电力电缆相序阻抗计算与分析方法
- 格式:doc
- 大小:105.00 KB
- 文档页数:6
对称分量法及元件的序模型与参数Symmetrical Components Method,Sequence ModelAnd Parameters第17讲问题1、计算电力系统三相不对称故障的总体思路?2、如何将相分量分解为正序、负序、零序分量之和?3、正常电力系统如何对正序、负序、零序三序解耦?4、发电机、线路的正序、负序、零序等值参数的定义及等值电路5、中性点上的阻抗对发电机或负荷的正序、负序、零序阻抗有什么影响?6、如何根据变压器的连接组别确定其零序等值电路?如何计算不对称短路故障?1、对于三相短路(对称短路),可用一相代表三相进行计算,采用相量分析方法,非常简单。
2、对于不对称故障,无法用一相代替三相,因而计算复杂,必须寻求新的方法。
单相短路无法用一相代替三相,如何求解?1、对称分量法(Symmetrical Components)•不对称故障后电力系统的特点•对称分量法•正序、负序、零序分量(Positive, Negative and Zero Sequence Components)等值2、各序分量对对称电力系统的作用•正常电力系统元件的对称性;三相参数完全相同三相参数循环(旋转)对称由这些元件连接成的电力系统是三相对称的。
•各序分量电量作用于对称系统的性质各序分量作用于对称系统的性质稳态分析中已有的结论:1、三相对称的网络注入三相正序电流,节点上只产生三相正序电压;三相正序电压施加在三相对称的网络只产生三相正序电流。
发电机正序电压加到电力网上,只产生正序电压与正序电流推测的结论:2、三相对称的网络注入三相负序电流,节点上只产生三相负序电压;三相负序电压施加在三相对称的网络只产生三相负序电流。
3、三相对称的网络注入三相零序电流,节点上只产生三相零序电压;三相零序电压施加在三相对称的网络只产生三相零序电流。
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡222222222222222222222)()()(a s n ma m s n a n m s a s a n a m a m a s a n a n a m a s cb a s n mm s n n m s c b a I a Z a Z Z I a Z a Z Z I a Z a Z Z I a Z I a Z I Z I a Z I a Z I Z I a Z I a Z I Z I I I Z Z Z Z Z Z Z Z Z U U U 如对称矩阵加负序电流,产生的电压为所以ac a b U a U U a U ==,2负序电流产生的电压为负序电压!⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000000000000)()()(a s n m a m s n a n m s a s a n a m a m a s a n a n a m a s c b a s n mm s n n m s c b a I Z Z Z I Z Z Z I Z Z Z I Z I Z I Z I Z I Z I Z I Z I Z I Z I I I Z Z Z Z Z Z Z Z Z U U U 对称矩阵加零序电流,产生的电压为所以ab c U U U ==零序电流产生的电压为零序电压!定理2正序量作用于对称系统后只产生正序量;负序量作用于对称系统后只产生负序量;零序量作用于对称系统后只产生零序量;三种分量对对称电力系统相互独立,互相解耦。
电缆载流量计算书公司名称:DHAC_COMPM软件名称:道亨电力电缆计算系统版本号:(4.10.2016.0908)工程名称:设计员:设计时间:2016.12.22第一部分:载流量一、基本条件2.运行状况线路类型:三相交流电电压等级:110(kV)频率:50(Hz)共有1个回路当前回路是第1个回路3.电缆敷设方式、环境条件----------施工段1----------敷设方式:隧道敷设媒质温度:40(℃)不考虑隧道内的温升----------施工段1----------4.电缆排列方式、相序、接地方式、位置信息----------施工段1----------排列方式:垂直排列相序:ABC接地方式:单端接地位置:(500,-327.95), (500,-677.95), (500,-1027.95) ----------施工段1----------二、载流量计算所有回路、所有施工段的载流量结果汇总表(考虑环境温升\不考虑环境温升)(A):施工段11、交流电阻(1)最高温度下的直流电阻()[]201200-+⨯=θαR R'求得:R'=1.44086e-005(Ω/m)(2)集肤效应因数s s k R'f πx 72108-⨯⋅= 4480192s s s x .x y +=求得:X s 2=3.79382Y s =0.0707225(3)邻近效应因数p p k R'f πx 72108-⨯⋅=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+++⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛+=27080192181312080192442244.x .x .s d .s d x .x y p p c c p p p不等距时21s s s ⋅=求得:X p 2=3.22693Y p =0.00366388(4)交流电阻求得:R=1.54804e-005(Ω/m)2、绝缘损耗(1)导体电容求得:C=2.15389e-010(F/m)(2)绝缘损耗求得:W d =0.277162(W/m)3、金属套和铠装中的功率损耗(1)最高工作温度下电缆单位长度金属套或屏蔽的电阻求得:单位长度金属套或屏蔽的电阻R s =3.3457e-005(Ω/m)(2)最高工作温度下电缆单位长度铠装的电阻已知:无铠装层。
目前,世界各国的电力系统绝大多数均采用三相制供电方式,所谓三相制就是由三个频率相同、有效值相等、初相位互差120度的电压源组成的供电系统。
三相制的供电方式有许多显着优点,例如三相发配电设备在同样功率、电压的条件下比直流或单相交流简单、体积小、效率高、节省材料,三相电动机结构简单、运行可靠、使用和维护方便等等。
本章介绍对称三相电路的基本概念、分析计算方法,不对称三相电路的概念及中点位移,并介绍三相电路的功率及其测量等内容。
7.1 三相交流电路三相电路的基本结构包括电压源、负载、变压器以及传输线,在这里可以简化为电压源与负载通过导线相连的电路,有关传输线的学习可以作为电力系统专业的深入。
忽略变压器可以简化分析,同时也不会影响对三相电路的分析计算问题的理解。
7.1.1 对称三相电源三相电源来源于三相交流发电机,其中发电机定子AX、BY、CZ为三个完全相同,彼此相差120度的绕组。
当磁极(转子)以w角速度匀速旋转时就分别产生三个同频率、等幅值、相位初值互差120度的正弦交流电压。
如图7.1.1所示在三相制中,负载一般也是由三个部分电路组成的,每一部分称为负载的一个相,这样的负载称为三相负载,常见的三相感应电动机便是一例。
有了三相负载的概念以后,我们就把以前用二段网络表示的负载称为单相负载。
在三相制中常常把若干单相负载分为三组,组合而成三相负载,然后和三相电源相接。
在三相制中还会存在一些未经组合的单相负载。
由三相电源、三相负载(包括个别单相负载)和联接导线所组成的电路称为三相电路。
三相电路实际上是一种复杂交流电路。
顺便指出,三相制的概念可以推广。
在理论上可以制造出任意相数的发电机,产生二相、三相、四相……电压,统称为多相电源。
由多相电源供电的体系称为多相制。
对称相正弦电压中包含个振幅相等,频率相同的正弦电压,在相位上相邻的两个电压间具有的相位差。
例如对称六相电压中,相邻两电压的相位差为。
二相制是一种例外,二相电压中两个相电压的振幅相等,但其相角差不是而是,其实可以把它看成是对称四相制的一半,可称之为“半四相制”。
线缆阻抗计算公式线缆阻抗是指电缆或导线对电流流动的阻碍程度,是电缆或导线的物理特性之一。
了解线缆阻抗的计算公式对于电气工程师和电子技术人员来说非常重要。
本文将介绍线缆阻抗的计算公式及其应用。
一、什么是线缆阻抗?线缆阻抗是指电缆或导线对电流流动的阻碍程度。
它是由电缆或导线的电感、电容和电阻等因素综合决定的。
电缆或导线的阻抗越大,通过它的电流越小;阻抗越小,通过它的电流越大。
二、线缆阻抗计算公式常见的线缆阻抗计算公式如下:1. 电缆或导线的电感阻抗计算公式:ZL = jωL其中,ZL为电感阻抗,j为虚数单位,ω为角频率,L为电感。
2. 电缆或导线的电容阻抗计算公式:ZC = 1 / (jωC)其中,ZC为电容阻抗,C为电容。
3. 电缆或导线的电阻阻抗计算公式:ZR = R其中,ZR为电阻阻抗,R为电阻。
4. 电缆或导线的总阻抗计算公式:Z = √(ZL^2 + ZC^2 + ZR^2)其中,Z为总阻抗,ZL为电感阻抗,ZC为电容阻抗,ZR为电阻阻抗。
三、线缆阻抗计算公式的应用线缆阻抗计算公式在电气工程和电子技术中具有广泛的应用。
1. 电缆设计:根据电缆的使用环境和要求,计算线缆的阻抗,选择适合的电缆材料和规格。
2. 信号传输:在数据通信中,为了保证信号的传输质量,需要计算线缆的阻抗,选择匹配的信号源和负载。
3. 电气系统分析:在电气系统中,计算线缆的阻抗有助于分析电路的特性和性能,确保电流和电压的稳定传输。
4. 高频电路设计:在射频电路设计中,计算线缆的阻抗有助于匹配电路的传输线和负载,提高电路的工作效率和性能。
线缆阻抗计算公式是电气工程和电子技术中必不可少的工具。
掌握线缆阻抗的计算方法,可以帮助工程师和技术人员设计和分析电路,提高电气系统的性能和可靠性。
同时,合理选择线缆材料和规格,可以有效降低能耗和成本,提高电缆的传输效率和质量。
北交《电力系统故障分析》在线作业一一、单选题(共 10 道试题,共 30 分。
)1.三相功率的标幺值()一相功率的标幺值。
. 大于. 小于. 等于. 大于等于正确答案:2.变压器的变比()两侧的额定电压之比。
. 大于. 等于. 小于. 大于或等于正确答案:3.负序分量的相序与正常对称运行下的相序()。
. 相同. 相反. 差 30°. 差 60° 正确答案:4.冲击短路电流有效值,就是短路后()时刻总的短路电流的有效值。
. 0.01s. 0.02s. 0.03s. 0.04s正确答案:5.在单相接地短路故障中,短路点故障相中的正序电流()负序电流。
. 大于. 等于. 小于. 大于等于正确答案:6.两相短路时,短路电流及电压中不存在()。
. 正序分量. 负序分量. 零序分量. 正序分量和负序分量正确答案:学习资料分享7.电力系统发生单相接地短路时,短路点故障相的电压等于()。
. 0. 线电压. 相电压. 2 倍相电压正确答案:8.正序分量的相序与正常对称运行下的相序()。
. 相同. 相反. 差 30°. 差 60°正确答案:9.6kV 电压等级的平均额定电压为:()。
. 6.0kV. 6.1kV. 6.2kV. 6.3kV正确答案:10.电力系统发生相间短路时,过渡电阻主要由()构成。
. 电感. 电容. 接触电阻. 电弧电阻正确答案:北交《电力系统故障分析》在线作业一二、多选题(共 10 道试题,共 40 分。
)1.我国电力系统中性点运行方式有:()。
. 直接接地. 不接地. 经消弧线圈接地. 经电容器接地正确答案:2.进行负故障短路电流计算时,常用的方法有 : ()。
. 边界条件方程式法. 模拟复合序理想变压器法. 两口网络理论法学习资料分享. 故障电流线性方程组法正确答案:3.接线组别为()的变压器,高低压侧绕组极性相同。
. 2. 4. 6. 8 正确答案:4.以下为短路点的过渡电阻的为:()。
电缆的电抗和阻抗计算
电缆是电力传输和信号传输中常用的导线,其电抗和阻抗的计算对于电力系统的设计和电路的分析非常重要。
本文将介绍电缆电抗和阻抗的计算方法及其应用。
首先,我们来了解一下电抗和阻抗的概念。
电抗是指电缆对交流电的阻碍程度,可以分为电感抗和电容抗。
电感抗是指电缆对电流变化的反应,主要由电感引起;电容抗是指电缆对电压变化的反应,主要由电容引起。
阻抗是指电缆对交流电的总体阻碍程度,包括电阻和电抗。
对于计算电缆的电感抗,我们可以使用下面的公式:
XL=2πfL
其中,XL表示电感抗,f表示频率,L表示电感。
对于计算电缆的电容抗,我们可以使用下面的公式:
XC=1/(2πfC)
其中,XC表示电容抗,f表示频率,C表示电容。
在计算电缆的总电抗时,我们需要考虑电感抗和电容抗的综合影响。
可以使用下面的公式计算电缆的总电抗:
Z=√(R^2+(XL-XC)^2)
其中,Z表示电缆的总电抗,R表示电缆的电阻,XL表示电感抗,XC表示电容抗。
通过计算电缆的电抗和阻抗,我们可以评估电缆在交流电路中的性能和稳定性。
在电力系统设计中,合理计算电缆的电抗和阻抗有助于保证电缆的传输效率和稳定性。
在电路分析中,我们可以根据电缆的电抗和阻抗来预测电路的响应和特性。
总之,电缆的电抗和阻抗计算是电力系统设计和电路分析中的重要内容。
通过合理计算电缆的电抗和阻抗,我们可以评估电缆的性能和稳定性,保证电力传输和信号传输的有效性。
这对于提高电力系统的运行效率和电路分析的准确性具有重要意义。
在计算电力系统不平衡情况下引用了对称分量法,即任何三相不平衡的电流、电压或阻抗都可以分解成为三个平衡的相量成分即正相序(UA1、UB1、UC1)、负相序(UA2、UB2、UC2)和零相序(UA0、UB0、UC0),即有:UA=UA1+UA2+UA0,UB=UB1+UB2+UB0,UC=UC1+UC2+UC0,其正相序的相序(顺时方向)依次为UA1、UB1、UC1,大小相等,互隔120度;负相序的相序(逆时方向)依次为UA2、UB2、UC2,大小相等,互隔120度;零相序大小相等且同相,各相序都是按逆时针方向旋转。
在对称分量法中引用算子a,其定义是单位相量依逆时针方向旋转120度,则有:UA0=1/3(UA+UB+UC),UA1=1/3(UA+aUB+aaUC),UA2=1/3(UA+aaUB+aUC)注意以上都是以A相为基准,都是矢量计算。
知道了UA0实际也知道了UBO和VCO,同样知道了UA1也就知道了UB1和UC1,知道了UA2也就知道了UB2和UC2正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。
只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。
对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。
当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量)。
下面再介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。
由于上不了图,请大家按文字说明在纸上画图。
从已知条件画出系统三相电流(用电流为例,电压亦是一样)的向量图(为看很清楚,不要画成太极端)。
电力电缆相序阻抗计算与分析方法
在城市电网建设中,220kV和110kV线路愈来愈广泛采用电力电缆,因此必须正确认识和掌握电缆线路的相序阻抗参数特点。
本文论述了电力电缆正、负和零序阻抗的理论计算和采用单相电源法进行参数实测的试验方法,阐述了金属护套不同的接地互联方式下电缆相序阻抗参数特点和各序阻抗之间的关系,有助于电缆参数的正确测量和继电保护装置的可靠运行。
随着城市建设的飞速发展和城市规划的要求,城区220kV和110kV线路大量采用电力电缆,而电力电缆参数的准确性(主要指正序和零序阻抗)是继电保护整定计算的重要基础。
由于电缆线路X0/X1的关系与架空线路不一样,因此需要对电力电缆参数理论计算方法、测量方法和其特点规律进行分析和研究,以便于指导生产实际。
1 电缆参数计算和分析
电缆线路参数与金属护套接地方式、互联和换位、回流线和回路数有关,下面分几种情况进行讨论。
1.1 电缆线路的正、负序阻抗
(1)金属护套内无电流
当单芯电缆线路的金属护套只有一点互联接地;或各相
电缆和金属护套均换位,且三个换位小段长度相等,或金属护套连续换位得很好时,金属护套内不存在感应电流,此时电缆线路正、负序单位阻抗计算与架空线一样(见图1):
图 1 以比率表示的任意排列单回线中各项电缆之间的中心距离
Z1=Z2=RC+j2ω×10-4ln(S×nS×mS)13 (GMRA×GMRB×GMRC)13 (1)
式中Z1为正序单位阻抗,Ω/km;Z2为负序单位阻抗,Ω/ km;Rc为三相线芯的平均交流电阻,Ω/km;ω为角频率; GMRA、GMRB,GMRC为自几何均距。
(2)金属护套内有电流
如果电缆的金属护套两端直接互联,金属护套的感应电压在护套形成的闭环回路中产生和线芯电流方向相反的护套电流,并产生护套损耗,导致线芯正、负序电阻减小,正、负序感抗增加,计算公式:
Z1=Z2=RC+Xm2RSXm2+RS2+j2ω×10-4 ×ln(nm)13SGMRC-jXm3Xm2+RS2 (2)
式中Xm为金属护套与线芯间的单位互感抗;Rs为金属护套的直流电阻(50℃),Ω/km;GMRC为线芯的几何半径。
1.2 电缆线路的零序阻抗
(1)短路电流以大地作回路
电缆线路的金属护套只在一端互联接地,而邻近无其它平行的接地导线,则在电网发生单相接地故障时,短路电流以大地作回路。
单回路的零序单位阻抗为:
Z0=3RC3+Rg+j2ω×10-4lnDe[GMRC3(S×nS×mS)2]19 (3)
式中De为故障电流以大地作回路时等值回路的深度;Rg 为大地的漏电电阻。
(2)短路电流全部以金属护套作回路
电缆线路的金属护套在两端直接互联或交叉互联接地时,短路电流通过大地部分可忽略不计,可认为短路电流全部以金属护套作回路,回路电阻为金属护套的并联电阻,则单回路的零序单位阻抗为:Z0=RC+RS+j6ω×10-4lnGMRSGMRC13(4)
式中GMRs为金属护套的几何半径。
1.3 正、负与零序阻抗参数的关系
由于3Rg较大,比较公式(1)和(3)可知,金属护套一端互联时,电缆的零序单位阻抗Z0远大于Z1和Z2。
由于金属护套与线芯间的单位互感抗Xm大于金属护套的直流电阻RS,比较公式(2)和(4)可知,金属护套两端互联时,电缆的零序单位阻抗Z0一般略大于Z1和Z2。
2 电缆参数测试方法
2.1 正、负序阻抗的测量
将线路对侧三相短路并接地,采用单相电源法测量,接线见图2(以AB为试验相)。
图2 正、负序阻抗测量接线图
电缆正序阻抗可按下列公式计算:
cosφAB=PABUABIAB
Z·AB=RAB+jXAB=UABIABcosφAB+jUABIABsinφAB RAB=PABI2AB
XAB=UABIAB2-R2AB
式中cosφAB为试验AB相功率因数,RAB为试验AB相正序有效电阻,Z·AB为试验AB相正序阻抗。
然后,依次以BC 相和CA相为试验相,可测得Z·BC和Z·CA,则Z·1=16(Z·AB+Z·BC+Z·CA)=R1+jX1
R1=16(RAB+RBC+RCA) X1=Z21-R21
图3 零序阻抗测量接线图
2.2 零序阻抗的测量
将线路对侧三相短路并接地,本侧测量端三相短路, 单相电源经隔离变压器接入,接线见图3。
零序阻抗计算公式如下:
cosφ0=P0U0I0
Z·0=R0+jX0=3U0I0c osφ0+j3U0I0sinφ0
R0=3P0I20 X0=U0I02-R20
3 例证
220 kV罗鹿线和天鹿线电缆均为单回路,金属护套交叉互联,两端接地,等间距直线排列,没有回流线;110kV西罗线电缆为金属护套一端直接互联接地,没有回流线。
上述三条电缆线路的正、零序阻抗的理论计算值与实测结果见附表。
由附表可知:
(1)金属护套仅在一端互联接地时,电缆零序单位阻抗值约为正、负序单位阻抗值的7~10倍。
(2)金属护套在两端互联接地时,电缆零序单位阻抗仅略大于正、负序单位阻抗值,而架空线路的X0约为X1的3倍。
(3)金属护套一端直接互联接地与两端互联接地时,电缆正、负序单位阻抗值的相差不大。
(4)金属护套一端直接互联接地与两端互联接地的电缆零序单位阻抗值相差近十倍。
4 结论
本文通过理论计算和实测方法,对高压电力电缆线路相序阻抗参数与金属护套接地互联方式等方面的关系以及各序阻抗之间的关系进行研究分析,从而对电缆线路参数的规律和特点有了正确认识和理解,有利于继电保护装置的正确整定,可靠运行。