选择实验对象时,应考虑样本的代表性和可行性,以保证实验结果的可靠性和推广性。
最后,在确定实验变量时,要控制其他可能的干扰因素,以保证实验结果的准确性。
对于数据分析方法,常用的包括描述统计和推断统计。
描述统计是对数据的基本特征进行总结和描述的方法。
其中,最常见的描述统计指标包括均值、中位数、标准差等。
均值是一组数据的平均值,中位数是一组数据的中间值,标准差是一组数据的离散程度的度量。
通过描述统计方法,可以直观地了解数据的分布和趋势。
另外,推断统计是通过样本数据对总体参数进行推断的方法。
这一方法常用于研究中对两个或多个样本之间的差异进行比较。
在推断统计中,常用的方法包括t检验、方差分析、相关分析等。
t检验用于比较两个样本均值之间的差异,方差分析用于比较多个样本之间的差异,相关分析则用于探究变量之间的相关性。
通过推断统计方法,可以帮助研究者判断研究结果的显著性和推广性。
除了上述方法外,科学研究中还有许多高级的实验设计和数据分析方法,如回归分析、因子分析、结构方程模型等。
这些方法更加复杂且需要一定的统计知识和技能。
回归分析用于探究变量之间的函数关系,因子分析则用于降维和变量提取,结构方程模型则综合运用多个统计方法进行模型拟合和验证等。
在实际应用中,科学研究中的实验设计和数据分析方法需要根据研究问题的特点和数据类型的特征来选择。
统计师如何进行实验设计和数据解读实验设计和数据解读是统计学中至关重要的环节,对于统计师而言,掌握正确的实验设计方法和数据解读技巧是必不可少的。
本文将从实验设计和数据解读两个方面,详细介绍统计师在工作中应该如何进行实验设计和数据解读。
一、实验设计实验设计是统计师在开展研究工作中的第一步,良好的实验设计方法能够确保研究结果的可靠性和有效性。
1. 确定研究目的:首先,统计师需要明确实验的目的是什么,希望通过实验获得哪些信息或者验证什么假设。
2. 确定实验因素和水平:统计师需要确定实验中的自变量(也称为因素)以及每个自变量的取值范围(水平)。
例如,在研究新药物的实验中,药物剂量就是一个自变量,不同药物剂量的水平可以是高剂量、中剂量和低剂量。
3. 随机化和对照组设计:为了减少误差和排除干扰因素,统计师应该采用随机化的方法将实验对象随机分配到不同的处理组中,并设置对照组进行对照比较。
4. 样本容量的确定:统计师需要根据实验目的、实验设计和预估效应大小等因素来确定适当的样本容量,以确保实验结果的可靠度。
5. 实验执行和数据收集:统计师需要设计数据收集的流程、制定数据录入和数据验证的规范,确保数据的准确性和完整性。
二、数据解读实验数据的解读是统计师在实验完成之后的重要工作,正确的数据解读能够为研究者提供有效的结论和决策依据。
1. 数据清洗和处理:首先,统计师需要对收集到的数据进行清洗和处理。
清洗数据包括删除异常值、缺失值的处理等,处理数据包括对数据进行标准化、归一化等操作。
2. 描述性统计分析:统计师需要运用描述性统计方法对数据进行整体的概括和描述,包括计算平均值、中位数、众数、标准差、偏度、峰度等指标。
3. 探索性数据分析:统计师可以采用可视化方法,例如绘制直方图、散点图、箱线图等,发现数据的分布特征、变化趋势、异常值等信息。
4. 假设检验:统计师需要根据实验设计和研究目的,选择合适的假设检验方法,对研究所关注的变量进行检验。
《试验设计及数据分析》教学大纲一、基本信息课程代码:1022024学分:2总课时:32课程性质:专业核心课程适用专业:食品质量与安全、水产品质量与安全、农产品加工与贮藏、水产品加工与贮藏专业、农产品流通及品控、食品资源与食品化学、现代食品制造技术等。
先修课程:高等数学,线性代数等。
二、本课程教学目的和任务通过对《试验设计及数据分析》课程的学习,使学生了解、熟悉和掌握一些规范的数据处理方法,深度挖掘一些蕴含在数据背后的物理意义,以及学会相应的Excel、Matlab等软件处理方法和技巧。
并且,能够在研究过程中,利用数据处理软件对数据进行规范处理。
三、教学方法与手段教学方法:理论教学+软件演示+上机实验训练教学手段:理论部分采用多媒体教学(PPT),并且,课堂中通过数据案例分析,并结合软件现场演示,加深学生理解。
同时围绕重点、热点问题留作业,让学生自己查资料、讲解、讨论等。
四、教学内容与要求《试验设计及数据分析》第一章统计学基础知识第一节总体与样本第二节统计描述一、统计特征数二、次数分布第三节概率分布与抽样分布一、概率分布二、抽样分布第四节统计假设检验基本原理一、试验结果的直观分析及其局限性二、统计假设检验的意义三、统计假设检验的基本步骤四、统计假设检验的两类的错误五、双尾检验与单尾检验六、假设检验应注意的问题第二章试验设计原理与方法第一节试验方案设计一、试验有关的术语二、试验方案设计的基本原则三、试验方案类型四、比较性试验方案的类型及设计要点五、正交设计第二节试验方法设计一、试验方法设计目的二、试验方法设计的基本原理三、试验方法设计类型第三章效应比较性试验结果的统计分析实例第一节两样本资料差异显著性检验一、两样本平均数差异显著性检验二、两样本率差异显著性检验第二节单因素试验统计分析实例一、完全随机设计单因素试验结果统计分析二、随机区组设计单因素试验结果统计分析三、完全随机设计系统分组单因素试验结果分析四、拉丁方设计单因素试验结果统计分析第三节多因素试验统计分析实例一、完全随机设计二因素试验结果统计分析二、完全随机设计三因素试验结果统计分析三、两因素裂区设计试验结果统计分析四、正交设计试验结果统计分析第四节资料的正态性检验第五节方差齐性检验第六节卡方检验第七节非参数检验第四章变量间相互关系的统计分析原理及实例第一节回归与相关的概念第二节一元线性回归分析第三节直线相关分析第四节曲线回归分析第五节多元线性回归分析第五章多元统计简介及实例第一节主成分分析第二节偏最小二乘分析五、教学时数分配表(宋体,小四号,加粗,左对齐)内容实验个数实验时数总参考时数章1 第一章统计学基础知识(4学时)6学时2 第二章试验设计原理与方法(6学时)6学时6学时3 第三章效应比较性试验结果的统计分析实例(6学时)4 第四章变量间相互关系的统计分析原理及6学时实例(6学时)5 第五章多元统计简介及实例(6学时)6学时6 总结与复习2学时合计32七、考核方式及成绩评定标准考核方式:平时成绩+期末开卷考试或论文=100分成绩评定标准:平时成绩占40%出勤和课堂表现20分专题讲解和讨论20分期末考试成绩占60%(卷面为100分)综合成绩评定为百分制。
临床试验的统计学设计与数据分析临床试验是评估医疗干预措施效果的重要手段,而统计学则为临床试验提供了有效的设计和数据分析方法。
本文将探讨临床试验的统计学设计与数据分析,旨在帮助读者更好地理解和应用统计学在临床试验中的重要性。
一、临床试验的统计学设计在进行临床试验之前,统计学的合理设计是确保研究结果具有可靠性和可推广性的关键。
以下是几种常用的临床试验统计学设计方法:1. 随机化设计:随机化设计是为了减小选择偏倚,使得研究组和对照组在一些重要特征上具有相似性。
通常采用随机数字表或随机数字生成软件进行随机分组,确保试验组和对照组的分配是完全随机的。
2. 平行设计与交叉设计:在平行设计中,患者被随机分配到试验组和对照组,各组接受相应的干预;而在交叉设计中,同一患者在不同时间接受不同的干预。
两种设计各有优劣,需要根据具体研究目的和可操作性选择合适的设计方式。
3. 盲法设计:盲法设计是为了减小观察误差和认知误差的影响,提高试验结果的可信度。
常见的盲法设计有单盲设计、双盲设计和三盲设计。
单盲设计是指研究人员或研究对象之一不知道实验组和对照组的分组情况;双盲设计是指研究人员和研究对象都不知道实验组和对照组的分组情况;三盲设计是指研究人员、研究对象和数据分析人员都不知道实验组和对照组的分组情况。
二、临床试验的数据分析临床试验进行完后,需要进行数据分析来得出结论。
以下是几种常用的临床试验数据分析方法:1. 描述性统计分析:描述性统计分析是对试验数据的分布进行概括和描述,并计算得出相应的统计量,如均值、中位数、标准差等。
通过描述性统计分析,我们可以对试验数据的特征有一个整体了解。
2. 推断统计分析:推断统计分析是通过从样本中获取的信息,推断总体的参数或判断两个或多个总体之间的差异是否显著。
常用的推断统计方法包括t检验、方差分析、非参数检验等。
3. 生存分析:生存分析是研究个体从某一初始状态到达某一特定事件发生的时间的统计方法。
科研人员的实验设计与数据分析技巧科研人员在进行实验设计和数据分析过程中,需要掌握一定的技巧和方法,以确保研究的可靠性和有效性。
本文将介绍一些科研人员在实验设计和数据分析中常用的技巧和注意事项。
一、实验设计1. 确定研究目的:在进行实验之前,科研人员需要明确研究目的,确定要解决的问题。
这有助于明确实验的方向和内容,以及所需的样本数量和实验条件。
2. 选择适当的实验设计:根据研究目的和问题的性质,科研人员可以选择不同的实验设计方法。
常见的实验设计包括前后对照设计、随机对照试验设计、因素水平设计等。
根据具体情况选择合适的设计方法可以提高实验效果和数据可靠性。
3. 控制实验条件:实验设计过程中,科研人员需要对实验条件进行严格的控制,以减少实验过程中的干扰因素。
例如,可以控制环境温度、湿度和光照等条件,以确保实验结果的准确性和可重复性。
4. 合理安排样本数量:样本数量的选择非常重要,它直接影响到实验的统计效力和研究结果的可靠性。
科研人员可以根据样本量计算的原理和方法,合理地确定实验所需的样本数量。
二、数据采集与整理1. 确保数据的准确性:在实验过程中,科研人员需要确保数据的准确性和可靠性。
可以采用实验重复和数据校验的方法,排除实验误差和数据录入错误。
2. 数据整理与处理:在进行数据分析之前,科研人员需要进行数据整理和处理工作。
这包括数据的录入、清洗、筛选和转换等过程。
科研人员可以使用专业的数据处理软件,如Excel和SPSS等,来进行数据整理和分析。
3. 数据分组与分类:根据实验设计和研究目的,科研人员可以将数据进行分组和分类。
这有助于比较不同组别之间的差异和关系,从而得出研究结论。
三、数据分析与解读1. 统计方法的选择:根据研究问题和数据类型,科研人员可以选择合适的统计方法进行数据分析。
常见的统计方法包括描述性统计、推断统计和相关分析等。
选择合适的统计方法可以从数据中获取更多的信息。
2. 结果的解释与讨论:在进行数据分析之后,科研人员需要解释和讨论研究结果。
临床试验的设计和数据分析临床试验是评估新的医疗干预措施的有效性和安全性的重要手段。
为了获得可靠的结果,临床试验的设计和数据分析是至关重要的环节。
本文将从试验设计、数据收集、数据分析等方面进行探讨,以确保临床试验结果的可信度和可靠性。
一、试验设计试验设计是临床试验的基础,它决定了试验的可行性、有效性以及结果的可靠性。
下面介绍几种常用的试验设计方法。
1. 随机对照试验随机对照试验是最常用的试验设计方法之一。
它通过随机分组的方式,将受试者分为实验组和对照组,分别接受不同的处理或干预。
这样可以减少干预因素对结果的影响,增加结果的可信度。
随机对照试验的设计应遵循随机分组、盲法等原则,以保证试验结果的客观性和公正性。
2. 单盲与双盲试验单盲试验是指试验人员或受试者不知道自己所处的处理组别;而双盲试验是指试验人员和受试者均不知道自己所处的处理组别。
通过盲法的应用,可以避免主观因素对试验结果的影响,提高试验的可靠性。
3. 交叉试验交叉试验是将同一组受试者按一定时间顺序分为实验组和对照组,分别接受不同处理或干预。
需要注意的是,交叉试验要求受试者在试验过程中不受其他因素干扰,以保证结果的可靠性。
二、数据收集临床试验的数据收集过程要科学、规范。
以下是数据收集的常用方法和注意事项。
1. 临床观察临床试验中的数据收集可以通过临床观察进行。
观察对象可以包括患者的病情、治疗效果、不良反应等。
观察数据应尽量客观、全面,减少主观偏差。
同时,在观察过程中应注意记录数据的时间、地点、人员等信息,以保证数据的准确性和可溯源。
2. 问卷调查通过设计合理的问卷,可以收集受试者的主观感受、生活质量等数据。
在问卷设计中,应考虑问题的合理性、选项的多样性以及回答方式的简便性。
此外,应注意保护受试者的隐私,确保问卷调查的合法性和可靠性。
3. 实验室检测有些临床试验需要通过实验室检测来获取数据,如血常规、生化指标等。
在实验室检测中,要确保检测方法准确可靠,并遵循相应的操作规范。
1P1 N1的简单效应:13(34-21-13); N2的简单效应:-9(18-27=-9); P 的主效(平均效应):-5. [6+(-16)]/2=-5. N 的主效:2 [13+(-9)]/2=2 P*N 的交互效应:-11. [(21+18)-(34+27)]/2=-11(对角之和之差的一半)2、数据处理具体包括:参数估计、假设检验、方差分析与回归分析等方法。
3、统计分析的基本特点:通过样本推断总体。
随机样本的容量越大,越能代表总体。
4、Fisher 试验设计三原则:重复(作用:估计实验误差、降低实验误差、扩大试验代表性)、随机排列(作用:正确估计实验误差)、局部控制(区组化)(特征:同一重复内试验的各处理均应在尽量一直的条件下进行试验,使误差控制按“区组内尽可能小,区组间尽可能大”的原则进行设计)5、表征集中性的特征数是平均数,应用最普遍的是算术平均数;表征离散型的特征数是变异数,最常用的是标准差。
算术平均数功用:指示资料内变数的“中心位置”,用以衡量质量的“一般水平”;作为资料的“代表数”与其他资料进行比较。
离均差的两个性质包括:(1)所有离均差的代数和为0,0)y (n 1=-∑=i i y (2)所有离均差的平方和为最小,)()a ()(1221y a y y y ni i n i i ≠-<-∑∑==. 6、 标准差功用:①用以衡量资料的变异性,是变数的平均变异量,可判断均数代表性的强弱;②估计实验误差,为确定均数间差异显著性提供依据Ps:样本标准差s 不适宜不同样本因均数差异悬殊或单位不同的变异程度的比较;样本标准差s 不能直接反应样本均数与总体均数究竟误差多少。
特征:①标准差的大小,受资料中每个观测值得影响②计算标准差时,在各观测值加或减去一个常数,其数值不变③每观测值同乘或除以一个数a ,所的标准差是原标准差的a 或1/a 倍。
总体标准误的大小反应样本均数的抽样误差的大小,即精密性的高低。
样本标准差是反应样本中各观测值变异程度大小的一个指标,其大小说明了样本均数对该样本代表性的强弱;样本标准误是样本均数的标准差,它是样本均数抽样误差的估计值,其大小说明了样本间变异程度的大小及精密性的高低7、正态分布表格查法,示例:同是α取0.05,双侧时,u α/2=1.96(按α=0.05查取);单侧时,u α=1.64(相当于双侧时按α=0.1查取)8、t 分布 特征:与总体标准差没有关联,特别适用于抽样误差较大的小样本。
t 分布的离散性比u 分布的大9、F 分布 两个样本方差的比值 特点:取值区间0到正无穷;F 分布的平均数为1;F 分布曲线的形状仅取决于df 1和df 2,在df 1=1或2时,F 分布曲线呈严重倾斜的反J 型10、假设检验的两类错误:①第一类错误(Ⅰ型错误或α型错误)无效假设H 0应成立,却否定了它,犯了“弃真”错误;②第二类错误(Ⅱ型错误或β型错误)无效假设H 0不成立,却接受了它,犯了“存伪”错误。
第一类错误只有在否定H 0时才会发生,而第二类错误只有在接受H 0时才会发生,两类错误不可能同时发生;样本容量相同条件下,若犯第一类错误的概率减少,则反第二类错误的概率就会增加。
显著性检验:同一资料,双侧检验与单侧检验所得的结论不一定相同,双侧检验显著,单侧检验一定显著;但单侧检验显著,双侧检验未必显著。
11、与成组法相比成对法比较的优点:(1)加强了试验控制(2)不受两样本总体方差是否相等的干扰(3)随机误差减小(4)提高实验的精确度12、完全随机设计 优点:①易设计,对处理和重复数没有严格限制,可充分利用全部材料②有无缺区也可进行分析③统计分析简单 缺点①同处理小区分布比较凌乱,不便于观察②没实行局部控制,试验差异较大时,不能采用13、随机区组化 特点:随机区组设计包括两个因素区组因素、处理因素 原则:重复内具同质性,重复间允许最大异质性。
应用条件:资料满足正态性、方差齐性。
14、简便公式:矫正数CT=y ..2/(n ·k) 总平方和211n k T ij i j SS y CT ===-∑∑ 总自由度df T =nk-1=N-1 ; 处理间平方和2.11n t i i SS y CT k ==-∑ 处理间自由度df t =n-1; 区组间平方和2.11kk j j SS y CT n ==-∑ 单位组自由度df k =k-1均方MS=SS/df方差分析的应用条件①各观察值相互独立,并服从正态分布;②各组总体方差相等,即方差齐性。
15、正交试验设计的结果分析:①确定因子及其交互作用的主次顺序②找出最优水平组合③分析因子与指标的关系④预测最优组合条件下,试验指标估计值16、正交表原则要求①任一列中,不同数字出现的次数相等②任两列中,同一横行所组成的数字对出现的次数相等。
特点:均衡分散;整齐可比17、二水平两因子间的交互作用只占一列;三水平两因子间交互作用占两列;m 水平两因子间的交互作用占m-1列 18、实验估计值3123ˆa y y b c d =++++(假设最优组合为A 3B 1C 2D 3),其中,y 为平均数,abcd 为贡献值,贡献值=该因素该水平下对应的k 值—平均数19、因素水平选择的原则:假如在结果分析中A 1为最优选择,而在交互作用中A 2B 1为最优选择,此时要舍去A 1选择A 2,如果交互作用间因素水平的选择有冲突,则按因素影响的主次顺序来选择。
20、综合评分法 隶属度加权综合评分法:若多个指标彼此都是越高越好,则用计算得到隶属度;若多个指标评价标准不一,可先对指标越低越好的隶属度采用(1-计算得到的隶属度)修订,然后再按照越高越好的原则挑选最优组合。
=指标值—指标最小值指标隶属度指标最大值—指标最小值;1122++ ··=⨯⨯综合评分指标隶属度权重指标隶属度权重 21、极差分析法的优缺点 优:简单直观、计算量少;缺:不能给出误差大小的估计及指出因子及其交互作用的显著性。
22、正交实验方差分析法不同情况下的相关计算(以下都是对水平相等情形而言)空列实验误差为各空列误差之和无交互、无重复:①相关数据计算:计算各水平下k 及k 2值,y..,y ,CT ,211SS mg gp p K CT r ==-∑,r=n/m 其中,p 为水平数,r 为水平重复数②列方差分析表:表头—变异来源、SS 、df 、MS 、F 、查标准值F 0.05(df A ,df e )和F 0.01(df A ,df e )。
结果分析:依据F 值大小,确定因子的主次顺序;因子显著性及其水平选取;最优组合;最优方案③指标估计,计算出估计值,结论:最佳工艺下指标估计值为。
④验证试验 直接分析可知,在实验的?个组合中,实验?号的指标最佳(?),而所选最优组合?并未出现在表?的?个试验中,为此还需要验证试验(?代表数字或组合)无交互、有重复:Ⅰ重复试验 (情形1) 完全随机化重复试验 ①相关数据计算:计算各水平下y i 。
、.k 及k 2值,y..,y ,CT ,211SS ·k m g gp p K CT r ==-∑②由重复试验产生的误差222.1111n k ne ij i i j i SS y y k ====-∑∑∑,df e2=n (k-1),总误差平方和SS e ﹡=SS e1+SS e2,总误差自由度df e ﹡=df e2+df e1;③列方差分析表(将两类误差及自由度合并后再算其自由度)用SS e ﹡、df e ﹡算均方差,接下来的步骤与无交互、无重复情形一样(情形2)随机区组化重复试验 相关数据计算在区组观察值下方加一行y.j 关于误差合并问题:应检验空列误差均方MS e1与重复误差均方MS e2差异的显著性F 0.05(df e1,df e2)①若经F 检验不显著,则将两者的平方和与自由度分别合并;②若F 检验显著,二者不可合并,此时只能以MS e2进行F 检验与多重比较。
单位组平方和2./k j SS y n CT =-∑;处理平方和2./t i SS y k CT =-∑;重复误差平方和SS e2=SS T -SS k -SS t ;处理间自由度df t =n-1;,单位组自由度df k =k-1,空列误差自由度df e1=df t -df A -df B -···,重复试验误差df e2=df T -df k -df t = df k ·df t 。
其他步骤与算法与情形1一样。
Ⅱ重复取样 计算整体误差(空列及均方低于空列的均方之和),其他计算和步骤(包括整体误差与重复误差的合并)与上述情形2一样。
有交互、无重复:①表头设计②设计实验方案③正交试验结果及其数据处理(交互作用的表格设计可以不进行空列的计算),误差平方和B C A e B B A C SS SS SS SS SS SS ⨯⨯--=--,交互作用自由度df df df A B A B ⨯=⨯。
将交互作用均方小于误差均方的进行合并,形成合并误差。
再进行完因子显著性和主次顺序分析后,要进行交互作用的配方优化(只对有显著影响的交互作用进行搭配效应计算)。
其余的步骤和计算方法与无交互、无重复的情形一样。
有交互、有重复:利用以上的方法,将其综合起来即可。
23、回归分析:揭示出呈因果关系的相关变量间的联系形式,建立他们之间的回归方程,利用方程由自变量来预测、控制依变量; 相关分析:只能研究呈平行关系的两变量间的相关程度或一个变量与多个变量之间的相关程度,不能用一个或多个变量去预测、控制另一个变量的变化,这是回归分析与相关分析区别的关键所在,但是,二者不能截然分开。
回归方程ˆy =a+bx 的基本性质:①2ˆ(y y)-=∑最小值②ˆ(y y)-=∑0③回归直线必须通过中心点x y (,)24、有回归,必有相关;有相关,不一定有回归;回归显著,相关必显著;相关显著必然关系密切;x 与y 相关不显著,不一定x 与y 无关。