第一章整式乘除测试
- 格式:doc
- 大小:115.04 KB
- 文档页数:4
北师大版七年级数学下册第一章整式的乘除专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知一个正方形的边长为1a +,则该正方形的面积为( )A .221a a ++B .221a a -+C .21a +D .21a + 2、已知()()202220202021x x --=,那么()()2220222020x x -+-的值是( ).A .22021B .4042C .4046D .20213、下列各式运算的结果可以表示为52021( )A .()232021B .3220212021⨯C .10220212021÷D .3220212021+ 4、下列各式中,计算结果为6a 的是( )A .()42aB .7a a ÷C .82a a -D .23a a ⋅ 5、下列计算正确的是( )A .a +3a =4aB .b 3•b 3=2b 3C .a 3÷a =a 3D .(a 5)2=a 76、如图,若将①中的阴影部分剪下来,拼成图②所示的长方形,比较两图阴影部分的面积,可以得到乘法公式的是( )A .()2222a b a ab b -=-+B .()2a a b a ab -=-C .()222a b a b -=-D .()()22a b a b a b -=+-7、若0m >,3x m =,2y m =,则3x y m -的值为( )A .32 B .32- C .1 D .388、下列计算正确的是( )A .326(3)9a a =B .3252a a a +=C .326a a a ⋅=D .824a a a ÷=9、若2x +m 与x +3的乘积中不含x 的一次项,则m 的值为( )A .﹣6B .0C .﹣2D .310、下列计算正确的是( )A .2a +3b =5abB .x 8÷x 2=x 6C .(ab 3)2=ab 6D .(x +2)2=x 2+4 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、22013•(12)2012=_____.2、如果()24-264x m x ++是个完全平方式,那么m 的值是______.3、计算:332a a +6a ÷2a =____________.4、图中的四边形均为长方形,根据图形,写出一个正确的等式:____________.5、直接写出结果:(1)23222()()()a a a a ⎡⎤---÷-⎣⎦=____________; (2)(51181153n n n x x x ++--+-)÷(13n x --)=_____________;(3)____________·(234x y -)=5445278212x y x y x y --.三、解答题(5小题,每小题10分,共计50分)1、(1)若3335n n x x x +⋅=,求n 的值.(2)若()3915n m a b b a b ⋅⋅=,求m 、n 的值. 2、计算:(2a 2•8a 2+8a 3﹣4a 2)÷2a .3、计算:(1)53(9126)3x x x x +-÷(2)(-2x +1)(3x -2)4、先化简,再求值:()()()235⎡⎤-++-÷⎣⎦x y x y x y x ,其中1x =,5y =. 5、某种产品的原料提价,因而厂家决定对产品进行提价.现有三种方案:方案1第一次提价p %,第二次提价q %;方案2第一次提价q %,第二次提价p %;方案3第一,二次提价均为(p +q )/2%.(1)若p ,q 是相等的正数,则三种方案哪种提价多?(2)若p ,q 是不相等的正数,则三种方案哪种提价多?-参考答案-一、单选题1、A【分析】先根据正方形的面积公式列式,然后再根据完全平方公式计算即可.【详解】解:该正方形的面积为(a +1)2=a 2+2a +1.故选:A .【点睛】本题主要考查列代数式、完全平方公式等知识点,灵活运用完全平方公式成为解答本题的关键.2、C【分析】设2022,2020a x b x =-=-,则得2021ab =将()()2220222020x x -+-变形得到2()2a b ab -+,即可求解.解:设2022,2020a x b x =-=-,则2021ab =,()()2222220222020()2x x a b a b ab -+-=+=-+,2222021=+⨯, 4046=,故选:C .【点睛】本题考查了代数式的求值,解题的关键是利用整体思想结合完全平方公式的变形进行求解.3、B【分析】分析对每个选项进行计算,再判断即可.【详解】A 选项:()23620212021=,故A 错误; B 选项:325202*********⨯=,故B 正确;C 选项:1028202120212021÷=,故C 错误;D 选项:3222021202120222021+=⨯,故D 错误.故选B .【点睛】考查了幂的乘方、同底数幂的乘附法,解题关键是熟记其计算公式.4、B根据幂的运算法则即可求解.【详解】A. ()42a=8a,故错误;B. 7a a÷=6a,正确;C. 82-不能计算,故错误;a aD. 23a a⋅=5a,故错误;故选B.【点睛】此题主要考查幂的运算,解题的关键是熟知其运算法则.5、A【分析】根据合并同类项判断A选项;根据同底数幂的乘法判断B选项;根据同底数幂的除法判断C选项;根据幂的乘方判断D选项.【详解】解:A选项,原式=4a,故该选项符合题意;B选项,原式=b6,故该选项不符合题意;C选项,原式=a2,故该选项不符合题意;D选项,原式=a10,故该选项不符合题意;故选:A.【点睛】此题考查了整式的计算:合并同类项、同底数幂乘法、同底数幂除法、幂的乘方法则,熟记各法则是解题的关键.6、D【分析】根据图形可以写出相应的等式,从而可以解答本题.【详解】解:由图可得,()()22a b a b a b -=+- ,故选:D .【点睛】本题考查平方差公式,解答本题的关键是明确题意,利用数形结合的思想解答.7、D【分析】根据同底数幂的除法的逆运算及幂的乘方的逆运算解答.【详解】解:∵3x m =,2y m =,∴3x y m -=3()x y m m ÷=3÷8=38,故选D .【点睛】本题考查了同底数幂的除法的逆运算及幂的乘方的逆运算,解题的关键是熟练掌握运算法则.8、A【分析】分别根据积的乘方运算法则、合并同类项法则、同底数幂乘法运算法则、同底数幂除法运算法则逐项判断即可.解:A 、326(3)9a a =,此选项正确,符合题意;B 、3a 和2a 不是同类项,不能合并,此选项错误,不符合题意;C 、33522a a a a +⋅==,此选项错误,不符合题意;D 、82826a a a a -÷==,此选项错误,不符合题意,故选:A .【点睛】本题考查积的乘方运算、合并同类项、同底数幂相的乘法、同底数幂的除法,熟练掌握运算法则是解答的关键.9、A【分析】根据多项式乘以多项式展开,合并同类项后,让一次项系数为0即可得.【详解】解:()()()223263x m x x m x m ++=+++,∵2x m +与3x +的乘积中不含x 的一次项,∴60m +=,解得:6m =-.故选:A .【点睛】本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应合并同类项后,让这一项的系数为0是解题关键.10、B由相关运算法则计算判断即可.【详解】2a和3b不是同类项,无法计算,与题意不符,故错误;x8÷x2=x6,与题意相符,故正确;(ab3)2=a2b6,与题意不符,故错误;(x+2)2=x2+2x+4,与题意不符,故错误.故选:B.【点睛】本题考查了合并同类项、同底数幂的除法、幂的乘方运算、完全平方公式,熟练掌握运算法则是解题的关键.二、填空题1、2【分析】把22013化成22012•2,再逆用积的乘方即可求解.【详解】)2012解:22013•(12)2012=22012•2•(12=2•(2 1)20122=2.故答案为:2.本题考查了积的乘方,熟练掌握积的乘方的运算法则是解题的关键.2、-2或6【分析】由题意直接利用完全平方公式的结构特征判断即可求出m 的值.【详解】解:∵()24-264x m x ++是个完全平方式,∴4(2)16m -=±,解得:m =-2或6.故答案为:-2或6.【点睛】本题主要考查完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.3、47a【分析】由题意先计算同底数幂的乘法和同底数幂的除法,最后合并同类项即可得出答案.【详解】解:332a a +6a ÷2a =44467a a a +=.故答案为:47a .【点睛】本题考查整式的乘除,熟练掌握同底数幂的乘法和同底数幂的除法运算是解题的关键.4、 (x +2y )(x +y )=2232x xy y ++【分析】根据图形,从两个角度计算长方形面积即可求出答案.【详解】解:大长方形的面积=(x +2y )(x +y ),大长方形的面积=222x xy x y y y ++⨯+⨯=2232x xy y ++ ,∴(x +2y )(x +y )=2232x xy y ++,故答案为:(x +2y )(x +y )=2232x xy y ++.【点睛】本题考查多项式乘以多项式,解题的关键是熟练运用运算法则.5、42a a -+ 622751x x -+ 3224123.2x y x y y -++ 【分析】(1)先计算乘方,再计算整式的除法即可;(2)根据整式的除法法则计算即可;(3)根据整式的除法法则计算即可.【详解】(1)()()()32222a a a a ⎡⎤---÷-⎢⎥⎣⎦=642()a a a -+÷=6242a a a a -÷+÷=42a a -+; (2)(51181153n n n x x x ++--+-)÷(13n x --)=2751n n x +-+-511n n x +-++1=622751x x -+;(3)(5445278212x y x y x y --)÷(234x y -) = 32241232x y x y y -++.故答案为:42a a -+,622751x x -+,32241232x y x y y -++ 【点睛】本题考查了幂的乘方,多项式除以单项式,熟练掌握整式的除法法则是解题的关键.三、解答题1、(1)8 (2)n =3,m =4【分析】(1)根据同底数幂乘法的计算法则可以得到4335n x x +=,则4n +3=35,由此求解即可;(2)根据积的乘方和同底数幂乘法的计算法则可得333915n m a b a b +=⋅,则3 n =9且3m +3=15,由此求解即可.【详解】解:(1)∵3335n n x x x +⋅=,∴4335n x x +=,∴4n +3=35,∴n =8;(2)∵3915()n m a b b a b ⋅⋅=,∴ 333333915n m n m a b b a b a b +⋅⋅=⋅=,∴3 n =9,3m +3=15,∴n =3,m =4.【点睛】本题主要考查了同底数幂乘法,积的乘方,解一元一次方程,熟知同底数幂乘法和积的乘方计算法则是解题的关键.2、32842a a a +-【分析】根据同底数幂的乘法和多项式除以单项式的计算法则求解即可.【详解】解:()223228842a a a a a ⋅+-÷()43216842a a a a =+-÷32842a a a =+-.【点睛】本题主要考查了同底数幂的乘法,多项式除以单项式,熟知相关计算法则是解题的关键.3、(1)42342x x +-;(2)2672x x -+-【分析】(1)根据多项式除以单项式运算法则计算即可;(2)根据多项式乘以多项式的运算法则计算即可.【详解】(1)53(9126)3x x x x +-÷=53(93)(123)(6)3x x x x x x ÷+÷+-÷=42342x x +-;(2)(-2x +1)(3x -2)=26432x x x -++-=2672x x -+-.【点睛】本题考查了多项式除以单项式,多项式乘以多项式,熟练掌握运算法则是解题的关键.4、625x y -,-4【分析】首先利用完全平方公式和平方差公式对括号内的式子进行化简,然后进行整式的除法计算即可化简,然后代入求值.【详解】解:()()()235⎡⎤-++-÷⎣⎦x y x y x y x , ()2222965x xy y x y x =-++-÷, ()21065x xy x =-÷,625x y =-, 当1x =,5y =时,原式62152645=⨯-⨯=-=-.【点睛】本题主要考查了公式法化简求值,完全平方公式和平方差公式的利用,熟记公式并能灵活运用是解题的关键.5、(1)三种方案提价一样多;(2)方案3提价多.【分析】(1)设产品的原价为a 元,先分别求出三种方案在提价后的价格,由此即可得;(2)设产品的原价为a 元,先分别求出三种方案在提价后的价格,再利用整式的乘法与完全平方公式进行化简,比较大小即可得.【详解】解:(1)设产品的原价为a 元,当,p q 是相等的正数时,方案1:提价后的价格为2(1%)(1%)(1%)a p q a p ++=+,方案2:提价后的价格为2(1%)(1%)(1%)a q p a p ++=+,方案3:提价后的价格为22(1%)(1%)2p q a a p ++=+, 答:三种方案提价一样多;(2)设产品的原价为a 元,当,p q 是不相等的正数时,方案1:提价后的价格为(1%)(1%)a p q ++,方案2:提价后的价格为(1%)(1%)a q p ++,方案3:提价后的价格为2(1%)2p q a ++, 因为2(1%)(1%)(1%)2p q a a p q ++-++ 2(100)(100)(100)100002a p q p q +⎡⎤=+-++⎢⎥⎣⎦ 2()1000010010010000100100100004a p q p q p q pq ⎡⎤+=+++----⎢⎥⎣⎦ 2224100004a p pq q pq ++-=⋅ 2()040000a p q -=>, 所以2(1%)(1%)(1%)2p q a a p q ++>++, 答:方案3提价多.【点睛】本题考查了整式乘法和完全平方公式的应用,熟练掌握整式的运算法则和公式是解题关键.。
初中数学试卷 桑水出品第一章整式的乘除(测试题)姓名 得分一、判断题(5分)1.字母a 和数字1都不是单项式( ) 2.单项式xyz 的次数是3( )3.x 3可以看作x 1与3的乘积,因式x3是单项式( ) 4.-323y x 这个单项式系数是2,次数是4( ) 5.2a -3πa 2这个多项式的次数是2( ) 二、选择题(30分)1.下面说法中,正确的是( )A .x 的系数为0B .x 的次数为0C .3x 的系数为1 D .3x 的次数为1 2.下面说法中,正确的是( ) A .xy +1是单项式 B .xy 1是单项式 C .31+xy 是单项式 D .3xy 是单项式3.单项式-ab 2c 3的系数和次数分别是( )A .系数为-1,次数为3B .系数为-1,次数为5C .系数为-1,次数为6D .以上说法都不对4.下面说法中正确的是( )A .一个代数式不是单项式,就是多项式B .单项式是整式C .整式是单项式D .以上说法都不对5.多项式322--x x 的项是下列几组中的( )A 、22x 、 x 、 3 B 、22x 、-x 、 -3 C 、22x 、 x 、 -3 D 、22x 、-x 、 36.将a+b+2(b+a )-4(a+b )合并同类项得( )A 、a+bB 、-(a+b )C 、-a+bD 、a -b7.下列说法中正确的是( )A 、单项式a 的系数是0,次数是0。
B 、-7×105.32y x 的系数为-7,次数是10。
C 、1452+--a b a 是二次三项式。
D 、单项式52232z y x -的系数是54-,次数是6。
8.若x ≠y ,则下面各式不能成立的是( ) A .(x -y )2=(y -x )2 B .(x -y )3=-(y -x )3 C .(x +y )(x -y )=(x +y )(y -x )D .(x +y )2=(-x -y )29.a 16可以写成( )A .a 8+a 8B .a 8·a 2C .a 8·a8 D .a 4·a 4 10.下列计算中正确的是( )A .a 2+a 2=a 4B .x ·x 2=x 3C .t 3+t 3=2t 6D .x 3·x ·x 4=x 711.下列题中不能用同底数幂的乘法法则化简的是( )A .(x +y )(x +y )2B .(x -y )(x +y )2C .-(x -y )(y -x )2D .(x -y )2·(x -y )3·(x -y )12、用科学记数法表示(4×102)×(15×105)的计算结果应是( )A .60×107B .6.0×107C .6.0×108D .6.0×1010 13、若m 、n 、p 是正整数,则p n m a a)(⋅等于( ). A .np m a a ⋅ B .np mp a + C .nmp a D .an mp a ⋅14、下列各题计算正确的是( ). A 、623)(ab ab = B .y x y x 6329)3(= C .6234)2(a a -=- D .642232)(c b a c ab =-15、下列各式中不能成立的是( ).A .96332)(y x y x =B .442226)3(b a b a =C .333)(y x xy -=-D .64232)(n m n m =-16、下列计算中,运算正确的个数是( ).(1)743x x x =+ (2)63332y y y=⋅ (3)[]853)()(b a b a +=+ (4)3632)(b a b a = A .1个 B .2个 C .3个 D .4个 17、61)(--n a 等于( ).A .16-n aB .66--n aC .66-n aD .16--n a 18、5225)()(x x -+-的结果是( ).A .102x -B .0C .102xD .72x -19、下列各式计算错误的是( ).A .[]632)()(b a b a +=+ B .[]3232)()(++=+m m b a b a C .[]m m b a b a 33)()(+=+ D .[]n n b a b a 422)()(+=+-20、下列各计算题中正确的是( ).A .m m a a a22=⋅ B .624)(a a = C .623x x x x =⋅⋅ D .632)(ab ab =21、)24()24(n n ⋅⋅⋅等于( ). A .n 224-⨯ B .n 28⨯ C .n 244⨯ D .422+n22、若0<a ,则7)(n a 的值( ).A .一定是负的B .不能是负的C .当n 为奇数时,才是负的D .当n 为偶数时,才是负的23、55561258⨯等于( ). A .5610008⨯ B .561000 C .5510008⨯ D .55)10008(⨯24、1821684=⋅⋅n n n ,则n 的值是( ).A .1B .2C .3D .426、n m n x x +-=⋅)(2中,括号内应填的代数式是( ).A .1++n m xB .1+m xC .2+m xD .2++n m x 27、下列命题中,正确的个数是( ). ①m 为正奇数时,一定有等式m m 4)4(-=-成立;②无论m 为何值,等式m m 2)2(=-都不成立;③三个等式:632)(a a =-,623)(a a =-,[]632)(a a =--都成立;④等式n n n n y x y x 222)2(-=-一定成立;A .1个B .2个C .3个D .4个28.已知x 2+3x+5的值为7,那么3x 2+9x-2的值是( ) A.0 B.2 C.4 D.629.下列计算正确的是( )A .1)1(0-=- B .91312-=- C .22313aa =- D .100)1.0(2=-- 30、已知a=255,b=344,c=433 则a 、b 、c 、的大小关系为:( )A 、b>c>aB 、a>b>cC 、c>a>bD 、a<b<c 三.填空题(10分)1.关于x 的二次三项式,二次项系数是3,一次项系数是-2,常数项是-1,则这个二次三项式是__________2.两个单项式m b a 2543与632b a n -的和是一个单项式,则m=_______,n=_______ 3.a ·a m ·_________=a5m +1 4、=32)4(a ________ 5、=-⨯⎪⎭⎫⎝⎛200200)3(32________. =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛⋅3332)3(31________ 四、计算题(30分) 1、[]{} )2(872222bc a ab bca cb a bc a -+-- 2、)2(6)2(8)2(3)2(222b a b a b a b a +-+++-+- 3、[]32)2(-- 4、[]2222482)(8)(x x x x ⋅--+--- 5、[]{}232523)(y y y --- 6、373325225)()()()(x x x x x x x ⋅⋅-+-+ 五.解答题(25分)1.若162=x ,a+b=0,x ,y 互为倒数,则求y xy b a x 11+++的值是 2.已知x n -3·x n +3=x 10,求n 的值.3.设n 为正整数,且52=n x ,求nn x x 2223)(3)2(-的值4.已知m y x =+,求222)33()22()(y x y x y x +++的值. 5.设m 是自然数,分情况求出mm 221)2(⎪⎭⎫ ⎝⎛--的值.。
第一章《整式的乘除》单元测试题一、选择题(每题 3 分,共 30 分)1.以下运算中,错误的选项是()A. 201B. 313C. a2 a 3 a 5D. ( a 2 ) 3a6 2.化简( a2)3的结果是()A .a5B.a5C.a6D.a63.以下计算正确的选项是()A .a3+a4=a7B. a3·a4=a7C.(a3)4=a7D. a6÷a3=a24.设 a m =8,a n =16,则 a m n =()A.245.PM2.5 是指大气中直径小于或等于0.000 002 5 m 的颗粒物,将0.000 002 5 用科学记数法表示为 ()-5B.0.25 ×10-6C.×-5D.×-6A . 0.25 ×10 2.5 10 2.5 106.李老师做了个长方形教具,此中一边长为2a+ b,另一边长为 a-b,则该长方形的面积为 ()A . 6a+b B.2a 2-ab-b2C.3a D.10a-b7. 计算( x- 3y)(x+3y)的结果是()x2y2Bx2y2Cx2y2Dx2y2A .-3.-6.-9. + 98. 以下计算结果正确的选项是()A .(3 xy )2 3 x2 y 2.B.2x2y32xy2x3y4.C. 28x4y27x3y 4xy.D.( 3a2)(3a2) 9a249.计算x2x5x 1 的结果,正确的选项是().A .4x5 B. x24x5 C.4x5 D. x24x510.如图,表示暗影部分面积的代数式是()A . ab bc B.ad c(b d)二、填空题(每空 3 分,共 18 分)1.所表示的小数是 ________________.2.若 x 2 2x24x m,则 m=_____.3.计算: (2a3a2 )a2______________.4.假如x y4, x y8 ,那么代数式x2y2的值是.5.一台电子计算机每秒可运转4×109 次运算,则它工作5×10 2秒可作的运算是________________________次 .6.任意给定一个非零数,按以下程序计算,最后输出的结果是(用含 m 的代数式表示)三、计算题(每题 6 分,共 36 分)(1)( 1)20141)2(3.14 )0()( 2 899 901 1 2(3)2a (3a2 a 3)(4)24x2y6xy(5) (xy 4)( xy 4)(6)(a3)(a 1) a(a 2)四、解答题(每题 8 分,共 16 分)1、( 8 分)先化简,再求值:(a b)(a b) (a b)22a2,此中a3,b 1 .32212、( 8 分)化简求值:xy 2 xy 2 2x y 4 xy,此中x 10, y5附带题:(10 分)小明想把一长是 60cm,宽为 40cm 的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形的四个角各剪去一个同样小正方形(如图)。
北师大版七年级数学下册《第一章整式的乘除》单元测试题(含答案)814.简化:(2a-3b)(-a+b)=________.2a^2+7ab-3b^215.若x=3,y=5,则x^2+y^2=________.3416.已知函数f(x)=2x-3,则f(5)=________.7三、解答题(共52分)17.(6分)已知a,b是正整数,且a+b=10,求a和b的值。
解:根据题意,得到方程a+b=10,移项得到a=10-b。
由于a和b都是正整数,所以b最小为1,最大为9.代入方程可得到a的取值分别为9、8、7、6、5、4、3、2、1.因此,a和b的值可能为(9,1),(8,2),(7,3),(6,4),(5,5),(4,6),(3,7),(2,8),(1,9)。
18.(6分)已知函数f(x)=2x+1,求f(3)和f(a+1)。
解:代入x=3,可得到f(3)=2×3+1=7.代入x=a+1,可得到f(a+1)=2(a+1)+1=2a+3.19.(8分)已知直角三角形的斜边长为5,一条直角边长为3,求另一条直角边长。
解:设另一条直角边长为x,则根据勾股定理可得到x^2+3^2=5^2,即x^2=16,因此x=4.20.(8分)已知等差数列的前两项为3和7,公差为4,求第10项的值。
解:设等差数列的第10项为a10,则根据等差数列的通项公式可得到a10=3+4×(10-1)=39.21.(12分)已知函数f(x)=x^2-2x+1,求f(x+1)和f(x-1)。
解:代入x+1,可得到f(x+1)=(x+1)^2-2(x+1)+1=x^2+2x+1=f(x)+4x。
代入x-1,可得到f(x-1)=(x-1)^2-2(x-1)+1=x^2-4x+1=f(x)-4x。
因此,f(x+1)=f(x)+4x,f(x-1)=f(x)-4x。
14.计算:(3a-2b)·(2b+3a) = 12a^2 - 4b^215.若a+b=5,ab=2,则(a+b)^2 = 2516.如图4,有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙。
北师大版七年级数学下册第一章整式的乘除评卷人得分一、单选题1.计算(a3)2的结果是()A.a5B.a6C.a8D.a9 2.下列计算正确的是()A.a3-a2=a B.a2·a3=a6C.(3a)3=9a3D.(a2)2=a4 3.已知x+y﹣4=0,则2y•2x的值是()A.16B.﹣16C.18D.84.下列运算正确的是()A.﹣2x2﹣3x2=﹣5x2B.6x2y3+2xy2=3xyC.2x3•3x2=6x6D.(a+b)2=a2﹣2ab+b25.下列计算正确的是()A.a3•a=a3B.(2a+b)2=4a2+b2C.a8b÷a2=a4b D.(﹣3ab3)2=9a2b66.下列各式:①(x-2y)(2y+x);②(x-2y)(-x-2y);③(-x-2y)(x+2y);④(x-2y)(-x+2y).其中能用平方差公式计算的是()A.①②B.①③C.②③D.②④7.如果x2+10x+_____=(x+5)2,横线处填()A.5B.10C.25D.±108.若a+b=5,ab=﹣24,则a2+b2的值等于()A.73B.49C.43D.239.已知a=96,b=314,c=275,则a、b、c的大小关系是()A.a>b>c B.a>c>b C.c>b>a D.b>c>a10.观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b )10的展开式第三项的系数是()A .36B .45C .55D .66评卷人得分二、填空题11.如果x n y 4与2xy m 相乘的结果是2x 5y 7,那么mn=_____.12.若162482m m ⋅⋅=,则m =______.13.若3x =12,3y =4,则3x ﹣y =_____.14.3108与2144的大小关系是__________15.已知长方形的面积为4a 2-4b 2,如果它的一边长为a+b ,则它的周长为______.16.若4x 2+2(k-3)x+9是完全平方式,则k=______.17.已知x 2+y 2+10=2x +6y ,则x 21+21y 的值为_______18.已知△ABC 的三边长为整数a ,b ,c ,且满足a 2+b 2-6a-4b +13=0,则c 为______评卷人得分三、解答题19.化简:(x 4)3+(x 3)4﹣2x 4•x 820.化简:4(a+2)(a+1)-7(a+3)(a -3)21.化简:(x 3)2÷x 2÷x+x 3•(﹣x)2•(﹣x 2)22.化简:[a(a 2b 2-ab)-b(-a 3b-a 2)]÷a 2b23.化简:(x+2)(x-2)+(3x-1)(3x+1).24.化简:(a ﹣2b ﹣3c)(a ﹣2b+3c)25.化简:(2a+1)2﹣(2a+1)(﹣1+2a)26.化简:(x-1)2(x+1)2-1.27.(1)如图是用4个全等的长方形拼成的一个“回形”正方形,图中阴影部分面积用2种方法表示可得一个等式,这个等式为______.(2)若(4x﹣y)2=9,(4x+y)2=169,求xy的值.28.若我们规定三角“”表示为:abc;方框“”表示为:(x m+y n).例如:=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:(1)计算:=______;(2)代数式为完全平方式,则k=______;(3)解方程:=6x2+7.参考答案1.B【解析】试题分析:(a3)2=a6,故选B.考点:幂的乘方与积的乘方.2.D【解析】A.a3与a2不能合并,故A错误;B.a2⋅a3=a5,故B错误;C.(3a)3=27a3,故C错误;D.(a2)2=a4,故D正确.故选D.3.A【解析】∵x+y-4=0,∴x+y=4,∴2y·2x=2x+y=24=16.故选A.点睛:a m·a n=a m+n.4.A【解析】【分析】根据合并同类项法则、单项式乘单项式法则、完全平方公式逐一判断即可.【详解】A、-2x2-3x2=-5x2,此选项正确;B、6x2y3与2xy2不是同类项,不能合并,此选项错误;C、2x3•3x2=6x5,此选项错误;D、(a+b)2=a2+2ab+b2,此选项错误;故选A.【点睛】本题主要考查合并同类项、单项式乘单项式、完全平方公式,熟练掌握法则和公式是解题的关键.5.D【解析】【分析】根据同底数幂的除法、完全平方公式、单项式除以单项式进行计算即可.【详解】A.a3•a=a4,故A错误;B.(2a+b)2=4a2+b2+4ab,故B错误;C.a8b÷a2=a6b,故C错误;D.(﹣3ab3)2=9a2b6,故D正确;故选D.【点睛】本题考查的是整式的计算,熟练掌握计算法则是解题的关键.6.A【解析】试题分析:将4个算式进行变形,看那个算式符合(a+b)(a﹣b)的形式,由此即可得出结论.解:①(x﹣2y)(2y+x)=(x﹣2y)(x+2y)=x2﹣4y2;②(x﹣2y)(﹣x﹣2y)=﹣(x﹣2y)(x+2y)=4y2﹣x2;③(﹣x﹣2y)(x+2y)=﹣(x+2y)(x+2y)=﹣(x+2y)2;④(x﹣2y)(﹣x+2y)=﹣(x﹣2y)(x﹣2y)=﹣(x﹣2y)2;∴能用平方差公式计算的是①②.故选A.点评:本题考查了平方差公式,解题的关键是将四个算式进行变形,再与平方差公式进行比对.本题属于基础题,难度不大,解决该题型题目时,牢记平分差公式是解题的关键.7.C【解析】试题解析:设需要填空的数为A,则原式为:x2+10x+A=(x+5)2.∴x2+10x+A=x2+10x+25,∴A=25.故选C.8.A【解析】∵a+b=5,∴a2+2ab+b2=25,∵ab=﹣24,∴a2+b2=25+2×24=73,故选A.【点睛】本题考查了完全平方公式的应用,熟记完全平方公式是解题的关键.9.C【解析】【分析】根据幂的乘方可得:a=69=312,c=527=315,易得答案.【详解】因为a=69=312,b=143,c=527=315,所以,c>b>a故选C【点睛】本题考核知识点:幂的乘方.解题关键点:熟记幂的乘方公式.10.B【解析】【分析】归纳总结得到展开式中第三项系数即可.【详解】解:解:(a+b )2=a 2+2ab+b 2;(a+b )3=a 3+3a 2b+3ab 2+b 3;(a+b )4=a 4+4a 3b+6a 2b 2+4ab 3+b 4;(a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5;(a+b )6=a 6+6a 5b+15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6;(a+b )7=a 7+7a 6b+21a 5b 2+35a 4b 3+35a 3b 4+21a 2b 5+7ab 6+b 7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(a+b )10的展开式第三项的系数为45.故选B .【点睛】本题考查了完全平方公式的规律,根据给的式子得出规律是解题的关键.11.12【解析】41457222n m n m x y xy x y x y ++⋅==,∴n +1=5,m +4=7,解得:m =3,n =4,∴mn =12.故答案为12.12.3【解析】【分析】先将4m 、8m 化成底数为2的幂,然后利用同底数幂的乘法求解即可.【详解】∵248m m ⋅⋅=23511622222m m m +⨯⨯==,∴m=3.故答案为:3.【点睛】此题主要考查了同底数幂相乘的运算方法以及幂的逆运算,熟练掌握运算法则是解题的关键.13.3【解析】【分析】首先应用含3x,3y的代数式表示3x-y,然后将3x,3y的值代入即可求解.【详解】解:∵3x=12,3y=4,∴3x-y=3x÷3y,=12÷4,=3.故答案为:3.【点睛】本题主要考查同底数幂的除法性质的逆用,熟练掌握运算性质并灵活运用是解题的关键.14.3108>2144【解析】【分析】把3108和2144化为指数相同的形式,然后比较底数的大小.【详解】解:3108=(33)36=2736,2144=(24)36=1636,∵27>16,∴2736>1636,即3108>2144.故答案为3108>2144.【点睛】本题考查了幂的乘方,解答本题的关键是掌握幂的乘方的运算法则.【解析】【分析】直接利用多项式除法运算法计算得出其边长,进而得出答案.【详解】由题意得,长方形的另一边长为:(4a2-4b2)÷(a+b)=4a-4b,∴该长方形的周长为:(4a-4b+a+b)×2=10a-6b,故:应填10a-6b【点睛】本题主要考查多项式的除法运算,解题关键是正确掌握运算法则.16.9或﹣3【解析】原式可化为(2x)2+2(k-3)x+32,又∵4x2+2(k-3)x+9是完全平方式,∴4x2+2(k-3)x+9=(2x±3)2,∴4x2+2(k-3)x+9=4x2±12x+9,∴2(k-3)=±12,解得:k=9或-3,故答案为9或-3.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,熟记完全平方公式对解题非常重要.17.64【解析】∵x2+y2+10=2x+6y,∴x2+y2+10-2x-6y=0,∴(x-1)2+(y-3)2=0,∵(x-1)2≥0,(y-3)2≥0,∴x-1=0,y-3=0,解得:x=1,y=3;∴x21+21y=121+21×3=63+1=64,故答案为:64.18.2或3或4【解析】【分析】由a2+b2-6a-4b+13=0,,得(a-3)2+(b-2)2=0,求得a、b的值,再根据三角形的三边关系定理求得c的取值范围,根据c为整数即可求得c值.【详解】∵a2+b2-6a-4b+13=0,∴(a-3)2+(b-2)2=0,∴a-3=0,b-2=0,解得a=3,b=2,∵1<c<5,且c为整数,∴c=2、3、4,故答案为:2或3或4.【点睛】本题主要考查了非负数的性质、完全平方公式、三角形三边关系,根据非负数的性质求得a、b的值,再利用三角形的三边关系确定c的值是解决此类题目的基本思路.19.0【解析】【分析】直接利用整式运算法-乘方的运算则计算得出答案.【详解】解:原式=x12+x12-2x12=0【点睛】本题主要考查整式的混合运算,正确运用整式运算法-乘方的运算是解答题目的关键. 20.-3a2+12a+71【解析】【分析】根据整式四则混合运算的顺序和法则计算即可.【详解】解:4(a+2)(a+1)-7(a+3)(a-3)=4(a2+3a+2)-7(a2-9)=4a2+12a+8-7a2+63=-3a2+12a+71.故答案为:-3a2+12a+71.【点睛】本题考查了整式的混合运算.21.x3﹣x7【解析】【分析】直接利用整式运算法则-乘方的运算计算得出答案.【详解】(x3)2÷x2÷x+x3•(﹣x)2•(﹣x2)=x6÷x2÷x-x3•x2•x2=x6-2-1-x3+2+2=x3﹣x7【点睛】本题主要考查整式的混合运算,正确运用整式运算法-乘方的运算是解答题目的关键. 22.2ab【解析】【分析】先算乘法,再合并同类项,最后算除法.【详解】解:[a(a2b2-ab)-b(-a3b-a2)]÷a2b=(a3b2-a2b+a3b2+a2b)÷a2b=2a3b2÷a2b=2ab.故答案为:2ab.【点睛】本题考查了整式的混合运算,能正确根据整式的运算法则进行化简是解此题的关键.23.10x2-5.【解析】【分析】根据平方差公式以及整式的运算法则即可求出答案.【详解】原式=x 2-4+9x 2-1=10x 2-5.【点睛】本题考查了平方差公式,解答本题的关键是掌握平方差公式的形式,这是需要我们熟练记忆的内容,属于基础题型.24.a 2+4b 2﹣4ab ﹣9c 2【解析】【分析】原式利用平方差公式化简,再利用完全平方公式展开即可得到结果.【详解】原式=[][]a 2b 3c a 2b 3c---+=22a 2b 3c ()--=222449a b ab c +--.故答案为222449a b ab c +--.【点睛】本题考查平方差公式,完全平方公式.25.4a+2【解析】【分析】运用完全平方和公式、多项式乘多项式法则去括号后,再合并同类项即可.【详解】(2a+1)2﹣(2a+1)(﹣1+2a)=4a 2+4a+1-4a 2+1=4a+2【点睛】考查了整式的混合运算,解本题的关键运用完全平方和公式((a+b)2=a2+2ab+b2)和多项式乘多项式法则((a+b)(c+d)=ac+ad+bc+bd).26.x4-2x2.【解析】【分析】先利用平方差公式进行计算,然后利用完全平方公式进行计算.【详解】解:(x-1)2(x+1)2-1=[(x-1)(x+1)]2-1=(x2-1)2-1=x4-2x2+1-1=x4-2x2.故答案为:x4-2x2.【点睛】本题考查了利用平方差公式和完全平方公式对整式进行化简.27.(1)4ab;(2)10.【解析】【分析】(1)根据长方形面积公式列①式,根据面积差列②式,得出结论;(2)由(1)的结论得出(2x+y)2-(2x-y)2=8xy,把已知条件代入即可.【详解】=4ab①,(1)S阴影=4S长方形S阴影=S大正方形-S空白小正方形=(a+b)2-(b-a)2②,由①②得:(a+b)2-(a-b)2=4ab,故答案为:(a+b)2-(a-b)2=4ab;(2)∵(4x+y)2-(4x-y)2=16xy,∴16xy=169-9,∴xy=10.【点睛】本题考查了完全平方公式几何意义的理解,此题有机地把代数与几何图形联系在一起,利用几何图形的面积公式直接得出或由其图形的和或差得出.28.(1)32-;(2)±3;(3)x=-4.【解析】【详解】解:(1)=[2×(-3)×1]÷[(-1)4+31]=-6÷4=-3 2.故答案为3 2-;(2)=[x2+(3y)2]+xk•2y=x2+9y2+2kxy,∵代数式为完全平方式,∴2k=±6,解得k=±3.故答案为±3;(3)=6x2+7,(3x-2)(3x+2)]-[(x+2)(3x-2)+32]=6x2+7,解得x=-4.。
七年级数学下册第一章《整式的乘除》综合测试卷-北师大版(含答案)(满分100分,限时60分钟)一、选择题(共10小题,每小题3分,共30分)1.若2a=5,2b=3,则2a+b=()A.8B.2C.15D.12.计算(-x2)·(-x)4的结果是()A.x6B.x8C.-x6D.-x83.下列式子能用平方差公式计算的是()A.(2x-y)(-2x+y)B.(2x+1)(-2x-1)C.(3a+b)(3b-a)D.(-m-n)(-m+n)4.(2022江苏泰州泰兴济川中学月考)下列运算中,正确的是()A.a8÷a2=a4B.(-m)2·(-m3)=-m5C.x3+x3=x6D.(a3)3=a65.(2022江苏淮安洪泽期中)若a>0且a x=2,a y=3,则a x-y的值为()A.23B.1 C.−1 D.326.4a7b5c3÷(-16a3b2c)÷(18a4b3c2)等于()A.aB.1C.-2D.-17.【整体思想】已知m-n=1,则m2-n2-2n的值为()A.1B.-1C.0D.28.如果x2-(a-1)x+9是一个完全平方式,则a的值为()A.7B.-4C.7或-5D.7或-49.【新独家原创】若a=(π-2 023)0,b=2 0222-2 021×2 023,c=-23,则a-b-c的值为()A.2 021B.2 022C.8D.110.【转化思想】从前,一位庄园主把一块长为a米,宽为b米(a>b>100)的长方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的长增加10米,宽减少10米,继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会()A.变小了B.变大了C.没有变化D.无法确定二、填空题(共6小题,每小题3分,共18分)11.计算:(−13)100×3101=.12.(2022广东佛山月考)已知a+b=8,ab=15,则a2+b2=.13.(2022江苏盐城滨海第一初级中学月考)已知4×16m×64m=421,则m的值为.14.已知一个三角形的面积等于8x3y2-4x2y3,一条边长等于8x2y2,则这条边上的高等于.15.调皮的弟弟把小明的作业本撕掉了一角,留下一道残缺不全的题目,如图所示,请你帮小明算出被除式等于.÷(5x)=x2-3x+6.16.【学科素养·几何直观】有两个大小不同的正方形A和B,现将A、B并列放置后构造新的正方形如图1,其阴影部分的面积为16.将B放在A的内部得到图2,其阴影部分(正方形)的面积为3,则正方形A,B的面积之和为.三、解答题(共5小题,共52分)17.(2022宁夏银川三中月考)(14分)计算:(1)4y·(-2xy2);(2)(3x2+12y−23y2)·(−12xy)2;(3)(2a+3)(b2+5);(4)(6x3y3+4x2y2-3xy)÷(-3xy).18.(12分)计算:(1)-12+(π-3.14)0-(−13)−2+(-2)3;(2)2 001×1 999(运用乘法公式);(3)(x+y+3)(x+y-3).,y=-1.19.(6分)先化简,再求值:(2x+3y)2-(2x+y)(2x-y),其中x=1320.(2022江苏泰州二中月考)(10分)(1)已知m+4n-3=0,求2m·16n的值;(2)已知n为正整数,且x2n=4,求(x3n)2-2(x2)2n的值.21.【代数推理】(2022河北保定十七中期中)(10分)阅读下列材料:利用完全平方公式,将多项式x2+bx+c变形为(x+m)2+n的形式,然后由(x+m)2≥0就可求出多项式x2+bx+c的最小值.例题:求x2-12x+37的最小值.解:x2-12x+37=x2-2x·6+62-62+37=(x-6)2+1,∵不论x取何值,(x-6)2总是非负数,即(x-6)2≥0,∴(x-6)2+1≥1,∴当x=6时,x2-12x+37有最小值,最小值是1.根据上述材料,解答下列问题:(1)填空:x2-14x+=(x-)2;(2)将x2+10x-2变形为(x+m)2+n的形式,并求出x2+10x-2的最小值;(3)如图,第一个长方形的长和宽分别是(3a+2)和(2a+5),面积为S1,第二个长方形的长和宽分别是5a和(a+5),面积为S2,试比较S1与S2的大小,并说明理由.参考答案1.C当2a=5,2b=3时,2a+b=2a×2b=5×3=15,故选C.2.C(-x2)·(-x)4=-x2·x4=-x6,故选C.3.D A.原式=-(2x-y)(2x-y)=-(2x-y)2,故原式不能用平方差公式进行计算,此选项不符合题意;B.原式=-(2x+1)(2x+1)=-(2x+1)2,故原式不能用平方差公式进行计算,此选项不符合题意;C.原式=(3a+b)(-a+3b),故原式不能用平方差公式进行计算,此选项不符合题意;D.原式=(-m)2-n2=m2-n2,原式能用平方差公式进行计算,此选项符合题意.故选D.4.B a8÷a2=a6,故A选项错误;(-m)2·(-m3)=-m5,故B选项正确;x3+x3=2x3,故C选项错误;(a3)3=a9,故D选项错误.故选B.5.A a x-y=a x÷a y=2÷3=23.故选A.6.C4a7b5c3÷(-16a3b2c)÷(18a4b3c2)=-14a4b3c2÷(18a4b3c2)=-2.故选C.7.A∵m-n=1,∴原式=(m+n)(m-n)-2n=m+n-2n=m-n=1,故选A.8.C∵x2-(a-1)x+9是一个完全平方式,∴x2-(a-1)x+9=(x+3)2或x2-(a-1)x+9=(x-3)2,∴a-1=±6,解得a=-5或a=7,故选C.9.C∵a=(π-2 023)0=1,b=2 0222-(2 022-1)×(2 022+1)=2 0222-2 0222+1=1,c=-23=-8,∴a-b-c=1-1+8=8.故选C.10.A由题意可知原土地的面积为ab平方米, 第二年按照庄园主的想法,土地的面积变为(a+10)(b-10)=ab-10a+10b-100=[ab-10(a-b)-100]平方米,∵a>b,∴ab-10(a-b)-100<ab, ∴租地面积变小了,故选A.11.3解析原式=(13)100×3101=(13×3)100×3=3.故答案是3.12.34解析∵a+b=8,ab=15,∴(a+b)2=a2+2ab+b2=a2+30+b2=64,则a2+b2=34.故答案为34.13.4解析∵4×16m×64m=421,∴4×42m×43m=421,∴41+5m=421,∴1+5m=21,∴m=4.故答案为4.14.2x-y解析易知该边上的高=2(8x3y2-4x2y3)÷(8x2y2)=16x3y2÷(8x2y2)-8x2y3÷(8x2y2)=2x-y.故答案为2x-y.15.5x3-15x2+30x解析由题意可得被除式等于5x·(x2-3x+6)=5x3-15x2+30x.故答案为5x3-15x2+30x.16.19解析设正方形A的边长为a,正方形B的边长为b,由题图1得(a+b)2-a2-b2=16,∴2ab=16,∴ab=8,由题图2得a2-b2-2(a-b)b=3,∴a2+b2-2ab=3,∴a2+b2=3+2ab=3+2×8=19,∴正方形A,B的面积之和为19.故答案为19.17.解析(1)4y·(-2xy2)=-8xy3.(2)原式=(3x2+12y−23y2)·14x2y2=3 4x4y2+18x2y3−16x2y4.(3)(2a+3)(b2+5)=ab+10a+32b+15.(4)(6x3y3+4x2y2-3xy)÷(-3xy)=-2x2y2-43xy+1.18.解析(1)原式=-1+1-9-8=-17.(2)2 001×1 999=(2 000+1)(2 000-1)=2 0002-1=3 999 999.(3)(x+y+3)(x+y-3)=[(x+y)+3][(x+y)-3]=(x+y)2-9=x2+2xy+y2-9.19.解析(2x+3y)2-(2x+y)(2x-y) =(4x2+12xy+9y2)-(4x2-y2)=4x2+12xy+9y2-4x2+y2=12xy+10y2.当x=13,y=-1时,原式=12×13×(-1)+10×(-1)2=6.20.解析(1)∵m+4n-3=0,∴m+4n=3,∴2m·16n=2m·24n=2m+4n=23=8.(2)原式=x6n-2x4n=(x2n)3-2(x2n)2=64-2×16=64-32=32.21.解析(1)49;7.(2)x2+10x-2=x2+10x+25-25-2=x2+10x+25-27=(x+5)2-27≥-27, ∴当x=-5时,x2+10x-2有最小值,为-27.(3)由题意得,S1=(2a+5)(3a+2)=6a2+19a+10,S2=5a(a+5)=5a2+25a,∴S1-S2=6a2+19a+10-(5a2+25a)=a2-6a+10=(a-3)2+1,∵(a-3)2≥0,∴(a-3)2+1≥1,∴S1-S2>0,∴S1>S2.。
第一章整式的乘除单元测试卷(一)一、精心选一选(每小题3分,共21分)43 31•多项式xy 2x y 9xy 8的次数是A. 3B. 4C. 5D. 62•下列计算正确的是 ()A. 2x 26x 412x 84 mB . y3mmyy C .x y 2 x 22 , 2y D. 4a 2a33.计算a ba b 的结果是()A. b 2 a 2B.2 ,2a bC. a 22ab b 2D.a 2 2ab b 224. 3a 5a1与 2a 2 3a 4的和为()A. 5a 22a 3 2小B. a 8a3 C.2a3a 52小D. a 8a55.下列结果正确的是()21 A.-1 B. 9 50C.53.7 01D. 2 31398m^n26.右 a b8 6a b,那么m 22n 的值是()A. 10B. 52C. 20D. 327•要使式子9x 225y 2成为一个完全平方式,则需加上( )二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)班级 ____ 姓名 ______ 学号 ________ 得分 ________A. 15xyB. 15xyC. 30xyD. 30xy1•在代数式3xy 2 ,个,多项式有一2m ,6a个。
2a 3 , 12 , 4x yz1 2xy 2 , 中,单项式有 5 3ab2•单项式 5x 2y 4z 的系数是,次数是 。
,413•多项式3ab ab 有项,它们分别是。
54•⑴ x 2 x 5。
34⑵y 3。
23⑶2a b。
⑷x 5y24。
93⑸a a。
⑹ 10 5 2 40z 1 2 635.⑴ mnmn。
⑵x 5 x 5。
3 5⑶(2a b )25 。
⑷ 12x 3小 2y3xy 。
/、m32m6•⑴ aa a。
⑵ 22a 8a242…。
20062 220051 ⑶ x y x y x y。
⑷3。
3三、精心做一做(每题5分,共15分)1. 4x 2 y 5xy 7x5x 2 y 4xy x2 2 32. 2a 23a 2 2a 1 4a 32 ^343.2x y 6x y 8xy 2xy1. X 1 2x 1 x 22. 2x 3y 5 2x 3y 5四、计算题(每题6分,共12分)1五、化简再求值:XX 2y x 12 2x,其中X -,y 25。
第一章整式的乘除单元测试(基础过关)一、单选题1.下列计算正确的是()A.2a+3b=5ab B.x8÷x2=x6C.(ab3)2=ab6D.(x+2)2=x2+42.下列计算正确的是( )A.(﹣p2q)3=﹣p5q3B.12a2b3c÷6ab2=2abC.(x2﹣4x)÷x=x﹣4D.(a+3b)2=a2+9b23.郑州市“旧城改造”中,计划在市内一块长方形空地上种植草皮,以美化环境.已知长方形空地的面积为(3ab+b)平方米,宽为b米,则这块空地的长为( )A.3a米B.(3a+1)米C.(3a+2b)米D.(3ab2+b2)米4.计算2202120192023-´的结果为()A.4B.3C.2D.15.小明在做作业的时候,不小心把墨水滴到了作业本上,▄×2ab=4a2b+2ab3,阴影部分即为被墨汁弄污的部分,那么被墨汁遮住的一项是( )A.(2a+b2)B.(a+2b)C.(3ab+2b2)D.(2ab+b2)6.已知2m+3n=4,则48m n´的值为()A.8B.12C.16D.207.若222 3a b-=,12a b+=,则-a b的值为()A.12-B.43C.32D.28.如图所示,有三种卡片,其中边长为a 的正方形卡片有1张,长为a 、宽为b 的矩形卡片有4张,边长为b 的正方形卡片有4张,用这9张卡片刚好能拼成一个大正方形,则这个大正方形的边长为( )A .2+a bB .22a b +C .2a b +D .a b+9.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1所示),然后将剩余部分拼成一个长方形(如图2所示).根据图形的变化过程,写出的一个正确的等式是( )A .(a -b )2=a 2-2ab +b 2B .a (a -b )=a 2-abC .b (a -b )=ab -b 2D .a 2-b 2=(a +b )(a -b )10.我国宋代数学家杨辉发现了()n a b +(0n =,1,2,3,…)展开式系数的规律:以上系数三角表称为“杨辉三角”,根据上述规律,()8a b +展开式的系数和是( )A .64B .128C .256D .612二、填空题11.计算22-的结果是______.12.计算:(xy )2=_____.(﹣m 2)3=_____.2a •(﹣3b )=_____.(a 6﹣2a 3)÷a 3=_____.13.用科学记数法表示0.00000012为________.14.若式子x 2+16x +k 是一个完全平方式,则k =______.15.(8x 2+4x )(-8x 2+4x )=_______.16.(23)(23)a b c a b c -++-=______.17.若x m -与23x +的乘积中不含一次项,则m 的值为____________.18.对a ,b ,c ,d 定义一种新运算:a c ad bcb d =-,如232413514=´-´=,计算2x y x x y=+_________.19.1921年伟大的中国共产党成立,2021年中国共产党迎来了百年华诞,若()()19212021520a a ++=,则()()2219212021a a +++的值为 _____.20.已知23,32a b ==,则1111a b +=++_______.三、解答题21.计算:(1)()()22012011 3.142p -æö-+---ç÷èø(2)32332(2)(2)(2)(2)x y xy x y x ×-+-¸(3)()()222226633m n m n m m --¸-22.先化简,再求值.()()()()25222232m n n m n m n n n m éùæö--+++-¸ç÷êúèøëû,其中2m =,1n =-.23.①先化简,再求值:(4x +3)(x -2)-2(x -1)(2x -3),x =-2;②若(x 2+px +q )(x 2-3x +2)的结果中不含x 3和x 2项,求p 和q 的值.24.若m n a a =(0a >且1a ¹,m 、n 是正整数),则m n =.你能利用上面的结论解决下面两个问题吗?试试看,相信你一定行!(1)若228x ´=,求x 的值;(2)若()2893x =,求x 的值.25.如图1,在一个边长为a 的正方形木板上锯掉一个边长为b 的正方形, 并把余下的部分沿虚线剪开拼成图2的形状.(1)请用两种方法表示阴影部分的面积图1得: ; 图2得 ;(2)由图1与图2 面积关系,可以得到一个等式: ;(3)利用(2)中的等式,已知2216a b -=,且a+b=8,则a-b= .26.如图①,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分如图剪开,拼成图②的长方形(1)比较两图的阴影部分面积,可以得到乘法公式: (用字母表示)(2)请应用这个公式完成下列各题①计算:(2)a b c +- (2)a b c -+②计算:222222221009998974321-+-+¼¼+-+-27.如图,将边长为x 的正方形分割成两个正方形和两个长方形.两个正方形的面积分别为y 和25,仔细观察图形.(1)用x 的代数式表示y(2)若(1)得到的算式中,x 、y 表示任何非负数,求满足下列条件的x 、y 的值:①用x 、y 、5、6组成4个连续的整数;②当x 为何值时,y 有最小值?28.探索题:()()2111x x x -+=-;()()23111x x x x -++=-;()()324111x x x x x -+++=-;()()4325111x x x x x x -++++=-…根据前面的规律,回答下列问题:(1)()()4123211n n x x x x x x x ---+++++++=L ______.(2)当3x =时,()()20192018201732313333331-+++++++=L ______.(3)求:202020192018322222221+++++++L 的值(请写出解题过程).29.【探究】如图①,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分沿虚线剪开,拼成图②的长方形.(1)请你分别表示出这两个图形中阴影部分的面积:图① 图② ;(2)比较两图的阴影部分面积,可以得到乘法公式: (用字母a 、b 表示);【应用】请应用这个公式完成下列各题:①已知2m ﹣n =3,2m +n =4,则4m 2﹣n 2的值为 ;②计算:(x ﹣3)(x +3)(x 2+9).【拓展】计算()()()()()248322121212121+++++L 的结果为 .。
wo 最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改rd2017年初一数学第一章整式的乘除测试题一、选择题(每题2分,共42分)1、下列计算正确的是( )A .a 2+a 3=a 5 B .a 2•a 3=a 6 C .(a 2)3=a 5 D .a 5÷a 2=a 32、下列式子中,计算正确的是( )(A ).236x x x •= (B ).x x x =÷56 (C ).()426x x -= (D ).235x x x += 3、下列计算结果正确的是( ) A .()1122--= B. 326-=- C.()020-= D. 2142-⎛⎫-= ⎪⎝⎭4、PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.000 002 5用科学记数法表示为( )A .0.25×10-5 B .0.25×10-6C .2.5×10-5D .2.5×10-65、下列算式中,结果等于a 6的是( ) A .a 4+a 2 B .a 2+a 2+a 2 C .a 2•a 3D .a 2•a 2•a 26、在下列各式中的括号内填入3a 的是( )A .212) (=aB .312) (=aC .412) (=aD .612) (=a 7、下列算式正确的是( )A .1055x x x =+B .2226)3(q p pq -=-C .2224)()(c b bc bc -=-÷-D .1212224+-=⨯⨯n n n8、(-21x 2y)3的计算结果是( )A .-21x 6y 3 B .-61x 6y 3 C .6318x y -D . 6318x y9、下列运算正确的是( )A.235()a a = B.236a a a ⋅= C.824a a a ÷= D.624a a a ÷=10、化简(﹣x )3(﹣x )2,结果正确的是( )A .﹣x 6 B .x 6 C .x 5D .﹣x 511、计算a•a 5﹣(2a 3)2的结果为( )A .a 6﹣2a 5 B .﹣a 6 C .a 6﹣4a 5 D .﹣3a 612、下列运算,正确的是( )A .a+a 3=a 4 B .a 2•a 3=a 6 C .(a 2)3=a 6D .a 10÷a 2=a 513、计算(﹣xy 3)2的结果是( )A .x 2y 6B .﹣x 2y 6C .x 2y 9D .﹣x 2y 914、下列计算正确的是( )A .066=÷a aB .bc bc bc -=-÷-24)()(C .1064y y y =+D .16444)(b a ab = 15、下列运算正确的是 ( )A 、954a a a =+B 、33333a a a a =⋅⋅C 、 954632a a a =⨯D 、()743a a =-16、计算:211)(n n n x x x ÷•-+结果是 ( )A 、-1 B 、 1 C 、0 D 、1±17、下列计算正确的是 ( )A 、632x x x =• B 、633-=- C 、523)(x x = D 、140=18、已知,5,3==b a x x 则=-b a x 23( )A 、2527 B 、109 C 、53D 、5219、下列结果正确的是 ( )A. 91312-=⎪⎭⎫⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=-20、若()682b a b a n m =,那么n m 22-的值是 ( )A. 10 B. 52 C. 20 D.3221、下列各式的计算中不正确的个数是 ( )()011101010-÷=()()4210271000-⋅⨯=()()3130182-⋅⎛⎫-÷-= ⎪⎝⎭; ()()441410110--⎛⎫-÷-=- ⎪⎝⎭。
整式的乘除测试题
姓名: 班级 分数 一、选择题(每题3分,共21分)
1、在下列各式中的括号内能填入3a 的是( )
A .212) (=a
B .412) (=a
C .312) (=a
D .612) (=a 2、下列计算中,运算正确的有几个( ) (1) a 5+a 5=a 10 (2) (a+b)3=a 3+b 3 (3) (-a+b)(-a-b)=a 2-b 2 (4) (a-b)2= a 2+b 2
A 、0个
B 、1个
C 、2个
D 、3个
3、规定一种运算:a*b=ab+a,则a*(-b )+ a*b 计算结果为( ) A. 0 B. 2a C. 2b D.2ab
4、若(x +m )(x -8)中不含x 的一次项,则m 的值为( )
A 、8
B 、-8
C 、0
D 、8或-8 5
水把结果的最后一项染黑了如: 4a 2-你觉得染黑的这一项应是:( )
(A )-b 2 (B ) -2b 2 (C )b 2 (D ) 4b 2 6、若1224-=y ,则y 的值等于( )
A 、5
B 、3
C 、-1
D 、2
7、对于任意正整数n ,按照“→n 平方→-→÷→+→n n n 答案”的程序计算,应输出的答案是( )
A .12+-n n
B .n n -2
C .n -3
D .1
二、填空题:(每空3分,共39分) 8.计算:
(4×103)×(3×105)= . (-a -b)(a -b)= . (x -1)(x+1)= . (4x +y)( )=16x 2-y 2.
(-2ab)2
.(-21
b)3 = 20042003
331-⨯⎪
⎭
⎫ ⎝⎛= ,
-(x+1)(x-1)= +1229-3m m m m a b a b ÷()=___________. 9. 某分子的直径是00002165.0毫米,该分子的直径用科学计数法表示
___________ 10.若a+b=4,a 2-b 2=8,则a-b=______________.
11、一个正方体的棱长为2×102毫米,则它的体积是 。
12.若()03-x 有意义,那么x 必须满足 。
13.若2
21a
a +
=7,则a a 1+的值是 . 三、计算:(每题4分,共40分)
1、2(13)x --
2、22)2(x x -+
3、()()[]2232324128x x y x y x -÷-+-
4、 ()()()32
33
2643xy y x ÷⋅
5、)2)(3(2)25(+-+n n n n -
6、 )
()()()(4422y -x y x y x y x +-+∙∙+
7、 ()[]()021314.3182--π⨯-⨯+-- 8、 2015201320142⨯-(使用简便算法)
四、先化简,再求值:(每题4分,共12分) (1)()()x x y x x 2122++-+,其中25
1
=x ,25-=y 。
(2)已知,13,53
122x x B x x A +-=+-= 当3
2=x 时,求 B A 2-的值。
附加题(共20分)
1、图1是一个长为2 m 、宽为2 n 的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后按
图2的形状拼成一个正方形。
(1)你认为图2中的阴影部分的正方形的边长等于___________________. (2分) (2)请用两种不同的方法求图2中阴影部分的面积。
① ____________________________________ (2分)
② ____________________________________(2分)
(3)观察图2你能写出下列三个代数式之间的等量关系吗?(2分) (m+n)2 , (m-n)2
,
mn ____________________________________
(4)运用你所得到的公式,计算若mn= —2,m —n=4,求(m+n )2
的值.(2分)
2.阅读下列材料
让我们来规定一种运算:
c
a
d
b =b
c a
d -,
例如:
42
5
3=212104352-=-=⨯-⨯,再如:
1x
4
2=4x-2
按照这种运算的规定:请解答下列各个问题: (1)
21--
5
.02= (只填最后结果,3分);
(2)当x= 时, 5.0x
2
2x
-=0; (书写解题过程,7分)
n
n
m
m
n
m m n 图1。