圆锥曲线三大定义公式
- 格式:docx
- 大小:10.30 KB
- 文档页数:1
圆锥曲线的标准方程公式
圆锥曲线的标准方程公式是数学中用于描述圆锥曲线几何性质的方程形式。
圆锥曲线包括圆、椭圆、双曲线和抛物线。
每种曲线都有其独特的标准方程形式。
1. 圆的标准方程公式:
圆的标准方程公式是(x - h)² + (y - k)² = r²,其中圆心坐标为(h, k),半径为r。
这个方程描述了平面上所有到圆心距离等于半径的点的集合。
2. 椭圆的标准方程公式:
椭圆的标准方程公式是(x²/a²) + (y²/b²) = 1,其中a和b分别代表椭圆的长轴
和短轴的半长。
这个方程描述了平面上到椭圆两个焦点的距离之和等于常数2a的
点的集合。
3. 双曲线的标准方程公式:
双曲线的标准方程公式可以分为两种形式:(x²/a²) - (y²/b²) = 1和(y²/a²) - (x²/b²) = 1,其中a和b分别代表双曲线的焦点到中心的距离和横轴/纵轴的半长。
这个方
程描述了平面上到双曲线两个焦点的距离之差等于常数2a的点的集合。
4. 抛物线的标准方程公式:
抛物线的标准方程公式可以分为两种形式:y² = 4ax和x² = 4ay,其中a为抛物线的焦点到顶点的距离。
这个方程描述了平面上到抛物线焦点的距离等于焦点到顶点距离的某个倍数的点的集合。
通过这些标准方程公式,我们可以方便地描述和理解圆锥曲线的形状和性质。
它们在几何、物理、工程等领域中都有广泛的应用。
三种圆锥曲线的弦长公式
介绍
圆锥曲线是椭圆以外的另一种类型曲线,其中有三种关键。
它们分别是锥形曲线、圆台曲线和高斯曲线。
这三种曲线使用了非常关键的弦长公式来进行计算。
首先,锥形曲线的弦长公式为L=2π√a2+b2-2a2cosθ,其中a和b分别代表锥形曲线的焦距和顶点角。
θ表示弦的角度。
其次,圆台曲线的弦长公式为L=2π(a2+b2-2abcosθ),其中a和b分别代表圆台曲线的焦距和Fourier角。
θ 表示弦的角度。
最后,高斯曲线的弦长公式为L=4π√a2+b2-2abcosθ+2abcos2θ,其中a和b分别代表高斯曲线的焦距和穹角。
θ表示弦的角度。
以上就是三种圆锥曲线的弦长公式。
锥形曲线的公式表示弦的长度取决于顶点角和焦距,而圆台曲线的公式则表示弦的长度取决于Fourier角和焦距,最后,高斯曲线的公式则表示弦的长度取决于穹角和焦距。
这三种圆锥曲线的弦长公式在计算曲线上每点的坐标时都非常有用,有助于我们更好地理解图形。
圆锥曲线第三定义简介
---------------------------------------------------------------------- 第三定义:
只有椭圆和双曲线有第三定义即椭圆或双曲线上一动点(两顶点除外)与两顶点(a,0)(-a,0)或(0,a)(0,-a)连线的斜率的乘积为定值e^2-1。
圆锥曲线,是由一平面截二次锥面得到的曲线。
圆锥曲线包括椭圆(圆为椭圆的特例)、抛物线、双曲线。
起源于2000多年前的古希腊数学家最先开始研究圆锥曲线。
圆锥曲线(二次曲线)的(不完整)统一定义:到平面内一定点的距离r与到定直线的距离d之比是常数e=r/d的点的轨迹叫做圆锥曲线。
其中当e>1时为双曲线,当e=1时为抛物线,当0<e<1时为椭圆。
定点叫做该圆锥曲线的焦点,定直线叫做(该焦点相应的)准线,e叫做离心率。
【拓展】
第一定义:
平面内与两定点F1、F2的距离的和等于常数2a(2a≥|F1F2|)的动点P的轨迹叫做椭圆。
即:其中两定点F1、F2叫做椭圆的焦点,两焦点的距离|F1F2|=2c≤2a叫做椭圆的焦距。
P为椭圆的动点。
第二定义:
椭圆平面内到定点F(c,0)的距离和到定直线l:x=a/c(F不在l上)的距离之比为常数从C/A,(即离心率,0<e<1)的点的轨迹是椭圆。
圆锥曲线公式大全(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--圆锥曲线知识考点一、直线与方程1、倾斜角与斜率:1212180<α≤0(tan x x y y --==)α 2、直线方程:⑴点斜式:直线l 经过点),(000y x P ,且斜率为k : ()00x x k y y -=- ⑵斜截式:已知直线l 的斜率为k ,且与y 轴的交点为),0(b :b kx y += ⑶两点式:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠:121121y y y y x x x x --=-- ⑷截距式:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b :1x y a b+= ⑸一般式:0=++C By Ax (A 、B 不同时为0, 斜率BAk -=,y 轴截距为BC -) (6)k 不存在⇔a x b a x o=⇔⇔=)的直线方程为过(轴垂直,90α3、直线之间的关系:222111:,:b x k y l b x k y l +=+=⑴平行:{⇔⇔≠=21212121//b b k k k k l l 且都不存在,212121C C B B A A ≠=⑵垂直:{⇔⇔⊥-=⇔-==21212111.021k k k k k k l l 不存在,02121=+B B A A⑶平行系方程:与直线0=++C By Ax 平行的方程设为:0=++m By Ax⑷垂直系方程:与直线0=++C By Ax 垂直的方程设为:0=++n Ay Bx⑸定点(交点)系方程:过两条直线:,0:22221111=++=++C y B x A l C y B x A l 的交点的方程设为:0)(222111=+++++C y B x A C y B x A λ反之直线0)(222111=+++++C y B x A C y B x A λ中,λ取任何一切实数R ,则直线一定过定点),(00y x ,即0:,0:22221111=++=++C y B x A l C y B x A l 两条直线的交点),(0y x4、距离公式:(1)两点间距离公式:两点),(),,(222211y x P x x P :()()21221221y y x x P P -+-=(2)点到直线距离公式:点),(00y x P 到直线0:=++C By Ax l 的距离为2200BA CBy Ax d +++=(3)两平行线间的距离公式:1l :01=++C By Ax 与2l :02=++C By Ax 平行,则2221BA C C d +-=二、圆与方程 1、圆的方程:⑴标准方程:()()222r b y a x =-+- 其中圆心为(,)a b ,半径为r .⑵一般方程:022=++++F Ey Dx y x (0422>-+F E D )其中圆心为(,)22D E --,半径为r =2、直线与圆的位置关系 点),(00y x 和圆222)()(r b y a x =-+-的位置关系有三种:222222222)()()(rb y a x r b y a x rb y a x >-+-⇔=-+-⇔<-+-⇔)(点在圆外)(点在圆上)(点在圆内直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .切线方程:(1)当点),(00y x P 在圆222r y x =+上⇔200r y y x x =+ 圆222)()(r b y a x =-+-⇔200))(())((r b y b y a x a x =--+-- (2)当点),(00y x P 在圆222r y x =+外,则设直线方程()00x x k y y -=-,并利用d=r 求出斜率,即可求出直线方程【备注:切线方程一定是两条,考虑特殊直线k 不存在】④弦长公式:222||d r AB -=2212121()4k x x x x =+-- 3、两圆位置关系:21O O d =⑴外离:r R d +> ⇔有4条公切线 ⑵外切:r R d += ⇔有3条公切线 ⑶相交:r R d r R +<<- ⇔有2条公切线 ⑷内切:r R d -= ⇔有1条公切线 ⑸内含:r R d -< ⇔有0条公切线三、圆锥曲线与方程1.椭圆焦点的位置 焦点在x 轴上 焦点在y 轴上图形标准方程()222210x y a b a b+=>> ()222210y x a b a b+=>> 第一定义到两定点21F F 、的距离之和等于常数2a ,即21||||2MF MF a +=(212||a F F >)第二定义 与一定点的距离和到一定直线的距离之比为常数e ,即(01)MFe e d=<< 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤2.双曲线顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A()1,0b B -、()2,0b B轴长 长轴的长2a = 短轴的长2b = 对称性 关于x 轴、y 轴对称,关于原点中心对称焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 222122()F F c c a b ==-离心率 22222221(01)c c a b b e e a a a a-====-<<准线方程 2a x c=±2a y c=±焦半径 0,0()M x y 左焦半径:10MF a ex =+ 右焦半径:20MF a ex =-下焦半径:10MF a ey =+ 上焦半径:20MF a ey =-焦点三角形面积12212tan()2MF F S b F MF θθ∆==∠021s 21y c in PF PF •=••=θ 通径过焦点且垂直于长轴的弦叫通径: ab 22焦点的位置焦点在x 轴上 焦点在y 轴上图形标准方程()222210,0x y a b a b -=>> ()222210,0y x a b a b -=>> 第一定义到两定点21F F 、的距离之差的绝对值等于常数2a ,即21||||2MF MF a -=(2102||a F F <<) 第二定义 与一定点的距离和到一定直线的距离之比为常数e ,即(1)MFe e d=>【备注】1、双曲线和其渐近线得关系:由双曲线求渐进线:x a b y a x b y a x b y b y a x b y a x ±=⇒±=⇒=⇒=-⇒=-22222222222201由渐进线求双曲线:λ=-⇒=-⇒=⇒±=⇒±=2222222222220by a x b y a x a x b y a x b y x a b y2.等轴双曲线⇔实轴和虚轴等长的双曲线⇔其离心率e =2⇔渐近线x ±=y⇔方程设为λ=-22y x2、求弦长的方法: ①求交点,利用两点间距离公式求弦长; ②弦长公式 ) (消y x x x x k x x k l ]4))[(1(1212212212-++=-+=五、.直线与圆锥曲线的关系1、直线与圆锥曲线的关系如:直线y =kx +b 与椭圆x 2a 2+y 2b2=1 (a >b >0)的位置关系:图形标准方程 22y px = ()0p >22y px =- ()0p >22x py = ()0p >22x py =- ()0p >开口方向 向右 向左 向上 向下定义 与一定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线(定点F 不在定直线l 上)顶点 ()0,0离心率 1e =对称轴 x 轴y 轴范围0x ≥0x ≤0y ≥0y ≤焦点 ,02p F ⎛⎫ ⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭ 0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程 2px =-2px =2p y =-2p y =焦半径 0,0()M x y 02pMF x =+02pMF x =-+02pMF y =+02p MF y =-+通径 过抛物线的焦点且垂直于对称轴的弦称为通径:2HH p '=焦点弦长 公式 12AB x x p =++参数p几何意义参数p 表示焦点到准线的距离,p 越大,开口越阔直线与椭圆相交?⎩⎨⎧ y =kx +bx 2a 2+y2b 2=1⇔有2组实数解,即Δ>0.直线与椭圆相切?⎩⎨⎧ y =kx +bx 2a 2+y2b 2=1⇔有1组实数解,即Δ=0,直线与椭圆相离⎩⎨⎧y =kx +bx 2a 2+y2b 2=1⇔没有实数解,即Δ<【备注】(1)韦达定理(根与系数的关系){AB x AC x C By Ax x -=+=⇔=++2121x .x 210x 的两根方程和则有21221214)(||xx x x x x -+=-(2){b kx y bkx y +=+=1122则有下列结论b x x k y y ++=+)(2121)(2121x x k y y -=-22121221)(b x x k x x k y y +++=③、与弦的中点有关的问题常用“点差法”:把弦的两端点坐标代入圆锥曲线方程,作差→弦的斜率与中点的关系;0202y a x b k -=(椭圆) 0202y a x b k =(双曲线)3、关于抛物线焦点弦的几个结论(了解)设AB 为过抛物线22(0)y px p =>焦点的弦,1122(,)(,)A x y B x y 、,直线AB 的倾斜角为θ,则⑴ 221212,;4p x x y y p ==- ⑵ 22;sin p AB θ=⑶ 以AB 为直径的圆与准线相切;π;⑸112. ||||FA FB P+=⑷焦点F对A B、在准线上射影的张角为2。
2 12丄2(X ∙ a)a y_ 2b2 2.22b丄 b2・・讨=X — Xa a圆锥曲线间的三个统一内蒙古巴彦淖尔市奋斗中学0504班 高卓玮 指导老师:薛红梅世界之美在于和谐,圆锥曲线间也有其内在的和谐与统一,通过对圆锥曲 线图形和已知公式的变换,我们可以得出以下结论。
一、 四种圆锥曲线的统一定义动点P 到定点F 的距离到定直线L 的距离之比等于常数e,则当O ::: e ::: 1时, 动点P 的轨迹是椭圆:当e=1时,动点P 的轨迹是抛物线;当e 1时,动点P 的轨迹是双曲线;若e = O ,我们规定直线L 在无穷远处且P 与F 的距离为定值(非零),则此时动点P 的轨迹是圆,同时我们称e 为圆锥曲线的离心率,F 为 焦点,L 为准线。
二、 四种圆锥曲线的统一方程从第1点我们可以知道离心率影响着圆锥曲线的形状。
为了实现统一我们 把椭圆、双曲线进行平移,使椭圆、双曲线的右顶点与坐标原点重合,记它们2的半通径为P ,则P =L 。
a2 2如图1 ,将椭圆罕■笃=1(a b O)按向量(a,O )平移a b二椭圆的方程可写成 y 2 = 2 px ' (e 2 -1) χ2( O ::: e ::: 1 )2 2类似的,如图2,将双曲线 —--^2 -1(a - O, b - O)按向量(-a, O)平移得到a b得到2(X -a)2a2 2bb2…y = X ~ Xaa•••椭圆的半通径 b 2 IF I M I |= p =—,ab 2~ =1 —eT 双曲线的半通径IF 2M 2I = L , b y =e 2 一1a a∙°∙双曲线方程可写成y = 2 px ∙ (e? 一 1)χ2 (e . 1)对于抛物线y 2 =2px(x .0) P 为半通径,离心率e =1,它也可写成2 2 2y 2 px (e -1) X (e =1)对于圆心在(P ,0),半径为P 的圆,其方程为(X- p)2 + y 2 = p2,它也可 写成『=2 px 亠(e T)x?(^= 0)于是在同一坐标下,四种圆锥曲线有统一的方程y 2 =2px (e 2 -1)x 2 ,其中P 是曲线的半通径长,当e=0,0 ::: e ::: 1, e =1,e . 1时分别表示圆、椭圆、 抛物线、双曲线。
《圆锥曲线公式汇总》《圆锥曲线公式汇总》一、椭圆1.标准方程:a2x2+b2y2=1 (焦点在x轴上,a>b>0;焦点在y轴上,b>a>0)2.焦点坐标:F1(−c,0),F2(c,0) (c为焦距的一半,c2=a2−b2)3.离心率:e=ac (0<e<1)4.焦点到曲线上任意一点的距离之和:PF1+PF2=2a5.焦点到曲线上任意一点的距离之差:∣PF1−PF2∣=2a2−b26.曲线上的点到焦点的距离与到准线的距离之比:dPF=e (d为准线到原点的距离)7.准线方程:x=±ca2 (焦点在x轴上);y=±ca2 (焦点在y轴上)8.通径长(过焦点且垂直于长轴的弦长):a2b29.短轴端点到焦点的距离:a10.焦点三角形的面积:S=b2tan(2θ) (θ为焦点三角形的顶角)二、双曲线1.标准方程:a2x2−b2y2=1 (焦点在x轴上,a>0,b>0);a2y2−b2x2=1 (焦点在y轴上,a>0,b>0)2.焦点坐标:F1(−c,0),F2(c,0) (c为焦距的一半,c2=a2+b2)3.离心率:e=ac (e>1)4.焦点到曲线上任意一点的距离之差的绝对值:∣PF1−PF2∣=2a5.焦点到曲线上任意一点的距离之和:PF1+PF2=2a2+b26.曲线上的点到焦点的距离与到准线的距离之比:dPF=e (d为准线到原点的距离)7.准线方程:x=±ca2 (焦点在x轴上);y=±ca2 (焦点在y轴上)8.通径长(过焦点且垂直于实轴的弦长):a2b29.实轴端点到焦点的距离:c−a10.焦点三角形的面积:S=tan(2θ)b2 (θ为焦点三角形的顶角)三、抛物线1.标准方程:y2=4px (焦点在x轴上,p为焦准距);x2=4py (焦点在y轴上,p为焦准距)2.焦点坐标:F(2p,0) (焦点在x轴上);F(0,2p) (焦点在y轴上)3.准线方程:x=−2p (焦点在x轴上);y=−2p (焦点在y轴上)4.曲线上任意一点到焦点的距离等于到准线的距离:PF=d (d为准线到原点的距离)。
圆锥曲线公式全文共四篇示例,供读者参考第一篇示例:圆锥曲线是解析几何中的重要概念,它是平面上一类特殊曲线的总称,包括圆、椭圆、双曲线和抛物线。
在数学中,圆锥曲线的研究具有深远意义,它们在解决各种实际问题中发挥着重要作用。
本文将详细介绍圆锥曲线的公式及其性质,帮助读者更好地理解这些曲线在数学中的应用。
首先我们来看圆的公式。
圆是一种特殊的圆锥曲线,它被定义为平面上所有到某一点(圆心)距离相等的点的集合。
圆的标准方程为:(x-a)² + (y-b)² = r²其中(a, b)为圆心坐标,r为半径。
这个方程描述了平面上所有满足条件的点,构成了一个圆。
圆的性质包括与坐标轴的交点、圆心、半径等,这些性质在几何中有着重要的应用。
其中a和b分别为x轴和y轴上的半轴长。
椭圆在坐标轴上的形状、焦点位置等,都可以由这个方程来描述。
双曲线是另一种圆锥曲线,它由满足到两个定点(焦点)的距离之差为常数的点的集合构成。
双曲线的标准方程为:第二篇示例:圆锥曲线是数学中重要的曲线之一,它包括抛物线、椭圆、双曲线和圆。
在二维平面几何中,这些曲线可以用一般形式的方程表示。
本文将讨论圆锥曲线的公式和性质。
1. 抛物线的方程抛物线是一种平面曲线,其形状呈现对称性,并且可以看作是一个点到一条固定直线的距离等于一个常数的轨迹。
一般来说,抛物线的方程可以表示为:y=ax^2+bx+c其中a、b和c为常数,且a不为0。
这种形式的抛物线称为标准形式的抛物线方程。
抛物线的开口方向取决于系数a的正负性。
2. 椭圆的方程椭圆是另一种常见的圆锥曲线,它与抛物线不同的是,椭圆是一个点到两个固定点(焦点)的距离之和等于一个常数的轨迹。
椭圆的方程可以表示为:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1其中a和b为正常数,且a和b之间的大小关系可以决定椭圆的长短轴方向。
3. 双曲线的方程双曲线也是圆锥曲线的一种类型,它的形状类似两条平行的直线。
1.圆锥曲线的两个定义:〔1〕第一定义中要重视“括号〞内的限制条件:椭圆中,与两个定点F,F的距离的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段F F,当常数小于时,无轨迹;双曲线中,与两定点F,F的距离的差的绝对值等于常数,且此常数一定要小于|F F|,定义中的“绝对值〞与<|F F|不可无视。
假设=|F F|,那么轨迹是以F,F为端点的两条射线,假设﹥|F F|,那么轨迹不存在。
假设去掉定义中的绝对值那么轨迹仅表示双曲线的一支。
〔2〕第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母〞,其商即是离心率。
圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。
例题讲解:①定点,在满足以下条件的平面上动点P的轨迹中是椭圆的是( )A. B.C. D.〔〕;②方程表示的曲线是__ __点及抛物线上一动点P〔x,y〕,那么y+|PQ|的最小值是_____2.圆锥曲线的标准方程〔标准方程是指中心〔顶点〕在原点,坐标轴为对称轴时的标准位置的方程〕:〔1〕椭圆:焦点在轴上时〔〕〔参数方程,其中为参数〕,焦点在轴上时=1〔〕。
方程表示椭圆的充要条件是什么?〔ABC≠0,且A,B,C同号,A≠B〕〔2〕双曲线:焦点在轴上: =1,焦点在轴上:=1〔〕。
方程表示双曲线的充要条件是什么?〔ABC≠0,且A,B异号〕。
〔3〕抛物线:开口向右时,开口向左时,开口向上时,开口向下时。
例题讲解:①方程表示椭圆,那么的取值范围为____②假设,且,那么的最大值是____,的最小值是___〔①双曲线的离心率等于,且与椭圆有公共焦点,那么该双曲线的方程_______②设中心在坐标原点,焦点、在坐标轴上,离心率的双曲线C过点,那么C的方程为_______3.圆锥曲线焦点位置的判断〔首先化成标准方程,然后再判断〕:〔1〕椭圆:由,分母的大小决定,焦点在分母大的坐标轴上。
极点极线定义已知圆锥曲线С: Ax +By +Cx+Dy+E=0与一点P(x0,y 0) [ 其中 A +B x0+x≠0,点.P.不.在.曲.线.中.心.和.渐.近.线.上.]. 则称点P 和直线L:A?x0x+B?y0y+C? 2 +D?y2+y+E=0是圆锥曲线С的一对极点和极线x0+x y0+y 即在圆锥曲线方程中, 以x0x 替换x ,以2替换x,以y0y 替换y , 以2替换y 则可得到极点P(x0,y 0) 的极线方程L.特别地:(1) 对于圆(x-a) +(y-b) =r , 与点P(x 0 ,y 0) 对应的极线方程为(x 0-a)(x-a)+(y 0-b)(y-b)=r ;x y x0x y0y(2) 对于椭圆+ =1,与点P(x0,y 0)对应的极线方程为0 + 0 =1 ;a b a bx y x 0x y 0y(3) 对于双曲线 a -b =1,与点 P(x 0,y 0)对应的极线方程为 a 0 -b 0 =1 ;(4) 对于抛物线 y =2px ,与点 P(x 0,y 0) 对应的极线方程为 y 0y=p(x 0+x) ; 性质 一般地,有如下性质 [焦.点.所.在.区.域.为.曲.线.内.部. ]: ① 若极点 P 在曲线С上,则极线 L 是曲线С在P 点的切线;② 若极点 P 在曲线С外,则极线 L 是过极点 P 作曲线С的两条切线的切点连线;③ 若极点 P 在曲线С内,则极线 L 在曲线С外且与以极点 P 为中点的弦平行 [仅是 斜率相 等 ]( 若是 圆 , 则此时中 点 弦的 方程 为(x 0-a)(x-a)+(y 0-b)(y-b)=x 0x y 0y x 0 y 0;若是椭圆,则此时中点弦的方程为 a x x +b y y =x a +y bx 0x y 0y x 0 y 0双曲线,则此时中点弦的方程为 a x0x -b y0y =x a 0 -y b 0 ;若是抛物线 ,则此时中点弦的 方程为 y 0y-p(x 0+x)=y 0 -2px 0) ;(x 0-a) +(y 0-b) 若是④当P(x0,y 0)为圆锥曲线的焦点F(c,0) 时,极线恰为该圆锥曲线的准线..;⑤极点极线的对偶性:Ⅰ.已知点P和直线L是关于曲线С的一对极点和极线,则L上任一点Pn对应的极线Ln必过点P,反之亦然,任意过点P的直线Ln对应的极点Pn必在直线L上[图.Ⅱ.过点P作曲线C的两条割线L1、L2,L1交曲线C于AB,L2交曲线C于MN,则直线AM、BN的交点T,直线AN、BM的交点S必都落在点P 关于曲线C的极线L 上[ 图.中.点.P.与.直.线.S..T是.一.对.极.点.极.线.;.点.T.与.直.线.S..P是.一.对.极.点.极.线.] ;即OP = OR OROQⅢ. 点 P 是曲线 C 的极点,它对应的极线为 L ,则有 :1)若C 为椭圆或双曲线,O 是C 的中心,直线 OP 交C 与R ,交L 于Q ,则OP?OQ=OR如图中学数学中极点与极线知识的现状与应用虽然中学数学中没有提到极点极线,但事实上,它的身影随处可见,只是没有点破而已.教材内改名换姓,“视”而不“见” .由④可知椭圆x a +y b =1的焦点的极a线方程为: x= . 焦点与准线是圆锥曲线一章中的核心内容, 它揭示了圆锥曲线c的统一定义, 更是高考的必考知识点. 正是因为它太常见了, 反而往往使我们“视”而不“见” .圆锥曲线基础必备1、长轴短轴与焦距,形似勾股弦定理长轴=2“,短轴= 2b,焦距= 2c.则:a2 =b2 -^c2 1、准线方程准焦距.〃方、"方涂以r..& 0・ 刁2sm —cos — sm 0_ 2 2 1 +cos0 2 cos 2—2 & 所以:椭圆的焦点三角形的面积为S 胚恶=b tail-.4.焦三角形计面积"半角正切進乘焦三角形:以椭圆的两个焦点巧・耳为顶点,另一个顶点」 在椭圆上的三角形称为焦三角形•半角是指—Z 与P 巧的一半. 则焦三角形的面积为: 证明:设阿| =小|昭| = S 由余弦定理:m 2 +n 2 - 2mn cos^= 4c 2=4a即:-2mn - = 2mn - 4b 2,故: Sgf =-m n sin0 =-』+ cos& l + cos0又:0 =tan —三、椭圆的相关公式 切线平分焦周角, 切点连线求方程, 弦与中线斜率积, 细看中点弦方程,称为弦切角定理① 极线屯理须牢记② 准线去除准焦距③ 恰似弦中点轨迹④艮卩:2D = (1+ cos0)mn .1、 切线平分焦周角,称为弦切角定理弦切角定理:切线平分椭圆焦周角的外角,平分双 曲线的焦周角.焦周角是焦点三角形中,焦距所对应的角.弦切角是指椭圆的弦与其切线相交于椭圆上时它 们的夹角,当弦为焦点弦时(过焦点的弦),那么切 线是两个焦点弦的角平 分线.第6页2. 切点连线求方程,圾线定理须牢记若旳(X05)在椭圆卡+$ = 1外,则过昨作椭圆的两 条切线,切点、为P 』,巧,则点耳和切点弦马•勺分别称 为椭圆的极点和极线.切点弦耳乃的直线方程即极线方程是笫?页3、弦与中线斜■率积.准线去涂准焦距|弦指椭圆内的一弦•中线指弦AB 的中点M 与 原点O 的连线,即2AB 得中线•这两条直线的斜率的VY - Q 2於乘积,等于准线距离去除准焦^p= — .其k k_ p 结杲是:0M = T =~V第8页(称为极线定理)4、细看中点弦方程,恰似弦中点、轨迹|中点、弦AB 的方程:在椭圆中,若弦的中点、为弦仙称为中点弦,则中点弦的方程就是弦中点M 的轨迹方程:在椭圆中,过椭圆内点 p 皿、m 的弦AB , 其中点、M 的方程就是 S . y o y … /( y 2. 一7*+矿二正+歹,仍为椭圆.这两个方程有些相似,要擦亮眼睛,千万不要搞 混了.第9页是直线方程.圆锥曲线必背口诀(红字为口诀)-双曲线一、双曲线定义双曲线有四定义.差比交线反比何1、定义1:(差)平面内,到两个定点唇码的距离之差的绝对值为定值2“(小于这两个定点间的距离冈砂)的点的轨迹称为双曲线。
圆锥曲线基本公式圆锥曲线是数学中的重要曲线之一,其基本公式包括椭圆、双曲线和抛物线。
本文将生动地介绍这些公式,并探讨它们在不同领域中的应用。
首先,我们来了解一下椭圆的基本公式。
椭圆是圆锥曲线中的一种,其定义是到两个固定点的距离之和等于常数的点的集合。
椭圆的标准方程为(x/a)² + (y/b)² = 1,其中a和b分别为椭圆的半长轴和半短轴的长度。
椭圆广泛应用于天文学、工程学和计算机图形学等领域。
在天文学中,行星的轨道就是椭圆。
在工程学中,椭圆可以用来设计汽车轮胎和天线等物体。
在计算机图形学中,椭圆被广泛用于绘制二维图形。
接下来,我们将探讨双曲线的基本公式。
双曲线是圆锥曲线中的另一种类型,其定义是到两个固定点的距离之差的绝对值等于常数的点的集合。
双曲线的标准方程为(x/a)² - (y/b)² = 1,其中a和b分别为双曲线的半横轴和半纵轴的长度。
双曲线在物理学、电子学和经济学等领域中有广泛的应用。
在物理学中,双曲线可以描述光的传播和粒子的运动。
在电子学中,双曲线可以用来分析电磁场的性质。
在经济学中,双曲线可以用来描述供求关系和市场均衡。
最后,让我们讨论一下抛物线的基本公式。
抛物线是圆锥曲线中最简单也是最常见的一种,其定义是到一个固定点的距离等于到一条固定直线的垂直距离的点的集合。
抛物线的标准方程为y² = 4ax,其中a为抛物线的焦点到顶点的距离。
抛物线在物理学、工程学和建筑学等领域中有广泛的应用。
在物理学中,抛物线可以用来描述物体的自由落体运动和抛体的射程。
在工程学中,抛物线可以用来设计拱桥和天花板等结构。
在建筑学中,抛物线可以用来设计大厅和剧院的天花板。
总之,圆锥曲线的基本公式包括椭圆、双曲线和抛物线。
这些曲线在各个领域都有重要的应用,从天文学到工程学,从物理学到建筑学。
通过学习和理解这些公式,我们可以更好地理解和应用数学知识,推动科学技术的发展。
圆锥曲线知识点总结圆锥曲线是平面上的一类重要的几何曲线,由易知,它们具有各种各样的性质和特点,广泛应用于数学、物理、工程等领域。
下面将对圆锥曲线的基本概念、方程及其性质进行简要总结。
一、圆锥曲线的基本概念圆锥曲线是由平面和圆锥交于一条封闭曲线形成的曲线。
根据圆锥和平面的位置关系,可以分为椭圆、抛物线和双曲线三类。
(一)椭圆当切割平面与圆锥的两部分相交时,形成椭圆。
椭圆有两个焦点,与这两个焦点的距离之和是常数。
椭圆的方程常用标准方程表示为:(x/a)² + (y/b)² = 1,其中a和b分别表示椭圆的长轴和短轴长度。
(二)抛物线当切割平面与圆锥的一部分相交时,形成抛物线。
抛物线是一条对称曲线,其开口方向由切割平面的位置决定。
抛物线的方程常用标准方程表示为:y = ax²,其中a为常数。
(三)双曲线当切割平面与圆锥的两部分不相交时,形成双曲线。
双曲线有两个焦点,与这两个焦点的距离之差是常数。
双曲线的方程常用标准方程表示为:(x/a)² - (y/b)² = 1,其中a和b分别表示双曲线的长轴和短轴长度。
二、圆锥曲线的方程(一)椭圆的一般方程椭圆的一般方程为:Ax² + Bxy + Cy² + Dx + Ey + F = 0,其中A、B、C、D、E和F为常数。
(二)抛物线的一般方程抛物线的一般方程为:Ay² + Bx + C = 0,其中A、B和C为常数。
(三)双曲线的一般方程双曲线的一般方程为:Ax² + Bxy + Cy² + Dx + Ey + F = 0,其中A、B、C、D、E和F为常数,且B² - 4AC > 0。
三、圆锥曲线的性质(一)椭圆的性质1. 椭圆是一个闭合曲线,对称于x轴和y轴。
2. 椭圆的长轴和短轴分别与x轴和y轴平行。
3. 椭圆有两个焦点,对称于椭圆的长轴上。
2019高考数学复习常用圆锥曲线公式总结圆锥曲线包括圆,椭圆,双曲线,抛物线。
以下是常用圆锥曲线公式总结,请考生及时学习。
抛物线:y = ax *+ bx + c就是y等于ax 的平方加上bx再加上ca 0时开口向上a 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = a(x+h)* + k就是y等于a乘以(x+h)的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py圆:体积=4/3(pi)(r^3)面积=(pi)(r^2)周长=2(pi)r圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F0语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。
如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。
现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。
结果教师费劲,学生头疼。
分析完之后,学生收效甚微,没过几天便忘的一干二净。
造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。
常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。
久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。
常用圆锥曲线公式总结的全部内容就是这些,查字典数学网预祝考生取得优异的成绩。
宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。
圆锥曲线间的三个统一巴彦淖尔市奋斗中学0504班高卓玮指导老师:薛红梅世界之美在于和谐,圆锥曲线间也有其在的和谐与统一,通过对圆锥曲线图形和已知公式的变换,我们可以得出以下结论。
一、四种圆锥曲线的统一定义动点P到定点F的距离到定直线L的距离之比等于常数e,则当01e<<时,动点P的轨迹是椭圆:当1e=时,动点P的轨迹是抛物线;当1e>时,动点P 的轨迹是双曲线;若0e=,我们规定直线L在无穷远处且P与F的距离为定值(非零),则此时动点P的轨迹是圆,同时我们称e为圆锥曲线的离心率,F为焦点,L为准线。
二、四种圆锥曲线的统一方程从第1点我们可以知道离心率影响着圆锥曲线的形状。
为了实现统一我们把椭圆、双曲线进行平移,使椭圆、双曲线的右顶点与坐标原点重合,记它们的半通径为p,则2bpa =。
如图1,将椭圆22221(0)x ya ba b+=>>按向量(,0a)平移得到2222()1x a ya b-+=∴222222b by x xa a=+∵椭圆的半通径211||bF M pa==,2221bea=-∴椭圆的方程可写成2222(1)y px e x=+-(01)e<<类似的,如图2,将双曲线22221(0,0)x ya ba b-=>>按向量(,0)a-平移得到2222()1x a y a b +-=∴222222b b y x x a a=+ ∵双曲线的半通径222||b F M a=,2221b e a =- ∴双曲线方程可写成2222(1)(1)y px e x e =+->对于抛物线22(0)y px x =>P 为半通径,离心率1e =,它也可写成2222(1)(1)y px e x e =+-=对于圆心在(P ,0),半径为P 的圆,其方程为222()x p y p -+=,它也可写成2222(1)(0)y px e x e =+-=于是在同一坐标下,四种圆锥曲线有统一的方程2222(1)y px e x =+-,其中P 是曲线的半通径长,当0e =,01e <<,1,1e e =>时分别表示圆、椭圆、抛物线、双曲线。
圆锥曲线知识点总结___________________________________1、圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F,F的距离的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段F F,当常数小于时,无轨迹;双曲线中,与两定点F,F的距离的差的绝对值等于常数,且此常数一定要小于|F F|,定义中的“绝对值”与<|F F|不可忽视。
若=|F F|,则轨迹是以F,F为端点的两条射线,若﹥|F F|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率。
圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。
Attention:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F,F的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;(2)在椭圆中,最大,,在双曲线中,最大,。
4.圆锥曲线的几何性质:(1)椭圆(以()为例):①范围:;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为2,短轴长为2;④准线:两条准线;⑤离心率:,椭圆,越小,椭圆越圆;越大,椭圆越扁。
(2)(2)双曲线(以()为例):①范围:或;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),两个顶点,其中实轴长为2,虚轴长为2,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为;④准线:两条准线;⑤离心率:,双曲线,等轴双曲线,越小,开口越小,越大,开口越大;⑥两条渐近线:。
(3)抛物线(以为例):①范围:;②焦点:一个焦点,其中的几何意义是:焦点到准线的距离;③对称性:一条对称轴,没有对称中心,只有一个顶点(0,0);④准线:一条准线;⑤离心率:,抛物线。
圆锥曲线公式总结在数学中,圆锥曲线是一种具有特殊形状的曲线。
它们在物理、工程和自然科学的各个领域中都起着重要的作用。
本文将总结几种常见的圆锥曲线,包括椭圆、抛物线和双曲线,并介绍它们的公式、特点以及在现实生活中的应用。
1. 椭圆椭圆是一种闭合曲线,它由平面上到两个定点的距离之和等于常数的点的轨迹组成。
椭圆有两个焦点和两个顶点,与短轴和长轴相交。
给定椭圆的中心坐标为(h, k),长轴长度为2a,短轴长度为2b,焦距为2c,则椭圆的标准方程为:(x-h)²/a² + (y-k)²/b² = 1。
椭圆具有独特的性质,例如对称性和反射性。
它们在天文学中广泛应用,用于描述行星、卫星的轨道以及理论研究等。
此外,椭圆还在几何光学和天线设计等领域中有重要应用。
2. 抛物线抛物线是一种开口朝上或朝下的曲线,它由平面上到一个定点的距离等于平面上到一条直线的距离的点的轨迹组成。
抛物线具有焦点和顶点,焦点到抛物线上的点的距离等于焦点到直线的距离。
给定抛物线的焦点坐标为(h, k),焦距为p,则抛物线的标准方程为:y² = 4ax。
抛物线有许多特性,例如对称性、反射性和焦点性。
它们在物理学和工程学中有广泛的应用,如抛物面反射器、卫星天线和光学成像等。
3. 双曲线双曲线是一种由平面上到两个定点的距离之差等于常数的点的轨迹组成的曲线。
双曲线有两个焦点和两个顶点,与短轴和长轴相交。
给定双曲线的中心坐标为(h, k),短轴长度为2a,长轴长度为2b,焦距为2c,则双曲线的标准方程为:(x-h)²/a² - (y-k)²/b² = 1。
双曲线具有独特的性质,包括对称性和反射性。
它们在物理学中的应用非常广泛,如电磁波传播、光学成像和天文学研究等。
总结:圆锥曲线是数学中的重要概念,包括椭圆、抛物线和双曲线。
它们具有不同的形状和性质,可以用简单的公式进行描述。