高中物理教案:研究物体的运动规律
- 格式:docx
- 大小:37.56 KB
- 文档页数:3
高中物理规律教学教案
教学目标:学生能够掌握高中物理规律的基本概念,理解其应用,能够灵活运用物理规律解决问题。
教学内容:高中物理规律
教学重点:掌握物理规律的基本概念和应用。
教学难点:理解物理规律的原理,灵活运用规律解决问题。
教学工具:实验器材、教学课件、教科书等
教学过程:
一、导入
1.引入物理规律的概念,引导学生思考物理规律在日常生活中的应用。
2.通过实例引出本节课要学习的物理规律。
二、讲解
1.教师讲解物理规律的概念和分类,引导学生理解各种规律的应用范围。
2.结合具体案例分析物理规律的原理和作用。
三、实验
1.分组进行相关物理规律实验,让学生亲自操作,感受规律的作用。
2.引导学生观察数据变化,分析实验结果。
四、讨论
1.组织学生讨论实验结果,总结规律的应用特点。
2.引导学生思考如何运用物理规律解决具体问题。
五、练习
1.分发练习题,让学生独立完成并检查答案。
2.讲解练习题答案,强化学生对物理规律的理解和运用能力。
六、作业
布置相关作业,巩固本节课所学内容。
七、总结
1.回顾本节课内容,强调物理规律的重要性和应用价值。
2.鼓励学生积极思考,发现物理规律在生活中的实际应用。
教学评价:通过本节课的教学,学生能够对物理规律有更深入的理解,能够灵活运用物理规律解决实际问题。
高中物理教案:自由落体运动一、教学目标1.理解自由落体运动的概念。
2.掌握自由落体运动的规律。
3.能够运用自由落体运动的公式解决实际问题。
二、教学重难点1.重点:自由落体运动的概念和规律。
2.难点:自由落体运动公式的应用。
三、教学准备1.教具:小球、尺子、计时器。
2.教学资源:PPT、板书。
四、教学过程一、导入1.请同学们回忆一下,我们在学习物理时,研究过哪些与运动有关的概念和规律?2.引导学生回顾速度、加速度等基本概念。
二、新课讲解1.自由落体运动的概念:(1)什么是自由落体运动?自由落体运动是指物体在仅受重力作用下,从静止开始下落的运动。
(2)自由落体运动的条件是什么?物体仅受重力作用,且从静止开始下落。
2.自由落体运动的规律:(1)自由落体运动的加速度:自由落体运动的加速度为重力加速度,用g表示,大小约为9.8m/s ²。
(2)自由落体运动的位移公式:自由落体运动的位移公式为:h=1/2gt²。
(3)自由落体运动的速度公式:自由落体运动的速度公式为:v=gt。
3.自由落体运动的应用:(1)求自由落体运动的时间:根据位移公式,可以求出自由落体运动的时间:t=√(2h/g)。
(2)求自由落体运动的速度:根据速度公式,可以求出自由落体运动的速度:v=gt。
三、案例分析1.案例一:一个物体从高空自由落体,求落地时的速度。
分析:根据自由落体运动的速度公式,可以求出落地时的速度。
设物体从高空下落的高度为h,落地时的速度为v,则有v=gt。
由于物体从静止开始下落,所以t=√(2h/g)。
将t代入速度公式,得到v=g√(2h/g)=√(2gh)。
2.案例二:一个物体从高空自由落体,求落地时的时间。
分析:根据自由落体运动的位移公式,可以求出落地时的时间。
设物体从高空下落的高度为h,落地时的时间为t,则有h=1/2gt²。
解这个方程,得到t=√(2h/g)。
四、课堂练习(1)一个物体从高空自由落体,下落高度为10m,求落地时的速度。
高三物理教案:《抛体运动的规律》教学设计一、预习目标1.知道什么是抛体运动,什么是平抛运动。
2.用运动的分解合成结合牛顿定律讨论抛体运动的特点,知道平抛运动可分为水平方向的匀速直线运动和竖直方向的自由落体运动。
3.能应用平抛运动的规律沟通商量并解决实际问题。
二、预习内容1、抛体运动:。
这是一个抱负模型。
2、平抛运动:。
平抛运动是("匀变速'或"非匀变速')("直线'或"曲线')运动。
3、沿水平方向和竖直方向建立直角坐标系,将平抛运动进行分解,则得到水平方向的运动规律是;竖直方向的运动规律是。
4、将一物体从高度h以速度水平向右抛出,以动身点为坐标原点,沿水平向右为X正方向,竖直向下为Y正方向,则任一时刻t物体的位置坐标为,;该段时间t内的位移大小为为,与水平方向的夹角为;t 时刻物体的速度大小为,速度方向与水平方向的夹角为;平抛运动的轨迹方程是;速度所在的直线方向与平抛运动轨迹是怎样的几何关系。
5、平抛运动落体时间由打算,水平方向的位移由打算。
三、提出怀疑同学们,通过你的自主学习,你还有哪些怀疑,请把它填在下面的表格中怀疑点怀疑内容课内探究学案一、学习目标1、知道什么是抛体运动,什么是平抛运动。
2、用运动的分解合成结合牛顿定律讨论抛体运动的特点,知道平抛运动可分为水平方向的匀速直线运动和竖直方向的自由落体运动。
3、能应用平抛运动的规律解决实际问题学习重难点:平抛运动的讨论方法及规律二、学习过程(一)平抛运动的特点探究一:平抛物体的运动的受力特点和运动特点不计空气的阻力,水平抛出的物体仅受,产生的加速度,所以平抛运动是运动。
探究二:平抛运动的分析方法做平抛运动的物体;在水平方向上由于不受力,将做;在竖直方向上物体的初速度为0,且只受到重力作用,物体做。
因此可以沿着和方向分解,把平抛运动分解为和。
试验验证:1.平抛竖落仪演示:用小锤打击弹性金属片时,A球就向水平方向飞出,做平抛运动,而同时B球被松开,做自由落体运动。
高中物理物体移动问题教案
教学目标:
1. 理解运动的基本概念,包括位移、速度、加速度等;
2. 掌握物体在直线运动中的运动规律;
3. 能够解决物体移动过程中的相关问题。
教学重点:
1. 物体的位移、速度和加速度的定义;
2. 物体在直线运动中的运动规律。
教学难点:
1. 掌握速度和加速度的变化规律;
2. 解决物体移动过程中的相关问题。
教学准备:
1. 教材《物理》教科书;
2. 粉笔、黑板;
3. 实验装置。
教学步骤:
1. 引入问题:让学生观察一个物体在直线上做匀速运动,并提出以下问题:“物体的位移是多少?速度是多少?”
2. 讲解运动的基本概念:介绍位移、速度、加速度等基本概念,引导学生理解这些概念的意义。
3. 讲解物体在直线运动中的运动规律:讲解匀速运动和变速运动的规律,并引导学生理解这些规律。
4. 解决相关问题:让学生通过练习,解决物体在直线运动中的相关问题,如计算物体的位移、速度和加速度等。
5. 实验验证:进行实验验证,让学生通过实验了解物体在直线运动中的运动规律。
6. 总结讲解:总结物体移动过程中的相关问题和解决方法,巩固学生对该知识点的理解。
7. 总结互动:让学生归纳总结学过的知识点,并进行互动交流。
教学延伸:
1. 对于进一步的问题,可以引导学生进行更深入的思考和探讨;
2. 可以让学生自己设计实验,验证物体在不同条件下的运动规律。
教学反馈:
1. 可以通过课堂练习和作业,检验学生对知识点的掌握情况;
2. 可以通过小测验和考试,评估学生在该知识点的学习成果。
高中物理物体运动教案全套
一、教学目标
1. 了解物体在直线运动中的基本概念和相关规律。
2. 掌握直线运动的速度、加速度和位移等概念。
3. 能够利用公式计算直线运动中的速度、加速度和位移等物理量。
二、教学重点和难点
1. 教学重点:直线运动的速度、加速度和位移的计算方法。
2. 教学难点:加速度的概念理解和运用。
三、教学内容
1. 直线运动的基本概念和相关规律。
2. 直线运动的速度、加速度和位移的计算方法。
四、教学过程
1. 导入新课:通过举例让学生了解直线运动的概念,并引入速度、加速度和位移等相关概念。
2. 理论讲解:讲解直线运动中速度、加速度和位移的定义和计算方法,并通过例题进行演示。
3. 实验观察:进行简单的直线运动实验,让学生观察并测量物体在直线运动中的速度和位移。
4. 练习巩固:布置相关习题,让学生通过计算和分析来巩固所学知识。
5. 总结归纳:总结本节课的重点内容,强化学生对直线运动基本概念的理解。
五、教学资源
1. 实验器材:直线运动实验装置。
2. 教学辅助资料:相关课件和习题集。
六、教学评价
1. 利用课堂表现和练习成绩评价学生对直线运动概念和公式的掌握程度。
2. 鼓励学生积极参与实验和讨论,提高他们的实验能力和分析能力。
七、课后拓展
1. 尝试设计更复杂的直线运动实验,挑战学生的计算和分析能力。
2. 带领学生了解直线运动在日常生活中的应用,拓展他们对物体运动的理解和认识。
高中物理物体的运动教案
年级: 高中
目标:
1. 理解物体的运动是相对的,并能够解释惯性的概念。
2. 掌握速度、加速度等运动物理学概念。
3. 能够运用运动学公式解决实际问题。
教学内容:
1. 运动的相对性
2. 惯性
3. 速度、加速度
4. 运动学公式
教学准备:
1. PowerPoint课件
2. 实验仪器和实验材料
教学活动:
1. 导入:利用实例引入物体的运动概念,让学生理解运动是相对的。
2. 授课:通过PowerPoint讲解运动学的基本概念和公式,并进行实例演练。
3. 实验:进行实验,让学生通过实际操作来体验运动的概念,如测速实验等。
4. 练习:让学生进行相关习题练习,巩固知识点。
5. 总结:总结本节课的重点内容,并提出问题让学生思考。
评估方式:
1. 课堂测验
2. 实验报告
3. 课后作业
扩展活动:
1. 课外阅读:推荐相关物理书籍给学生,让其深入理解运动学的概念。
2. 校园实践:组织学生在校园内进行一些运动学实验,如测量跑步速度等。
此为物体的运动教案范本,具体内容和活动安排可以根据实际情况进行调整。
愿学生们在学习过程中能够深入理解物体的运动规律,提高物理学习的兴趣和能力。
高中物理实验解析运动的规律实验一:运动的匀速直线运动实验目的:通过研究物体在匀速直线运动中的位移-时间、速度-时间和加速度-时间关系,探究匀速直线运动的规律。
实验器材:光电门、计时器、直线轨道、小球。
实验步骤:1. 将直线轨道放置于水平桌面上,并紧靠边缘。
2. 计时器连接到光电门,确保光电门正常工作。
3. 将小球放在直线轨道上,并沿轨道将其推动起来。
4. 记录小球通过光电门的时间,重复多次实验并取平均值,得到小球通过光电门的时间 t。
5. 根据位移计算公式 s = vt(其中 s 为位移,v 为速度,t 为时间),计算小球在通过光电门的时间 t 内的位移 s。
6. 根据速度计算公式 V = s/t,计算小球在通过光电门的时间 t 内的速度 V。
7. 通过光电门的时间 t 始终保持不变,重复多次实验并取平均值,得到小球通过光电门的时间 t 内的速度 V 并记录下来。
8. 将小球推动的力保持恒定,通过光电门的时间 t 始终保持不变,重复多次实验并取平均值,记录下小球通过光电门的时间 t 内的速度 V,得到匀速直线运动的规律。
实验结果与分析:根据实验得到的数据,我们可以绘制位移-时间、速度-时间和加速度-时间图像。
在匀速直线运动的情况下,位移随时间的变化是一个直线,速度恒定不变,加速度为零。
利用实验数据及图像,我们可以得到匀速直线运动的规律。
实验二:运动的匀变速直线运动实验目的:通过研究物体在匀变速直线运动中的位移-时间、速度-时间和加速度-时间关系,探究匀变速直线运动的规律。
实验器材:光电门、计时器、直线轨道、小球。
实验步骤:1. 将直线轨道放置于水平桌面上,并紧靠边缘。
2. 计时器连接到光电门,确保光电门正常工作。
3. 将小球放在直线轨道上,并沿轨道将其推动起来。
4. 记录小球通过光电门的时间,重复多次实验并取平均值,得到小球通过光电门的时间 t。
5. 根据位移计算公式 s = vt + 1/2at(其中 s 为位移,v 为速度,t 为时间,a 为加速度),计算小球在通过光电门的时间 t 内的位移 s。
高中物理物体运动教案教学内容:物体运动的描述与描述方法教学目标:1. 了解物体运动的基本概念和运动状态;2. 掌握描述物体运动的方法和相关量。
教学重点:1. 物体的运动状态;2. 物体运动的描述方法。
教学难点:1. 运动的描述方法;2. 运动的相关量的理解和应用。
教学准备:1. PowerPoint 等教学辅助工具;2. 实验器材:小车、直线轨道、计时器等。
教学步骤:第一步:导入利用实例或图片展示物体的不同运动状态,引出物体运动的基本概念。
第二步:讲解1. 解释物体的运动状态有哪些,包括匀速直线运动、变速直线运动、曲线运动等;2. 介绍描述物体运动的方法,如位置-时间图、速度-时间图等。
第三步:实验进行简单的实验,以小车在直线轨道上的运动为例,让学生观察并记录实验现象。
第四步:讨论与学生讨论实验结果,解释图形的含义,引导学生理解各种运动状态的特点以及如何用图形描述物体的运动。
第五步:总结总结物体运动的描述方法和相关量,强化学生对运动概念的理解。
教学延伸:1. 给学生布置练习题,让他们巩固运动描述方法和相关量的计算方法;2. 带领学生观察其他物体的运动,尝试用图形描述。
教学反馈:1. 通过课堂讨论、练习题等形式对学生进行反馈,检查他们对物体运动的理解情况;2. 根据学生的反馈情况,调整教学内容和方法,帮助学生更好地理解物体运动。
教学素材:1. PowerPoint 等教学辅助工具;2. 实验材料:小车、直线轨道、计时器等;3. 图表等相关物体运动的资料。
第2讲 匀变速直线运动的规律目标要求 1.掌握匀变速直线运动的基本公式和导出公式,并能熟练应用.2.掌握自由落体运动和竖直上抛运动的特点,知道竖直上抛运动的对称性.考点一 匀变速直线运动的规律基础回扣 1.匀变速直线运动沿着一条直线且加速度不变的运动. 2.匀变速直线运动的两个基本规律 (1)速度与时间的关系式:v =v 0+at . (2)位移与时间的关系式x =v 0t +12at 2.3.匀变速直线运动的三个常用推论 (1)速度与位移的关系式:v 2-v 02=2ax .(2)平均速度公式:做匀变速直线运动的物体在一段时间内的平均速度等于这段时间内初、末时刻速度矢量和的一半,还等于中间时刻的瞬时速度. 即:v =v 0+v2=2t v . (3)连续相等的相邻时间间隔T 内的位移差相等. 即:x 2-x 1=x 3-x 2=…=x n -x n -1=aT 2.4.初速度为零的匀加速直线运动的四个重要比例式(1)T 末、2T 末、3T 末、…、nT 末的瞬时速度之比为v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n . (2)前T 内、前2T 内、前3T 内、…、前nT 内的位移之比为x 1∶x 2∶x 3∶…∶x n =1∶4∶9∶…∶n 2. (3)第1个T 内、第2个T 内、第3个T 内、…、第n 个T 内的位移之比为x Ⅰ∶x Ⅱ∶x Ⅲ∶…∶x N =1∶3∶5∶…∶(2n -1).(4)从静止开始通过连续相等的位移所用时间之比为t 1∶t 2∶t 3∶…∶t n =1∶(2-1)∶(3-2)∶…∶(n -n -1). 技巧点拨1.解决匀变速直线运动问题的基本思路画过程示意图→判断运动性质→选取正方向→选用公式列方程→解方程并加以讨论 注意:x 、v 0、v 、a 均为矢量,所以解题时需要确定正方向,一般以v 0的方向为正方向.2.匀变速直线运动公式的选用一般问题用两个基本公式可以解决,以下特殊情况下用导出公式会提高解题的速度和准确率; (1)不涉及时间,选择v 2-v 02=2ax ;(2)不涉及加速度,用平均速度公式,比如纸带问题中运用2t v =v =xt求瞬时速度;(3)处理纸带问题时用Δx =x 2-x 1=aT 2,x m -x n =(m -n )aT 2求加速度.3.逆向思维法:对于末速度为零的匀减速运动,采用逆向思维法,倒过来看成初速度为零的匀加速直线运动.4.图像法:借助v-t 图像(斜率、面积)分析运动过程.基本公式的应用例1 一质点做速度逐渐增大的匀加速直线运动,在时间间隔t 内位移为x ,动能变为原来的9倍.该质点的加速度为( ) A.x t 2 B.3x 2t 2 C.4x t 2 D.8x t 2 答案 A解析 设初速度为v 1,末速度为v 2,根据题意可得9×12m v 12=12m v 22,解得v 2=3v 1,根据v=v 0+at ,可得3v 1=v 1+at ,解得v 1=at 2,代入x =v 1t +12at 2,可得a =xt 2,故A 正确.平均速度公式的应用例2 (2019·山东潍坊市二模)中国自主研发的“暗剑”无人机,时速可超过2马赫.在某次试飞测试中,起飞前沿地面做匀加速直线运动,加速过程中连续经过两段均为120 m 的测试距离,用时分别为2 s 和1 s ,则无人机的加速度大小是( ) A .20 m/s 2 B .40 m/s 2 C .60 m/s 2 D .80 m/s 2答案 B解析 第一段的平均速度v 1=x t 1=1202 m/s =60 m/s ;第二段的平均速度v 2=x t 2=1201 m/s =120 m/s ,某段时间内的平均速度等于中间时刻的瞬时速度,两个中间时刻的时间间隔为Δt =t 12+t 22=1.5 s ,则加速度为:a =v 2-v 1Δt =120-601.5m/s 2=40 m/s 2,故选B.1.刹车类问题(1)其特点为匀减速到速度为零后即停止运动,加速度a 突然消失. (2)求解时要注意确定实际运动时间.(3)如果问题涉及最后阶段(到停止)的运动,可把该阶段看成反向的初速度为零的匀加速直线运动.2.双向可逆类问题(1)示例:如沿光滑斜面上滑的小球,到最高点后仍能以原加速度匀加速下滑,全过程加速度大小、方向均不变.(2)注意:求解时可分过程列式也可对全过程列式,但必须注意x 、v 、a 等矢量的正负号及物理意义.例3 若飞机着陆后以6 m/s 2的加速度做匀减速直线运动,其着陆时的速度为60 m/s ,则它着陆后12 s 内滑行的距离是( )A .288 mB .300 mC .150 mD .144 m 答案 B解析 设飞机着陆后到停止所用时间为t ,由v =v 0+at ,得t =v -v 0a =0-60-6 s =10 s ,由此可知飞机在12 s 内不是始终做匀减速直线运动,它在最后2 s 内是静止的,故它着陆后12 s 内滑行的距离为x =v 0t +at 22=60×10 m +(-6)×1022m =300 m.1.(基本公式法与逆向思维法)(2019·安徽芜湖市期末)假设某次深海探测活动中,“蛟龙号”完成海底科考任务后竖直上浮,从上浮速度为v 时开始匀减速并计时,经过时间t ,“蛟龙号”上浮到海面,速度恰好减为零,则“蛟龙号”在t 0(t 0<t )时刻距离海面的深度为( ) A .v t 0(1-t 02t )B.v (t -t 0)22tC.v t 2D.v t 022t答案 B解析 “蛟龙号”上浮时的加速度大小为:a =vt ,根据逆向思维,可知“蛟龙号”在t 0时刻距离海面的深度为:h =12a (t -t 0)2=12×v t ×(t -t 0)2=v (t -t 0)22t,故选B.2.(位移差公式)如图1所示,某物体自O 点由静止开始做匀加速直线运动,A 、B 、C 、D 为其运动轨迹上的四个点,测得x AB =2 m ,x BC =3 m .且该物体通过AB 、BC 、CD 所用时间相等,则下列说法正确的是()图1A.可以求出该物体加速度的大小B.可以求得x CD=5 mC.可求得OA之间的距离为1.125 mD.可求得OA之间的距离为1.5 m答案C解析设加速度为a,该物体通过AB、BC、CD所用时间均为T,由Δx=aT2,Δx=x BC-x AB=x CD-x BC=1 m,可以求得aT2=1 m,x CD=4 m,而B点的瞬时速度v B=x AC2T,则OB之间的距离x OB=v B22a=3.125 m,OA之间的距离为x OA=x OB-x AB=1.125 m,C选项正确.3.(初速度为零的比例式)(多选)(2021·甘肃天水市质检)如图2所示,一冰壶以速度v垂直进入三个完全相同的矩形区域做匀减速直线运动,且刚要离开第三个矩形区域时速度恰好为零,则冰壶依次进入每个矩形区域时的速度之比和穿过每个矩形区域所用的时间之比分别是()图2A.v1∶v2∶v3=3∶2∶1B.v1∶v2∶v3=3∶2∶1C.t1∶t2∶t3=1∶2∶3D.t1∶t2∶t3=(3-2)∶(2-1)∶1答案BD解析因为冰壶做匀减速直线运动,且末速度为零,故可以看成反向的初速度为零的匀加速直线运动来研究.初速度为零的匀加速直线运动中通过连续三段相等位移的时间之比为1∶(2-1)∶(3-2),故所求时间之比为(3-2)∶(2-1)∶1,选项C错误,D正确;由v2-v02=2ax可得,初速度为零的匀加速直线运动中通过连续相等位移的速度之比为1∶2∶3,则所求的速度之比为3∶2∶1,故选项A错误,B正确.4.(双向可逆类问题)(多选)在足够长的光滑斜面上,有一物体以10 m/s的初速度沿斜面向上运动,物体的加速度始终为5 m/s2,方向沿斜面向下,当物体的位移大小为7.5 m时,下列说法正确的是()A.物体运动时间可能为1 sB .物体运动时间可能为3 sC .物体运动时间可能为(2+7) sD .物体此时的速度大小一定为5 m/s 答案 ABC解析 以沿斜面向上为正方向,a =-5 m/s 2,当物体的位移为向上的7.5 m 时,x =+7.5 m ,由运动学公式x =v 0t +12at 2,解得t 1=3 s 或t 2=1 s ,故A 、B 正确.当物体的位移为向下的7.5 m 时,x =-7.5 m ,由x =v 0t +12at 2解得:t 3=(2+7) s 或t 4=(2-7) s(舍去),故C 正确.由速度公式v =v 0+at ,解得v 1=-5 m/s 或v 2=5 m/s 、v 3=-57 m/s ,故D 错误.考点二 自由落体运动 竖直上抛运动基础回扣 1.自由落体运动(1)运动特点:初速度为0,加速度为g 的匀加速直线运动. (2)基本规律①速度与时间的关系式:v =gt . ②位移与时间的关系式:x =12gt 2.③速度与位移的关系式:v 2=2gx . 2.竖直上抛运动(1)运动特点:初速度方向竖直向上,加速度为g ,上升阶段做匀减速运动,下降阶段做自由落体运动. (2)基本规律①速度与时间的关系式:v =v 0-gt ; ②位移与时间的关系式:x =v 0t -12gt 2.技巧点拨1.竖直上抛运动(如图3)图3(1)对称性a.时间对称:物体上升过程中从A→C所用时间t AC和下降过程中从C→A所用时间t CA相等,同理t AB=t BA.b.速度大小对称:物体上升过程经过A点的速度与下降过程经过A点的速度大小相等.(2)多解性:当物体经过抛出点上方某个位置时,可能处于上升阶段,也可能处于下降阶段,造成多解,在解决问题时要注意这个特性.(3)研究方法分段法上升阶段:a=g的匀减速直线运动下降阶段:自由落体运动全程法初速度v0向上,加速度g向下的匀减速直线运动(以竖直向上为正方向)若v>0,物体上升,若v<0,物体下降若x>0,物体在抛出点上方,若x<0,物体在抛出点下方2.如图4,若小球全过程加速度大小、方向均不变,做有往返的匀变速直线运动,求解时可看成类竖直上抛运动,解题方法与竖直上抛运动类似,既可以分段处理,也可以全程法列式求解.图4自由落体运动例4(2020·浙江Z20联盟第三次联考)跳水运动员训练时从10 m跳台双脚朝下自由落下,某同学利用手机的连拍功能,连拍了多张照片.从其中两张连续的照片中可知,运动员双脚离水面的实际高度分别为5.0 m和2.8 m.由此估算手机连拍时间间隔最接近以下哪个数值()A.1×10-1 s B.2×10-1 sC .1×10-2 s D .2×10-2 s答案 B解析 设在该同学拍这两张照片时运动员下落高度h 1、h 2所用的时间分别为t 1、t 2,则h 1=10 m -5 m =5 m ,t 1=2h 1g=1 s. h 2=10 m -2.8 m =7.2 m ,t 2=2h 2g=1.2 s. 所以手机连拍时间间隔为Δt =t 2-t 1=2×10-1 s ,故B 项正确.竖直上抛运动例5 (2020·江西六校第五次联考)一个从地面上竖直上抛的物体,它两次经过一个较低点A 的时间间隔是5 s ,两次经过一个较高点B 的时间间隔是3 s ,则A 、B 之间的距离是(不计空气阻力,g =10 m/s 2)( ) A .80 m B .40 m C .20 m D .无法确定答案 C解析 物体做竖直上抛运动,根据运动时间的对称性得,物体从最高点自由下落到A 点的时间为t A 2,从最高点自由下落到B 点的时间为t B 2,A 、B 间距离为:h AB =12g [(t A 2)2-(t B 2)2]=12×10×(2.52-1.52) m =20 m ,故选C.5.(自由落体运动)(2019·山东临沂市期末质检)一个物体从某一高度做自由落体运动.已知它在第1 s 内的位移恰为它在最后1 s 内位移的三分之一.则它开始下落时距地面的高度为(不计空气阻力,g =10 m/s 2)( )A .15 mB .20 mC .11.25 mD .31.25 m 答案 B解析 物体在第1 s 内的位移h =12gt 2=5 m ,物体在最后1 s 内的位移为15 m ,由自由落体运动的位移与时间的关系式可知,12gt 总2-12g (t 总-1 s)2=15 m ,解得t 总=2 s ,则物体下落时距地面的高度为H =12gt 总2=20 m ,B 正确.6.(竖直上抛运动)(2019·全国卷Ⅰ·18)如图5,篮球架下的运动员原地垂直起跳扣篮,离地后重心上升的最大高度为H .上升第一个H 4所用的时间为t 1,第四个H4所用的时间为t 2.不计空气阻力,则t 2t 1满足( )图5A .1<t 2t 1<2B .2<t 2t 1<3C .3<t 2t 1<4D .4<t 2t 1<5答案 C解析 由逆向思维和初速度为零的匀加速直线运动比例式可知t 2t 1=14-3=2+3,即3<t 2t 1<4,选项C 正确.考点三 多过程问题1.一般的解题步骤(1)准确选取研究对象,根据题意画出物体在各阶段运动的示意图,直观呈现物体运动的全过程.(2)明确物体在各阶段的运动性质,找出题目给定的已知量、待求未知量,设出中间量. (3)合理选择运动学公式,列出物体在各阶段的运动方程及物体各阶段间的关联方程. 2.解题关键多运动过程的转折点的速度是联系两个运动过程的纽带,因此,对转折点速度的求解往往是解题的关键.例6 (2021·辽宁模拟)航天飞机在平直的跑道上降落,其减速过程可以简化为两个匀减速直线运动.航天飞机以水平速度v 0=100 m/s 着陆后,立即打开减速阻力伞,以大小为a 1=4 m/s 2的加速度做匀减速直线运动,一段时间后阻力伞脱离,航天飞机以大小为a 2=2.5 m/s 2的加速度做匀减速直线运动直至停下.已知两个匀减速直线运动滑行的总位移x =1 370 m .求: (1)第二个减速阶段航天飞机运动的初速度大小; (2)航天飞机降落后滑行的总时间. 答案 (1)40 m/s (2)31 s解析 (1)设第二个减速阶段航天飞机运动的初速度大小为v 1,根据运动学公式有v 02-v 12=2a 1x 1, v 12=2a 2x 2, x 1+x 2=x ,联立以上各式并代入数据解得v 1=40 m/s. (2)由速度与时间的关系可得 v 0=v 1+a 1t 1,v 1=a 2t 2,t =t 1+t 2, 联立以上各式并代入数据解得t =31 s.课时精练1.(2019·上海市建平中学高三月考)伽利略为了研究自由落体的规律,将落体实验转化为著名的“斜面实验”,从而创造了一种科学研究的方法.利用斜面实验主要是考虑到实验时便于测量小球运动的( ) A .速度 B .时间 C .路程 D .加速度答案 B2.(2020·黑龙江牡丹江一中高三开学考试)汽车在水平面上刹车,其位移与时间的关系是x =24t -6t 2,则它在前3 s 内的平均速度为( ) A .8 m/s B .10 m/s C .12 m/s D .14 m/s 答案 A解析 由位移与时间的关系结合运动学公式可知,v 0=24 m/s ,a =-12 m/s 2;则由v =v 0+at 可知,汽车在2 s 末即静止,故前3 s 内的位移等于前2 s 内的位移,x =24×2 m -6×4 m =24 m ,则汽车的平均速度v =x t =243m/s =8 m/s ,故A 正确.3.(2020·浙江宁波市鄞州中学初考)高空坠物已经成为城市中仅次于交通肇事的伤人行为.某市曾出现一把明晃晃的菜刀从高空坠落,“砰”的一声砸中了停在路边的一辆摩托车的前轮挡泥板.假设该菜刀可以看成质点,且从15层楼的窗口无初速度坠落,则从菜刀坠落到砸中摩托车挡泥板的时间最接近( ) A .1 s B .3 s C .5 sD .7 s答案 B解析 楼层高约为3 m ,则菜刀下落的高度h =(15-1)×3 m =42 m ,菜刀运动过程可视为自由落体运动,根据h =12gt 2,解得t =2h g=2×4210s ≈2.9 s ,最接近3 s ,故选B. 4.(2019·江苏盐城市期中)汽车以20 m/s 的速度在平直公路上行驶,急刹车时的加速度大小为5 m/s 2,则自驾驶员急踩刹车开始,经过2 s 与5 s 汽车的位移之比为( ) A .5∶4 B .4∶5 C .3∶4 D .4∶3 答案 C解析 汽车速度减为零的时间为:t 0=Δv a =0-20-5 s =4 s ,2 s 时位移:x 1=v 0t +12at 2=20×2 m-12×5×4 m =30 m ,刹车5 s 内的位移等于刹车4 s 内的位移,为:x 2=0-v 022a =40 m ,所以经过2 s 与5 s 汽车的位移之比为3∶4,故选项C 正确.5.(多选)(2019·贵州瓮安第二中学高一期末)一质点做匀加速直线运动,第3 s 内的位移是2 m ,第4 s 内的位移是2.5 m ,那么以下说法中正确的是( ) A .2~4 s 内的平均速度是2.25 m/s B .第3 s 末的瞬时速度是2.25 m/s C .质点的加速度是0.125 m/s 2 D .质点的加速度是0.5 m/s 2 答案 ABD解析 根据平均速度公式,质点2~4 s 内的平均速度v =2+2.52m/s =2.25 m/s ,故A 正确;第3 s 末的瞬时速度等于2~4 s 内的平均速度,即v 3=v =2.25 m/s ,故B 正确;根据Δx =aT 2得,质点的加速度a =Δx T 2=2.5-21m/s 2=0.5 m/s 2,故C 错误,D 正确.6. (多选)(2020·黑龙江鹤岗一中高三开学考试)如图1所示,在一个桌面上方有三个金属小球a 、b 、c ,离桌面的高度分别为h 1、h 2、h 3,h 1∶h 2∶h 3 = 3∶2∶1.若先后顺次释放a 、b 、c ,三球刚好同时落到桌面上,不计空气阻力,则( )图1A .三者到达桌面时的速度大小之比是3∶2∶1B .三者运动时间之比为3∶2∶1C .b 与a 开始下落的时间差小于c 与b 开始下落的时间差D .三个小球运动的加速度与小球受到的重力成正比,与质量成反比答案 AC解析 三个球均做自由落体运动,由v 2=2gh 得v =2gh ,则v 1∶v 2∶v 3=2gh 1∶2gh 2∶2gh 3=3∶2∶1,故A 正确;三个球均做自由落体运动,由h =12gt 2得t =2h g,则t 1∶t 2∶t 3=h 1∶h 2∶h 3=3∶2∶1,故B 错误;b 与a 开始下落的时间差()3-2t 3小于c 与b 开始下落的时间差()2-1t 3,故C 正确;小球下落的加速度均为g ,与重力及质量无关,故D 错误.7.(多选)(2020·陕西延安市第一中学高三二模)物体以初速度v 0竖直上抛,经3 s 到达最高点,空气阻力不计,g 取10 m/s 2,则下列说法正确的是( )A .物体的初速度v 0为60 m/sB .物体上升的最大高度为45 mC .物体在第1 s 内、第2 s 内、第3 s 内的平均速度之比为5∶3∶1D .物体在1 s 内、2 s 内、3 s 内的平均速度之比为9∶4∶1答案 BC解析 物体做竖直上抛运动,有h =v 0t -12gt 2① v =v 0-gt ②联立①②可得v 0=30 m/s ,h =45 m ,故A 错误,B 正确;物体在第1 s 内、第2 s 内、第3 s内的位移分别为25 m 、15 m 、5 m ,已知v =x t,故在相等时间内的平均速度之比为v 1∶ v 2∶v 3=x 1∶x 2∶x 3=5∶3∶1,物体在1 s 内、2 s 内、3 s 内的平均速度之比为v 1′∶ v 2′∶v 3′=251∶402∶453=5∶4∶3,故C 正确,D 错误. 8.距地面高5 m 的水平直轨道上的A 、B 两点相距2 m ,在B 点用细线悬挂一小球,离地高度为h .如图2所示,小车始终以4 m/s 的速度沿轨道匀速运动,经过A 点时将随车携带的小球由轨道高度自由卸下,小车运动至B 点时细线被轧断,最后两球同时落地.不计空气阻力,重力加速度的大小g 取10 m/s 2.可求得h 等于( )图2A .1.25 mB .2.25 mC .3.75 mD .4.75 m答案 A解析 小车上的小球落地的时间t =2H g ;小车从A 到B 的时间t 1=x v ,悬挂的小球下落的时间t 2=2h g.由题意得时间关系:t =t 1+t 2,即2H g =x v +2h g ,解得h =1.25 m ,A 正确.9.(2020·山东济南一中阶段检测)汽车在平直的公路上行驶,发现险情紧急刹车,汽车立即做匀减速直线运动直到停止,已知汽车刹车时第1 s 内的位移为13 m ,在最后1 s 内的位移为 2 m ,则下列说法正确的是( )A .汽车在第1 s 末的速度可能为10 m/sB .汽车加速度大小可能为3 m/s 2C .汽车在第1 s 末的速度一定为11 m/sD .汽车的加速度大小一定为4.5 m/s 2答案 C解析 采用逆向思维,由于最后1 s 内的位移为2 m ,根据x ′=12at 2得,汽车加速度大小a =2x ′t 2=2×212 m/s 2=4 m/s 2,第1 s 内的位移为13 m ,根据x 1=v 0t -12at 2,代入数据解得,初速度v 0=15 m/s ,则汽车在第1 s 末的速度v 1=v 0-at =15 m/s -4×1 m/s =11 m/s ,故C 正确,A 、B 、D 错误.10.(2020·山西大同市第十九中学高三月考)两物体从不同高度自由下落,同时落地,第一个物体下落时间为t ,第二个物体下落时间为t 2,当第二个物体开始下落时,两物体相距( ) A .gt 2B.38gt 2C.34gt 2 D.14gt 2 答案 D解析 第二个物体在第一个物体下落t 2后开始下落,此时第一个物体下落的高度h 1=12g (t 2)2=gt 28,根据h =12gt 2,知第一个物体和第二个物体下落的总高度分别为12gt 2和gt 28,两物体未下落时相距3gt 28,所以当第二个物体开始下落时,两物体相距Δh =38gt 2-18gt 2=14gt 2,故D 正确,A 、B 、C 错误.11.(2020·全国卷Ⅰ·24)我国自主研制了运20重型运输机.飞机获得的升力大小F 可用F =k v 2描写,k 为系数;v 是飞机在平直跑道上的滑行速度,F 与飞机所受重力相等时的v 称为飞机的起飞离地速度,已知飞机质量为1.21×105 kg时,起飞离地速度为66 m/s;装载货物后质量为1.69×105 kg,装载货物前后起飞离地时的k值可视为不变.(1)求飞机装载货物后的起飞离地速度大小;(2)若该飞机装载货物后,从静止开始匀加速滑行1 521 m起飞离地,求飞机在滑行过程中加速度的大小和所用的时间.答案(1)78 m/s(2)2 m/s239 s解析(1)设飞机装载货物前质量为m1,起飞离地速度为v1;装载货物后质量为m2,起飞离地速度为v2,重力加速度大小为g.飞机起飞离地应满足条件m1g=k v12①m2g=k v22②由①②式及题给条件得v2=78 m/s③(2)设飞机滑行距离为s,滑行过程中加速度大小为a,所用时间为t.由匀变速直线运动公式有v22=2as④v2=at⑤联立③④⑤式及题给条件得a=2 m/s2,t=39 s.12.如图3所示,质量m=0.5 kg的物体(可视为质点)以4 m/s的速度从光滑斜面底端D点上滑做匀减速直线运动,途经A、B两点,已知物体在A点时的速度是在B点时速度的2倍,由B点再经过0.5 s滑到顶点C点时速度恰好为零,已知AB=0.75 m.求:图3(1)物体在斜面上做匀减速直线运动的加速度;(2)物体从底端D点滑到B点的位移大小.答案(1)2 m/s2,方向平行于斜面向下(2)3.75 m解析(1)设沿斜面向上的方向为正方向,B→C过程中,根据运动学公式,有0-v B=at BCA→B过程中,v B2-(2v B)2=2ax AB解得:a=-2 m/s2,负号表示方向平行于斜面向下(2)由(1)可知v B=1 m/s物体从底端D点滑到B点的位移大小x DB=v B2-v022a=1-162×(-2)m=3.75 m.13.因高铁的运行速度快,对制动系统的性能要求较高,高铁列车上安装有多套制动装置——制动风翼、电磁制动系统、空气制动系统、摩擦制动系统等.在一段直线轨道上,某高铁列车正以v 0=288 km/h 的速度匀速行驶,列车长突然接到通知,前方x 0=5 km 处道路出现异常,需要减速停车.列车长接到通知后,经过t 1=2.5 s 将制动风翼打开,高铁列车获得a 1=0.5 m/s 2的平均制动加速度减速,减速t 2=40 s 后,列车长再将电磁制动系统打开,结果列车在距离异常处500 m 的地方停下来.(1)求列车长打开电磁制动系统时,列车的速度多大?(2)求制动风翼和电磁制动系统都打开时,列车的平均制动加速度a 2是多大?答案 (1)60 m/s (2)1.2 m/s 2解析 (1)v 0=288 km/h =80 m/s打开制动风翼时,列车的加速度大小为a 1=0.5 m/s 2,设经过t 2=40 s 时,列车的速度为v 1,则v 1=v 0-a 1t 2=60 m/s.(2)列车长接到通知后,经过t 1=2.5 s ,列车行驶的距离x 1=v 0t 1=200 m ,从打开制动风翼到打开电磁制动系统的过程中,列车行驶的距离x 2=v 02-v 122a 1=2 800 m 打开电磁制动系统后,列车行驶的距离x 3=x 0-x 1-x 2-500 m =1 500 m ;a 2=v 122x 3=1.2 m/s 2.。
高中物理运动规律教案
一、教学目标:
1. 理解运动物体的速度、加速度和位移的概念。
2. 了解匀速直线运动和变速直线运动的规律。
3. 掌握速度-时间图和位移-时间图的绘制和分析方法。
4. 能够运用运动规律解决相关问题。
二、教学重点和难点:
1. 运动物体的速度、加速度和位移的概念。
2. 匀速直线运动和变速直线运动的规律。
三、教学内容:
1. 运动物体的速度、加速度和位移。
2. 匀速直线运动和变速直线运动的规律。
3. 速度-时间图和位移-时间图的绘制和分析。
四、教学过程:
1. 授课环节(10分钟)
介绍运动物体的速度、加速度和位移的概念,并与学生讨论相关例子。
2. 实验演示(20分钟)
进行匀速直线运动和变速直线运动的实验演示,让学生观察并记录实验数据。
3. 讲解与练习(20分钟)
讲解匀速直线运动和变速直线运动的规律,引导学生进行相关计算练习。
4. 小组讨论(15分钟)
分组讨论速度-时间图和位移-时间图的绘制和分析方法,并解决相关问题。
5. 综合应用(15分钟)
布置相关综合应用题目,让学生运用所学知识解决实际问题。
五、课堂作业:
完成课堂练习题,巩固所学知识。
六、教学反思:
本节课主要围绕运动物体的速度、加速度和位移以及匀速直线运动和变速直线运动的规律展开教学,通过实验演示和练习让学生掌握相关知识。
在教学过程中,要注意引导学生思考和提高解决问题的能力,培养学生的实践操作能力和综合应用能力。
高中物理教案:研究物体的运动规律
一、引言
物体的运动是物理学研究的重要对象之一。
了解物体的运动规律对于我们理解世界的运行机制以及应用于实际生活中的问题都具有重要意义。
本教案将以高中物理教学为背景,讨论物体的运动规律,帮助学生深入理解物体在不同条件下的运动特征和规律。
二、物体的运动规律
1. 直线运动规律
在没有外力作用下,物体的速度保持不变,我们称之为匀速直线运动。
在这种情况下,物体所经过的位移与时间成正比,速度恒定。
2. 牛顿第一定律
牛顿第一定律又称为惯性定律,即一个物体在没有外力作用下,保持静止或匀速直线运动。
这意味着物体的运动状态不会自发地改变,而需要外力的作用才能产生加速度。
3. 动量守恒定律
动量守恒定律是物体运动规律的重要定律之一。
根据动量守恒定律,如果在一个系统中没有外力或外力合力为零,那么系统的总动量将保持恒定。
这种情况下,任何物体的动量的改变都会被其他物体的动量的改变所抵消。
4. 牛顿第二定律
牛顿第二定律是物体运动规律的核心定律,它将物体的质量、力和加速度关联起来。
根据牛顿第二定律,一个物体所受到的力是其质量与加速度的乘积。
即 F = ma,其中 F 表示物体所受力,m 表示物体的质量,a 表示物体的加速度。
三、力的作用和效果
1. 作用力和反作用力
牛顿第三定律指出,任何作用力都有一个与之大小相等、方向相反的反作用力。
这意味着物体之间的力都是成对存在的。
2. 摩擦力
摩擦力是物体之间相互接触时产生的阻碍运动的力。
摩擦力可以分为静摩擦力
和动摩擦力两种。
静摩擦力是指物体尚未开始滑动时,阻碍物体运动的力;动摩擦力是指物体已经开始滑动时,阻碍物体运动的力。
3. 弹力
弹力是指物体被压缩或拉伸时产生的反向恢复力。
弹力的大小与物体受到的压
缩或拉伸程度成正比。
四、应用实例
1. 自由落体
自由落体是指物体只受到重力作用的情况下下落。
根据重力加速度的定义,所
有物体在同一自由落体条件下下落的加速度都是相同的,即约等于 9.8 m/s²。
自由
落体的运动特点可用运动方程来描述。
2. 圆周运动
圆周运动指的是物体在半径为 R 的圆周运动轨道上运动。
当物体做圆周运动时,其加速度不仅仅与速度有关,还与运动半径和运动周期有关。
圆周运动的加速度大小与速度的平方成正比,与运动半径成反比。
3. 斜面运动
斜面运动是指物体在斜面上运动的情况。
当物体静止于斜面上时,可以根据物体重力与静摩擦力的平衡关系来求解物体静止所需的最小摩擦力。
当物体开始运动时,可以根据运动方程来描述物体在斜面上的加速度和速度。
五、结论
本教案讨论了物体的运动规律,其中包括直线运动规律、牛顿三大定律以及力的作用和效果。
了解物体的运动规律不仅可以帮助我们解释世界的运行机制,还可以应用于解决实际生活中的问题。
通过这些知识和技能的学习,学生将能够更好地理解和应用物理学的基本原理。
期望本教案对高中物理教学的实施能够起到指导与帮助的作用。