数学发展史
- 格式:doc
- 大小:22.50 KB
- 文档页数:5
数学的历史介绍数学的历史发展和重要数学家数学作为一门古老而又深刻的学科,在人类文明的历史长河中扮演着重要的角色。
从古代至今,数学不断发展演变,培育出许多伟大的数学家,他们为数学的进步做出了巨大的贡献。
本文将为大家介绍数学的历史发展并重点介绍一些重要的数学家。
一、古希腊时期数学的发展古希腊是数学史上一个重要的里程碑,许多重要的数学思想和概念都在这个时期诞生。
最为人熟知的是毕达哥拉斯学派提出的一系列数学原理,包括著名的毕达哥拉斯定理。
另外,欧几里得的《几何原本》对后世数学发展起到了巨大的影响,成为许多数学家研究的基础。
二、中世纪数学的低谷与复兴中世纪数学的发展相对较慢,部分原因是欧洲的文化环境受到了战争和政治动荡的影响。
然而,阿拉伯数学家在这个时期对数学的发展做出了重要贡献。
他们将印度和希腊的数学知识引入阿拉伯世界,并进行了整理和发展,为欧洲数学的复兴打下了基础。
著名的《阿拉伯数学传统》成为了数学史上的重要文献之一。
三、文艺复兴时期的数学突破文艺复兴时期是欧洲数学复兴的重要时期,众多数学家在这个时期涌现出来。
其中,意大利数学家斯忒芬诺为代数学的发展做出了杰出贡献,他提出了方程三次及以上的根的求解方法。
另外,日耳曼数学家勒让德也是这个时期的重要人物,他以发展微积分理论而闻名。
四、近代数学的革命近代数学的革命主要发生在17至19世纪,这一时期见证了许多基础性数学理论的诞生。
哥德巴赫猜想、费马大定理等一系列重要的数学难题在这一时期得到了提出。
著名的数学家牛顿和莱布尼茨几乎同时独立发现了微积分学,为后来的物理学和工程学等学科提供了基础。
五、现代数学的拓展与应用20世纪以来,数学已经发展成为一门庞大而复杂的学科体系。
代数学、几何学、概率论、数论等各个分支都有了独立而深入的发展。
许多著名的数学家如高斯、黎曼、庞加莱等在这个时期做出了具有重要影响的贡献。
数学的应用也广泛渗透到自然科学、工程学与经济学等领域,为人类社会的进步做出了重要贡献。
数学发展历程数学是一门古老而又重要的学科,它对人类的文明进程产生了深远的影响。
本文将介绍数学的发展历程,从古代数学的起源到现代数学的蓬勃发展。
1. 古代数学的起源数学的历史可以追溯到古代文明。
早在公元前3000年左右,古埃及人、古巴比伦人和古印度人就开始使用简单的几何学和代数学方法来解决实际问题。
古希腊的毕达哥拉斯学派则为几何学的发展做出了重要贡献。
2. 古希腊数学的巅峰古希腊数学是数学发展史上的重要里程碑。
众所周知的数学家如毕达哥拉斯、欧几里得和阿基米德等,他们的研究奠定了几何学和数论的基础。
毕达哥拉斯学派提出了著名的毕达哥拉斯定理,欧几里得则以其著作《几何原本》成为了这一时期最具影响力的数学著作。
3. 中世纪的数学复兴中世纪数学发展相对较缓慢,直到数学复兴的来临才迎来了重要的突破。
文艺复兴时期的欧洲,数学开始受到更多人的关注。
著名的数学家费马和笛卡尔等人的工作推动了代数学的发展,他们将代数学与几何学相结合,开辟了新的研究领域。
4. 数学的科学化17世纪,随着数学的科学化进程,数学开始独立于其他学科发展。
牛顿和莱布尼茨的发现了微积分,这一发现不仅为物理学和工程学等其他学科提供了重要的工具,也标志着数学成为一门真正的学科。
这个时期的数学家还研究了概率和解析几何等领域。
5. 现代数学的发展进入现代时期,数学的发展进入了一个全新的阶段。
20世纪对数学产生了巨大的影响,数学家们推动了许多重要的发现和理论。
例如,集合论和拓扑学的兴起推动了数学的新进展。
数论、代数学、数学分析等各个分支都在不断深化和拓展。
6. 当代数学的前沿当代数学拥有众多前沿领域,包括数学物理学、几何拓扑学、图论和数值计算等。
这些领域的研究不仅解决了许多现实问题,也丰富了数学的理论体系。
同时,数学的应用也与其他学科如计算机科学、金融学和生物学等有着密切的联系。
结语:数学的发展历程长期而丰富多样。
从古代的起源到现代的蓬勃发展,数学一直作为人类智慧的结晶,推动着人类文明的进步。
数学的发展历史一、古代数学的萌芽数学的历史可以追溯到公元前1800年的古巴比伦,那时候出现了一些代数问题和几何问题。
他们使用类似于解谜游戏的方法来解决问题,这些解题方法在那个时代已经很先进了。
在公元前600年左右,古希腊的毕达哥拉斯学派开创了完整的数学理论,这阶段被认为是古代数学的黄金时代。
他们发现了自然数、几何元素和研究了三角形的一些基本理论。
二、欧几里得与数学元素欧几里得是古希腊的数学家、几何学家,他发表了著名的《几何原本》一书,成为了古代希腊数学理论的代表。
欧几里得的《几何原本》对许多几何概念和证明进行了全面的系统总结,成为了数学教育中的经典教材。
三、中世纪的数学沉寂中世纪的欧洲数学长期受到罗马帝国的灭亡和各种教会的禁忌的影响而停滞不前。
然而,在伊斯兰世界,穆斯林数学家保留下了希腊的数学遗产,发展出了乘法表和代数学,同时也为十进制数学系统提供了发展思路,这大大促进了基础数学的发展。
四、文艺复兴与数学的繁荣在文艺复兴时期,欧洲兴起的人文主义和启蒙思想极大地推动了数学的发展。
意大利数学家费拉利和巴西科等人提出了大量的代数方法和解决方案,而德国数学家克拉默在线性代数和矩阵理论上的突破对现代数学的发展产生了深刻的影响。
五、科技革命与数学的重要角色随着科技的飞跃,数学的应用价值也越来越受到重视。
数学提供了解决数值计算问题和控制系统问题的数学方法,使得机械、电子和计算机技术得到了迅速的发展。
现代数学的很多理论和方法都是为了解决这些工程和科学问题而发展起来的。
六、现代数学的哲学与未来现代数学不仅让人们更好的理解世界,更开启了理解科学和宇宙的新的宏观和微观层次。
随着技术的飞速发展,数学的应用也不断得到了创新和拓展,预示着数学将在未来担任越来越重要的角色,成为推动人类进步的重要力量。
数学发展简史数学发展史大致可以分为四个阶段。
一、数学形成时期(——公元前5 世纪)建立自然数的概念,创造简单的计算法,认识简单的几何图形;算术与几何尚未分开。
二、常量数学时期(前5 世纪——公元17 世纪)也称初等数学时期,形成了初等数学的主要分支:算术、几何、代数、三角。
该时期的基本成果,构成中学数学的主要内容。
1.古希腊(前5 世纪——公元17 世纪)毕达哥拉斯——“万物皆数”欧几里得——《几何原本》阿基米德——面积、体积阿波罗尼奥斯——《圆锥曲线论》托勒密——三角学丢番图——不定方程2.东方(公元2 世纪——15 世纪)1)中国西汉(前2 世纪)——《周髀算经》、《九章算术》魏晋南北朝(公元3 世纪——5 世纪)——刘徽、祖冲之出入相补原理,割圆术,算π宋元时期(公元10 世纪——14 世纪)——宋元四大家杨辉、秦九韶、李冶、朱世杰天元术、正负开方术——高次方程数值求解;大衍总数术——一次同余式组求解2)印度现代记数法(公元8 世纪)——印度数码、有0;十进制(后经阿拉伯传入欧洲,也称阿拉伯记数法)数学与天文学交织在一起阿耶波多——《阿耶波多历数书》(公元499 年)开创弧度制度量婆罗摩笈多——《婆罗摩修正体系》、《肯特卡迪亚格》代数成就可贵婆什迦罗——《莉拉沃蒂》、《算法本源》(12 世纪)算术、代数、组合学3)阿拉伯国家(公元8 世纪——15 世纪)花粒子米——《代数学》曾长期作为欧洲的数学课本“代数”一词,即起源于此;阿拉伯语原意是“还原”,即“移项”;此后,代数学的内容,主要是解方程。
阿布尔.维法奥马尔.海亚姆阿拉伯学者在吸收、融汇、保存古希腊、印度和中国数学成果的基础上,又有他们自己的创造,使阿拉伯数学对欧洲文艺复兴时期数学的崛起,作了很好的学术准备。
3.欧洲文艺复兴时期(公元16 世纪——17 世纪)1)方程与符号意大利-塔塔利亚、卡尔丹、费拉里三次方程的求根公式法国-韦达引入符号系统,代数成为独立的学科2)透视与射影几何画家-布努雷契、柯尔比、迪勒、达.芬奇数学家-阿尔贝蒂、德沙格、帕斯卡、拉伊尔3)对数简化天文、航海方面烦杂计算,希望把乘除转化为加减。
数学的发展历史概述数学作为一门古老而又重要的学科,经历了悠久的发展历程。
本文将从古代数学的起源开始,逐步介绍数学的发展历史,并重点关注数学在不同时期的重要贡献和突破。
1. 古代数学的起源数学的起源可以追溯到古代文明时期,最早的数学发展可以追溯到公元前3000年的古埃及和美索不达米亚。
古埃及人和美索不达米亚人使用数学来解决土地测量、建筑和贸易等实际问题。
他们发展了一些基本的数学概念,如整数、分数和几何图形。
2. 古希腊数学的兴起古希腊是数学发展的重要时期,著名的数学家包括毕达哥拉斯、欧几里得和阿基米德等。
毕达哥拉斯学派提出了许多重要的数学理论,如毕达哥拉斯定理和数学证明方法。
欧几里得的《几何原本》成为了古代数学的经典著作,其中包含了许多几何学的基本原理和证明方法。
阿基米德则在数学物理方面做出了重要贡献,他发明了浮力定律,并使用数学方法解决了许多物理问题。
3. 中世纪数学的发展在中世纪,数学的发展受到了宗教和哲学的限制,但仍有一些重要的数学成果。
阿拉伯数学家阿尔-花拉子米在其著作《算法的归纳和检验》中介绍了代数学的基本概念和方法。
同时,印度数学家布拉马叶在其著作《布拉马叶算法》中介绍了二次方程的解法和无穷级数的概念。
4. 文艺复兴时期的数学革命文艺复兴时期是数学发展的重要时期,数学家们开始对古代数学进行重新研究,并开展了许多新的数学研究。
意大利数学家费马提出了费马定理,这是数论中的一个重要问题。
法国数学家笛卡尔发明了解析几何,将代数和几何联系起来。
同时,牛顿和莱布尼茨发明了微积分,为物理学和工程学的发展提供了重要工具。
5. 现代数学的发展19世纪和20世纪是现代数学发展的时期,数学的各个分支得到了快速发展。
代数学、几何学、数论、概率论等领域都取得了重要的成果。
著名数学家高斯、黎曼、庞加莱等人在各自领域做出了重要贡献。
同时,数学的应用也得到了广泛的发展,如在物理学、经济学和计算机科学等领域的应用。
总结起来,数学的发展历史可以追溯到古代文明时期,经过古希腊、中世纪、文艺复兴和现代数学的发展阶段。
数学发展简史数学发展史大致可以分为四个阶段:一、数学起源时期二、初等数学时期三、近代数学时期四、现代数学时期一、数学起源时期(远古——公元前5世纪)这一时期:建立自然数的概念;认识简单的几何图形;算术与几何尚未分开。
数学起源于四个“河谷文明”地域:非洲的尼罗河;这个区域主要是埃及王国:采用10进制,只有加法。
埃及的主要数学贡献:定义了基本的四则运算,并推广到了分数;给出了求近似平方根的方法;他们的几何知识主要是平面图形和立体图形的求积法。
西亚的底格里斯河与幼发拉底河;这个区域主要是巴比伦:采用10进制,并发明了60进制。
巴比伦王国的主要数学贡献可以归结为以下三点:度量矩形,直角三角形和等腰三角形的面积,以及圆柱体等柱体的体积;计数上,没有“零”的概念;天文学上,总结出很多天文学周期,但绝对不是科学。
中南亚的印度河与恒河;东亚的黄河与长江在四个“河谷文明”地域,当对数的认识(计数)变得越来越明确时,人们感到有必要以某种方式来表达事物的这一属性,于是导致了记数。
人类现在主要采用十进制,与“人的手指共有十个”有关。
而记数也是伴随着计数的发展而发展的。
四个“河谷文明”地域的记数归纳如下:刻痕记数是人类最早的数学活动,考古发现有3万年前的狼骨上的刻痕。
古埃及的象形数字出现在约公元前3400年;巴比伦的楔形数字出现在约公元前2400年;中国的甲骨文数字出现在约公元前1600年。
古埃及的纸草书和羊皮书及巴比伦的泥板文书记载了早期数学的内容,年代可以追溯到公元前2000年,其中甚至有“整勾股数”及二次方程求解的记录。
二、初等数学时期(前6世纪——公元16世纪)这个时期也称常量数学时期,这期间逐渐形成了初等数学的主要分支:算术、几何、代数、三角。
该时期的基本成果,构成现在中学数学的主要内容。
这一时期又分为三个阶段:古希腊;东方;欧洲文艺复兴。
下面我们分别介绍:1.古希腊(前6世纪——公元6世纪)毕达哥拉斯——“万物皆数”欧几里得——几何《原本》阿基米德——面积、体积阿波罗尼奥斯——《圆锥曲线论》托勒密——三角学丢番图——不定方程2.东方(公元2世纪——15世纪)1)中国西汉(前2世纪)——《周髀算经》、《九章算术》魏晋南北朝(公元3世纪——5世纪)——刘徽、祖冲之:出入相补原理,割圆术,算术。
数的发展史数的发展史可以追溯到古代人类对于数量的认识和计算的需求。
以下是数的发展史的主要里程碑:1. 原始计数法:最早的计数法是原始人类使用手指进行计数。
这种计数法被称为“指计数法”或“自然计数法”。
2. 记数工具:随着人类社会的发展,人们开始使用一些简单的计数工具,如骨片、墨斗、石牌等来帮助计数。
3. 出现的数字形式:在古代文明(如巴比伦、埃及和印度)中,人们开始使用符号或图形来代表数字。
这些符号逐渐发展成为我们今天所熟知的数字形式。
4. 十进制系统:在印度,人们发展出了十进制系统,即使用十个数字(0-9)来表示所有的数。
这个十进制系统逐渐传播到其他文明中,并成为了全球通用的计算方式。
5. 零的发明:在古代印度,数学家发明了零这个概念,并将其纳入数字系统中。
零的发明极大地推动了数学的发展,也为后来的计算机科学打下了基础。
6. 负数和分数:在古希腊,人们开始引入负数和分数的概念。
这些概念进一步扩展了数的范围和应用。
7. 算术和代数的发展:随着数学理论的发展,算术和代数成为了数学的两个重要分支。
算术主要研究数的计算规则和运算法则,而代数则涉及了数的运算和关系的抽象和推理。
8. 计算工具的发明:随着科学和技术的进步,人们发明了各种计算工具,如算盘、计算机等,极大地提高了计算效率和准确性。
9. 数学的现代化:在17世纪,数学经历了一次革命性的变革。
数学家们引入了更严格的证明方法和符号化的表达方式,创立了现代数学的基础。
10. 抽象数学的发展:随着数学的不断发展,人们开始研究抽象数学的概念和理论。
这些概念和理论不仅在数学领域有应用,也渗透到了其他学科和现实生活中。
总体来说,数的发展史可以看作是人类认识和探索数量的过程,从简单的计数到复杂的数学理论,不断推动着人类文明和科学的进步。
数学发展史时间轴
数学发展史可以追溯到人类文明的起源,几乎与人类思维和社会发展同步进行。
下面是一个简要的数学发展史时间轴:
1. 古代数学(约公元前3000年-公元5世纪):
古代数学主要集中在古巴比伦、古埃及、古希腊、古印度和古中国等地。
这个时期的数学主要涉及算术、几何和代数等基本概念和方法的发展。
2. 中世纪数学(公元5世纪-15世纪):
中世纪数学主要由阿拉伯数学家和欧洲学者推动。
阿拉伯人引入了印度-阿拉伯数字系统和代数的进一步发展。
欧洲学者则致力于恢复和传播古代数学知识,推动了几何学的发展。
3. 文艺复兴时期(15世纪-17世纪):
文艺复兴时期是数学发展的黄金时期,涌现出许多伟大的数学家。
代表性的有勒内·笛卡尔和伽利略·伽利雷,他们为代数和几何学的发展做出了重要贡献。
4. 近代数学(17世纪-19世纪):
近代数学的突破主要来自于微积分学的发展。
牛顿和莱布尼茨同
时独立发现了微积分的基本原理。
这一时期还涌现出许多其他重要的数学家,如欧拉、高斯和拉格朗日等。
5. 现代数学(20世纪至今):
现代数学涉及的领域非常广泛,包括数学分析、代数学、几何学、概率论、统计学、拓扑学等。
数学家们不断提出新的理论、方法和应用,推动着数学的不断发展和应用的扩展。
这只是一个简要的数学发展史时间轴,数学的发展一直在不断演进,影响着我们的生活和科学技术的进步。
数学的发展历史概述
数学的发展历史可以追溯到古代文明时期。
以下是数学发展的一些重要阶段和
里程碑:
古代数学(约公元前3000年-公元前500年):古代数学主要发展在古埃及、
古巴比伦、古印度和古希腊等地。
这个时期的数学主要集中在计数、测量和几何等方面。
古巴比伦人发明了基于60进制的数制系统和计算法则,古希腊人则在几何
学方面作出了重要贡献。
中世纪数学(公元500年-公元1500年):在中世纪,数学的发展主要由阿拉
伯数学家推动。
阿拉伯数学家将印度的十进制数制和零的概念引入欧洲,这对于现代数学的发展起到了重要作用。
同时,他们还对代数学和三角学等领域做出了贡献。
近代数学(公元1500年-1900年):在这个时期,数学经历了重大的变革和发展。
文艺复兴时期的欧洲浮现了许多重要的数学家,如勒内·笛卡尔、伽利略·伽利
雷和爱尔兰的威廉·罗万等人。
他们对代数学、几何学和力学等领域做出了重要贡献。
此外,牛顿和莱布尼茨的微积分的发明也是这个时期的重要成就。
现代数学(20世纪至今):20世纪以来,数学的发展取得了巨大的发展。
在
这个时期,数学分支日益细分,如数理逻辑、抽象代数、拓扑学、数论、概率论和统计学等。
数学在物理学、工程学、计算机科学和经济学等领域的应用也日益广泛。
总的来说,数学的发展历史是一个不断积累和演化的过程,每一个时代都有其
独特的贡献和突破。
数学的发展不仅为人类认识世界提供了工具和方法,也为其他学科的发展提供了基础和支持。
数学开展简史
数学是人类最古老的科学知识之一。
就人类对数的认识和运用来看,一般讲从公元前3000年左右的埃及象形文字就已开场,迄今已有5000年的历史。
那么到底什么是数学呢?实际上数学是一门历史性很强的科学或者说累积性很强,它的内涵随着时代的变化而变化,给数学下一个一劳永逸的定义是不可能的。
从公元前4世纪的希腊哲学家亚里士多德到17世纪的笛卡儿、19世纪的恩格斯、20世纪的罗素等很多数学家都曾给数学下过定义。
用的较多也较容易理解的是恩格斯的定义。
他说,
数学,是研究数量关系与空间形式的一门科学。
20世纪80年代的一批美国学者将数学定义为:数学这个领域已被称作模式的科学,其目的是要提醒人们从自然界和数学本身的抽象世界中所观察到的构造和对称性。
这一定义以其高度的概括性,已日益引起关注并获得大多数数学家的认同与承受。
第一阶段:数学的萌芽阶段〔公元前3000年—公元前600年〕
这一阶段,我们称之为数学的萌芽阶段,或者说准学科阶段。
在这一阶段里,数学还没有开展成为一门有明确构造的独立的理性的学科,还不具备抽象,还没有方法论,还没有论证和推理。
数学文化在这一阶段的出色代表是古巴比伦数学、中国数学、埃及数学、印度数学等。
这一阶段的世界数学文化呈一种多元开展态势。
第二阶段:数学的形成阶段〔公元前5世纪—公元16世纪〕
这一阶段,通常称之为数学科学的形成时期,它的开场是以希腊人的出场为典型标志,完毕于公元16世纪,也就是在变量数学产生之前,人们常称此阶段为常量数学阶段,也就是数学学科完成了以常量为主要内容的框架体系。
这一时期,希腊数学家取得辉煌成绩,他们引入了证明,提出了抽象,发现了自然数,发现了无理数〔注:这是数学史上第一次危机。
?原本?第五卷中将比
例理论由可公度量推广到不可公度量,使它能适用与更广泛的几何命题证明,从而巧妙的回避了无理量引起的麻烦。
但问题的根本解决要到19世纪借助极限过程对无理数做出严格定义之后〕。
最大的荣耀是欧几里得写的?原本?和阿波罗尼奥斯的?圆锥曲线论?。
欧几里得的?原本?可以说是数学史上的第一座理论丰碑。
这一阶段,中国的数学文化也是最辉煌的时代,?九章算术?可以说是东方的?原本?,圆周率的定值比世界上其他国家最先进的成就早了1000年。
第一、二阶段的数学──十七世纪以前的数学称为初等数学阶段。
其特点是:数是常数,形是孤立的、规那么的几何体,而且数和形往往是相互独立的。
分为初等代数和初等几何。
第三阶段:变量数学阶段〔公元17世纪—公元19世纪上半叶〕〔或称近代数学阶段〕
这一时期是世界数学文化史上的辉煌时期,人们通常称之为牛顿时代。
这一时期是欧洲人的天下,最典型的学科标志就是由常量数学转向变量数学。
变量数学的第一个里程碑是解析几何的诞生。
1637 法国数学家笛卡尔Descartes创立解析几何,将变量引入数学.为微积分创立搭建了历史的舞台。
1665 经过半个世纪酝酿, 英国科学家牛顿〔Newton〕发表了«流数简论»标志着微积分的诞生。
微积分的创立是牛顿最卓越的数学成就。
他将自古希腊以来求解无限小问题的各种技巧统一为两类普通的算法——微分和积分,并确立了这两类运算的互逆关系,从而完成了微积分创造中最关键的一步,为近代科学开展提供了最有效的工具,开辟了数学上的一个新纪元。
严格地说,微积分是牛顿和德国科学家莱布尼茨〔Leibniz〕各自独立创立的。
莱布尼茨是17、18世纪之交德国最重要的数学家、物理学家和哲学家,一个举世罕见的科学天才。
他博览群书,涉猎百科,其著作涉及数学、力学、机械、地质、逻辑、哲学、法律、外交、神学和语言学等。
在数学方面,莱布尼茨的奉
献也远不止微积分,他的研究及成果渗透到数学的许多领域。
牛顿和莱布尼茨都是他们时代的巨人。
应该说,微积分能成为独立的科学并给整个自然科学带来革命性的影响,主要是靠了他们的工作。
但是微积分在产生之初并不是现在我们课本上的这种形式,我们学习的微积分是将十七、十八、十九世纪的结果经过系统归纳、整理而得到的。
实际上牛顿和莱布尼茨的微积分是不严格的,特别在实用无限小概念上的随意与混乱,而数学的严格性,自古希腊以来一直是数字家们追求的目标,因此关于微积分根底的争论引发了第二次数学危机。
经过一个世纪的尝试,欧拉、拉格朗日、达朗贝尔、柯西等数学家在严格化根底上重建微积分的努力到19世纪初才开场获得成效。
〔详见分析严格化的进程〕
18世纪数学家一方面努力探索使微积分严格化的途径,一方面又往往不顾根底困难而大胆前进,大大扩展了微积分的应用范围,尤其是与力学的结合,成为18世纪数学的鲜明特征之一,这种结合的严密度是数学史上任何时期不能比较的。
当时几乎所有数学家都不同程度的也是力学家。
正是微积分的广泛应用,使得一系列新的数学分支成长起来。
在18世纪,微分方程、变分法等分支与微积分本身一起,形成了被称之为“分析〞的广阔领域,它与代数、几何并列为数学的三大学科〔注:高等代数、高等几何、与数学分析统称为高等数学,也称为初等微积分。
研究对象是函数,主要的工具是极限。
〕,并且在这个世纪里,其繁荣程度远远超过了代数与几何。
第四阶段:数学飞速开展阶段〔1874年以后的数学〕〔或称现代数学阶段〕
经过近两个世纪的开拓,在18世纪行将完毕的时候,数学家们对自己从事的这门科学却奇怪的存在着一种普遍悲观的情绪,拉格朗日在1781年给达朗贝尔的一封信中说:“在我看来似乎数学的矿井已经挖掘很深了,除非发现新的矿脉,否那么迟早势必放弃它……科学院中几何〔数学〕的处境将会有一天变成目前大学中阿拉伯语的处境一样。
〞
然而进入19世纪,数学却跨入一个前所未有,突飞猛进的历史时期。
代数、几何、分析三大领域都获得了惊人的成就。
19世纪-纯粹数学形成期
在分析学严格化的进程中诞生了集合论〔1874年德国数学家Cantor创立集合论,为微积分奠定了坚实的根底〕,它成为当时分析严格化的最高成就。
因此在1900年巴黎国际数学大会上庞加莱宣称:完全的严格化已经到达了。
〔但第二年罗素悖论引发了关于数学根底的新争论-第三次数学危机〕集合论的产生使人们对数学的认识到达了空前的高度。
在19世纪和20世纪数学交界限上高耸着三个巨大身影:庞加莱、克莱因、希尔伯特。
他们反射着19世纪数学的光芒。
同时照耀着通往20世纪数学的道路。
在19世纪末,数学开展呈现出一派生机蓬勃的景象。
这与18世纪形成了鲜明的比照,无论从内部需要还是外部应用看,数学家们似乎都有做不完的问题。
1900年8月5日庞加莱宣布巴黎国际数学家大会开幕,正是这次会议期间,希尔伯特充满信心地走上讲台,以他著名的23个问题揭开了20世纪数学的序幕。
20世纪-既是纯粹数学期,也是应用数学的时代
进入20世纪,数学已经不再仅仅是代数、几何、分析经典学科的集合,数学得到了空前开展,成为分支众多、庞大的知识体系。
〔目前数学包括60多个二级学科,400多个三级学科。
庞加莱曾被称为最后的一位数学通才。
〕与19世纪相比20世纪纯数学开展表现了如下主要特征或趋势。
更高的抽象性、更强的统一性、更深的根底探讨。
抽象化最初主要受两大因素推动即集合论观点渗透和公理化方法的运用,他们的结合将数学引向高度抽象化道路。
这方面的开展,导致了20世纪上半叶实变、泛函、拓扑、抽象代数等具有标志性的四大抽象分支的崛起。
20世纪下半叶,统一化趋势空前加强。
不同分支领域的数学思想与数学方法相互融合,导致一系列重大发现以及数学内部新的综合穿插学科的不断兴起。
而且从使用的数学方法而论,数学中不同分支的界限还在变得模糊。
此外,罗素悖论明白无疑的提醒了集合论本身确实存在矛盾,在数学界引起一片震惊。
法国数学家弗雷格在他刚完成的符号逻辑专著?算数根底?第二卷合卷处写到:“一个科学家不会碰到比这更为难的事情了,即在一项工作完成的时候
他的根底却在崩溃……〞
为了消除悖论,首先求助于将“朴素集合论〞〔康托〕加以公理化。
第一集合论公理系统是1908年由第梅格篆书,但庞加莱形象的评论:“为了防狼,羊群已经被圈起来。
却不知道圈内有没有狼〞。
进一步的尝试,是从逻辑上寻找问题的症结。
形成了关于数学根底的三大学派:逻辑主义、有觉主义、形式主义,这三大学派在20世纪前30年间非常活泼,争论非常剧烈,现在看来,都未做出满意的解答,但他们的研究却将人类对数学根底的认识引向了空前的深度。
1930年在哥德尔定理引起震动之后,关于数学根底争论渐趋淡化,数学家们更多地专注于数理逻辑的具体研究。
20世纪40年代后,数学以空前的广度、深度向其他科技和人类知识领域渗透。
完毕语
纵观数学的历史,不难看出自微积分创立之后的三、四百年间,数学的开展是空前的,因此微积分的创立是数学开展史上重要的转折点。
同时,对微积分深入的研究,大大扩展了数学的应用范围,所以恩格斯说:“微积分是人类精神的最高胜利。
〞学习微积分对每个愿意探索、愿意求知的人来说都是重要的。
【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。