矿井供电电网保护
- 格式:ppt
- 大小:1.04 MB
- 文档页数:50
兴隆煤矿35K V及10K V供电系统继电保护整定方案编制:日期:审核:日期:批准:日期:二零一四年三月2014年继电保护整定方案审查意见继保审查意见:审查人签名:年月日领导意见:领导签名:年月日目录第一章概述 0第二章编制依据 (2)第三章数据统计 (4)第四章供电系统短路电流计算 (6)一、35KV变电所35KV母排短路参数 (6)二、矿内各场所10KV母排短路参数 (6)第五章系统各开关柜继电保护整定计算 (14)一、35KV变电所35KV系统继电保护整定 (14)二、35KV变电所10KV系统继电保护整定 (15)1、05#、12#电容器柜 (15)2、15#、16#主扇柜 (15)3、13#、14#压风柜 (16)4、11#、20#瓦斯抽放站柜 (16)5、17#、22#机电车间 (17)6、18#、19#动力变压器 (17)7、8#、21#主平硐胶带机变电所柜 (18)8、23#地面箱变 (19)9、6#、7#下井柜 (19)10、24#矿外供水泵房 (20)三、10KV系统继电保护整定 (20)1、风井通风机房 (20)2、风井绞车房 (22)3、风井瓦斯抽放泵站 (23)4、机修车间 (23)5、压风机房 (24)6、主平硐变电所 (25)7、+838水平中央变电所 (25)第六章继电保护定值汇总表 (27)附录一:阻抗图附录二:矿井35KV及10KV供电系统图第一章概述一、矿内35KV变电所矿内35/10KV变电所双回路35kV电源均引自容光110 kV变电站,架空导线型号为LGJ-120,线路全长Ⅰ回为13.8公里,Ⅱ回为13.6公里,全程线路采用两端架设架空避雷线及接地模块形式,避雷线型号为GJ-35。
双回线路的运行方式为一路工作,另一回路带电热备用。
两台主变型号为SF11-6300/35,正常运行方式为一台运行,一台热备用。
10KV馈出线路21回,其中包括电容器无功补偿两路、风井主扇通风机房两路(带主通风机和轨道上山绞车房)、风井瓦斯抽放泵站两路、下井两路(去+838水平中央变电所)、主平硐井口变电所两路(带主平硐皮带及地面生产系统)、压风机房两路路、机修车间变电所两路、动力变压器两路、矿外水泵房一路、工广箱式变压器一路、所用变压器一路、消弧线圈一路、备用一路。
煤矿井下高低压供电系统及保护摘要:随着科学技术的进步,煤矿供电有着电压越来越高、负荷功率越来越大、线路越来越复杂、供电保护越来越精确的趋势。
那么煤矿井下供电系统的优劣直接影响到电网的安全性、可靠性、合理性和经济性。
尤其煤矿井下采掘机械化程度的提高,生产工作面不断向前延伸、扩大,给煤矿井下安全供电带来了许多不利的影响。
文章首先对井下特殊环境进行了分析,然后对煤矿企业井下供电提出了基本要求,最后就预防井下电气火灾的安全检查措施给出了一些措施。
关键词:煤矿井下;低压供电;保护措施引言:煤炭资源在我国各种能源中占据相当高的地位。
我国的煤炭资源存储量相较于其他能源要多的多,因此,煤炭的需求很大。
随着我国经济水平的不断提升,我们对煤炭的需求量日益增加。
需求量的增加必然导致煤矿开采量的增加。
煤矿的安全问题也越来越被人们重视。
对于一个煤矿矿井而言,它的结构非常复杂,开采煤矿也受到很多因素的影响。
而低压供电系统的复杂性更多,难以安全稳定运行。
因此对煤矿井下低压供电系统进行保护就显得尤为重要。
低压供电系统的安全稳定运行是煤矿正常开采的保障条件。
目前,我国对煤矿井下低压供电系统的保护措施的研究还不够成熟,导致煤矿发生火灾的情况问题频发。
为此,相关部门专门拨款用于研究低压供电系统的保护措施。
一、供电系统的现状电力是煤矿生产的主要能源。
对煤矿井下进行可靠、安全、经济合理的供电,对提高产品质量,提高经济效益及保证安全生产等方面都有十分重要的意义。
为确保安全和正常生产的需要,合理优化井下供电系统就显得更为重要。
当今,随着矿井供电电压等级的不断提高,井下低压供电系统的范围也在不断扩大。
对于供电路径而言,由地面110kV(或35kV)变电站到井下中央变电所,再由井下中央变电所到采区变电所,再由采区变电所到采掘工作面移动配电点。
对于高压来说,所用电压等级35kV/6kV。
井下供电高压采用10kv或6kV。
就高产高效综采工作面而言,若工作面供电电源引自采区变电所6000V分段母线上,则工作面就存在6000V,3300V,1140V和660V等4种动力电压等级。
煤矿井下供电三大保护(一)矿井低压电的电流保护一、常见过电流故障的类型低压电网运行中,常见的过电流故障有短路、过负荷(过载)和单相断线三种情况。
什么是短路电流?我们首先通过一个简单的实例来说明这一问题:在正常情况下流过导线、灯的电流为:I=V/R=220/(R1+R2+R3)=220/50.48=4.36A如果在灯头处两根导线相互碰头等于灯泡电阻没有接入,此时流过导线的电流则为:I=V/R=220/(R2+R3)=220/2.08=105.5A1、短路是指供电线路的相与相之间经导线直接逢接成回路。
短路时,流过供电线路的电流称为短路电流。
在井下中性点不接地的供电系统中,短路分为三相、两相两种,而单相接地不属于短路,但可发展为短路。
⑴短路故障发生的原因①线路与电气设备绝缘破坏。
例如,绝缘老化、绝缘受潮,接线(头)工艺不合格,设备内部的电气缺陷和电缆质量低及大气过电压等。
②受机械性破坏。
例如,受到运输机械的撞击,片帮、冒顶物的砸伤,炮崩,电缆敷设半径过小等。
③误接线、误码操作。
例如,相序不同线路的并联,带电进行封装接地线与带封装接地线送电,局部检修送电等。
④严重隐患点。
例如,“鸡爪子”、“羊尾巴”处。
⑤带电检修电气设备。
⑥带电移挪电气设备。
⑵短路故障的危害短路事故是煤矿常见的恶性事故之一,它产生的电流很大,在短路点电弧的中心温度一般在2500℃~4000℃,可在极短的时间内烧毁线路或电气设备,甚至引起火灾。
在遇瓦斯、煤尘时,可以引起燃烧或爆炸.短路可使电网电压急剧下降,影响电气设备的正常工作。
2、过负荷过负荷也称为过载,是指实际流过电气设备的电流超过其额电流,又超过了允许的过流时间。
从过流和时间两个量来说,都是相对量,必须具备过流和超时这两个条件,才称为过负荷。
过负荷常烧坏井下电气设备,造成过负荷的原因有:电源电压过低;重载起动;机械性堵转和单相断相。
其共同表现是:电气设备超允许时间的过电流,设备的温升超过其允许温升,有时会引起线路着火,甚至扩大为火灾或重大事故。
第一章井下电器三大保护煤矿井下供电系统的过流保护、漏电保护、接地保护统称为煤矿井下电器的三大保护。
井下电器系统的三大保护是保证井下供电、用电安全的可靠措施。
第一节漏电保护当电气设备或导线的绝缘损坏或人体触及一相带电体时,电源和大地形成回路,有电流流过的现象,称为漏电。
井下常见的漏电故障可分为集中性漏电和分散性漏电两类。
集中性漏电是指漏电发生在电网的某一处或某一点,其余部分的对地绝缘水平仍保持正常。
分散性漏电是指某条电缆或整个网络对地绝缘水平均匀下降或低于允许绝缘水平。
一、漏电的危害及原因1.漏电的危害漏电会给人身、设备以致矿井造成很大威胁,其危害主要有四个方面:(1)人接触到漏电设备或电缆时会造成触电伤亡事故。
(2)漏电回路中碰地碰壳的地方可能产生电火花,有可能引起瓦斯煤尘爆炸。
(3)漏电回路上各点存在电位差,若电雷管引线两端接触不同电位的两点,可能使雷管爆炸。
(4)电气设备漏电时不及时切断电源会扩大为短路故障,烧毁设备,造成火灾。
2.漏电的原因(1)电缆和电气设备长期过负荷运行,使绝缘老化而造成漏电。
(2)运行中的电气设备受潮或进水,造成对地绝缘电阻下降而漏电。
(3)电缆与设备连接时,接头不牢,运行或移动时接头松脱,某相碰壳而造成漏电。
(4)电气设备内部随意增加电气元件,使外壳与带电部分之间电气间隙小于规定值,造成某一相对外壳放电而发生接地漏电。
(5)橡套电缆受车辆或其它器械的挤压、碰砸等,造成相线和地线破皮或护套破坏,芯线裸露而发生漏电。
(6)铠装电缆受到机械损伤或过度弯曲而产生裂口或缝隙,长期受潮或遭水淋使绝缘损坏而发生漏电。
(7)电气设备内部遗留导电物体,造成某一相碰壳而发生漏电。
(8)设备接线错误,误将一相火线接地或接头毛刺太长而碰壳,造成漏电。
(9)移动频繁的电气设备的电缆反复弯曲使芯线部分折断,刺破电缆绝缘与接地芯线接触而造成漏电。
(10)操作电气设备时,产生弧光放电造成一相接地而漏电。
摘要电力是现代煤矿企业生产所需的主要能源,煤矿企业中的绝大多数生产机械都直接或间接地以电力为动力源,电力系统可靠、安全、经济、合理地运行对煤矿企业至关重要。
煤矿电网是电力系统的一个重要组成部分,它是联系电力系统与煤矿用电设备的桥梁,由于以电缆供电为主,具有负荷集中、电气设备运行环境恶劣、供电可靠性要求高等特点,其继电保护计算与系统电网和普通电力用户相比有一些特殊的地方。
随着煤矿井下生产对供电可靠性的要求越来越高,各煤矿企业对井下继电保护整定的工作日益重视,越发认识到制定一套适合于煤矿井下生产实际情况的继电保护整定规范的必要性与重要性。
目前煤矿电气技术员进行此项工作时普遍采用手工故障计算和人工整定计算的方法,因此对继电保护整定计算的手工计算作一些总结是有一定的意义的。
本文主要针对赵家寨煤矿井下供电系统现状、特点,提出一些有针对性的继电保护方面的看法及整定计算方法,以供探讨。
关键词:煤矿;电网; 继电保护;电力abstractElectric power is required by the modern mine enterprise production primary energy, machinery for coal mine enterprises in the vast majority of production is directly or indirectly to electricity as a power source, power system reliability, security, economic and rational operation of coal mining enterprises is essential.Coal mine electric network is an important part of power system, it is a bridge link between power system and electric equipment in coal mines, due mainly to cable power supply, load set run the appalling conditions, power supply, electrical equipment and high reliability requirements, system for relay protection calculation and its power network and compared to ordinary electricity user has some special place. As the demand for reliability of power supply in coal mine production increasing, underground in the coal mines of relay protection setting pay increasing attention to more awareness to develop a suitable for underground coal mine production realities of the necessity and importance of relay protection setting norms.Currently coal mine electrical technician carrying out the work commonly adopted method of fault calculation and manual setting by hand, so the manual calculation of relay protection setting calculation for summary of some significance. This article mainly for Zhao jiazhai coal mine power supply system status, characteristics and made a number of targeted view of relay protection and its setting calculation method, for discussion.Keywords:coal mine; electrified wire netting; relaying protection; power目录1 绪论 (1)1.1 赵家寨煤矿简介 (1)1.2 本课题的目的与意义 (1)1.3 矿井供电系统要求 (3)1.4 定值整定计算的基本原则 (4)2 赵家寨煤矿供电概况 (6)3 短路电流的计算 (7)3.1 概述 (7)3.2 短路的原因、种类及危害 (7)3.1 高压供电系统短路电流的计算 (9)3.1.1 短路电流变化过程分析 (9)3.1.2 短路回路中元件阻抗的计算 (9)3.1.3 短路电流的计算 (11)3.2 井下低压网络短路电流计算方法 (11)4 井下供电系统短路电流计算 (14)5 井下中央变电所计算校验 (16)5.1 D2点短路整定 (16)5.2 中央变电所3#柜(11采区变电所1回路) (18)5.3 中央变电所4#柜(11轨道1车场3车场电源) (19)5.4 中央变电所5#柜(中央泵房水泵1#水泵电源) (20)5.5 中央变电所14#柜(中央变电所高爆总电源) (20)5.6 中央变电所21#柜(西大巷风机专变) (21)5.7 中央变电所22#柜(12采区变电所Ⅱ回路) (22)5.8 中央变电所26#柜(强力胶带机Ⅱ回路) (23)5.9 中央变电所29#柜(所内3#变压器) (23)5.10 中央变电所30#柜(11采区变电所Ⅱ回路) (24)5.11 中央变电所31#柜(所内2#变压器) (25)5.12 中央变电所32#柜(西大巷配电点电源) (26)5.13 中央变电所34#高爆开关(31变电所电源) (26)5.14 中央变电所35#高爆开关(所内1#变压器) (27)6 11采区变电所计算校验 (29)6.1 1#、10#、19#高压真空馈电开关整定 (30)6.2 11采区变电所4#高压开关 (30)6.3 11采区变电所5#高压开关 (31)6.4 11采区变电所6#高压开关 (32)6.5 11采区变电所7#高压开关 (33)6.6 11采区变电所8#高压开关 (34)6.7 11采区变电所9#高压开关 (35)6.8 11采区变电所11#高压开关 (35)6.9 11采区变电所12#高爆开关 (37)6.10 11采区变电所15#高爆 (37)6.11 11采区变电所16#高爆 (38)6.12 11采区变电所17#高爆开关 (39)6.13 11采区变电所18#高压开关 (40)7 12采区变电所计算校验 (42)7.1 12采区变电所1#高爆开关(Ⅰ段进线) (42)7.2 12采区变电所2#高爆开关(12204工作面电源) (43)7.3 12采区变电所3#高爆开关(风井底变电所Ⅰ回路) (43)7.4 12采区变电所4#高爆开关(12采区变电所4#风机专变) (44)7.5 12采区变电所5#高爆开关(12采区变电所3#动力变压器) (45)7.6 12采区变电所10#高压开关 (45)7.7 12采区变电所15#高爆开关(12采区变电所Ⅱ回路) (46)8 风井变电所计算校验 (48)8.1 风井、泵房变电所母线短路容量计算: (48)8.2 风井、泵房变电所5#、6#高压真空电磁启动开关 (48)8.3 风井底变电所12#高压真空电磁启动开关 (50)8.4 风井泵房2#高爆开关: (51)9 总结 (53)致谢 (54)参考文献 (55)附录A (56)1 绪论1.1 赵家寨煤矿简介赵家寨煤矿(河南省新郑煤电公司)是河南省“十五”、“十一五”重点建设项目,由郑煤集团、神火集团、河南省煤田地质局共同出资建设的一座设计年产300万吨的现代化矿井。
矿井供电安全技术措施矿井供电是矿山生产的重要支撑,但也是一项危险性极高的工作,因此必须采取安全技术措施确保矿井供电安全。
本文将介绍常见的矿井供电安全技术措施。
1. 电气设备的选购与安装电气设备的选购和安装是保证矿井供电安全的重要一环。
在选购电气设备前,应先了解所需设备的技术参数和质量标准,同时根据实际情况选购符合要求的电气设备。
在安装电气设备时,应按照工艺要求进行施工,检查设备的接地情况和绝缘性能,以确保电气设备的正常运行及供电安全。
2. 电力线路的安装电力线路的安装对供电安全有重要影响。
在进行电力线路安装时,应先进行避雷接地设计,规范化施工,确保接地线路合格。
采用防护措施避免其与非电气设备重叠,防止外力冲击折断,导致电网电压大幅度变化。
3. 火灾自动报警系统火灾自动报警系统是矿井供电安全的重要措施。
通过实时监测火险和火灾,能够快速响应和稳定状况的回复处理。
在矿山内选择布置灵敏度高,信号鲜明描绘的雷达传感器。
固定火灾预警加大监督,增强快速反应时的预警效果。
具备火灾报警装置的功效,对矿井供电消防工作起到了重要作用。
4. 电气故障监测、保护、排除系统电气故障监测、保护、排除系统是矿井供电安全的关键。
它可以通过编写防护消息闸电子自动控制系统的方案,组织关于设备安全的可靠会议,确保设备安全。
为方便用户及时发现故障和及时处理,可以采用智能卫士电子监视器,实现现场实时监测、远程控制和诊断等。
5. 预防雷击与振动预防雷击与振动也是保障矿井供电安全的一项重要措施。
在进行电气设备安装时,应根据当地雷电活动情况进行雷击防范措施,如增加避雷线等。
同时,为了避免设备振动对电气系统造成影响,应在安装时保证各设备之间的距离符合要求。
如果设备安装点不同,则考虑采用吊装或地电池来解决问题。
6. 人员培训和消防演练除此之外,加强人员培训和消防演练同样是保障矿井供电安全的重要手段。
员工需要了解当地的电气设备安全标准和预防措施,以及矿井供电应急处理措施。
浅谈矿井下的三大保护装置摘要:本文主要介绍了煤矿井下的三大保护装置,即过流保护装置、漏电保护装置和保护接地装置。
关键词:矿井安全供电保护装置安全供电是保证矿井安全生产的关键之一。
由于井下环境条件恶劣,容易发生各种电气事故,因此,需要采取必要的安全措施,设置可靠的保护装置,才能提高矿井生产的安全水平。
煤矿井下最重要的电气保护是过流保护、漏电保护和保护接地,即井下三大保护,它们是煤矿井下安全供电的主要技术措施,对确保安全、发展生产起着十分重要的作用。
1.过流保护装置凡是流过电气设备或线路的电流,如果超过其额定值或允许值,都叫作过电流。
引起过电流的原因很多,如短路、过负荷、电动机单相运转(断相)等。
长时间的过电流运行,将导致电气设备与井下电缆的迅速损坏,甚至引发严重的安全事故。
为此,对于电气设备和供电线路都必须设置相应的过流保护,以便能及时地切断故障处的电源,防止事态的恶化。
过流保护包括短路保护、过载保护和断相保护。
在保护过程中,过流保护装置应满足以下基本要求:①选择性当电网某部分发生过流故障时,要求保护装置只切除故障设备或线路的电源,尽量缩小停电范围,保证无故障设备继续运行。
②可靠性即要求保护装置本身应具有较高的可靠性,不出问题,随时处于可靠的准备动作状态;此外,还要求保护性能可靠,当本保护范围内发生过流故障时,它一定动作(不拒动);当本保护范围外发生过流故障时,它一定不动作(不误动)。
③动作迅速在故障电流还没有造成危害之前,保护装置便应将过流故障切除。
④动作灵敏保护装置对它所保护范围内发生故障和不正常工作状态的反映能力,称为保护装置的灵敏性。
在实际工作中,通常用灵敏系数来衡量保护装置的灵敏程度。
灵敏系数定义为,式中kt ——保护装置的灵敏系数;idmin ——保护装置保护范围内的最小短路电流,a ;izd ——保护装置动作电流整定值,a 。
对于不同的保护装置和不同的保护对象,灵敏系数的取值也不相同。