2012年江苏高中数学竞赛夏令营讲稿
- 格式:ppt
- 大小:2.62 MB
- 文档页数:101
排列与组合本节主要有:排列组合公式及应用;处理排列组合问题的常用方法:如插空法、捆绑法等;可重复排列及圆排列公式等基本内容. A 类例题例1四个不同的小球放入编号1、2、3、4、的四个盒中,则恰有一个空盒的放法有____种。
分析 排列组合中诸如把教师医生分到各所学校;把不同的小球放入盒中等问题都可以归类为分组问题,分组问题解题的原则是:“分组先分堆”.解 把4个球分成“2、1、1”三堆,有22111224A C C C 种分法,把三堆球分别放入四个盒子的任三个中,有34A 种放法,由乘法原理,恰有一个空盒的放法共有22111224A C C C ·34A =144种.说明:本题也可以分类讨论求解,若1号盒空,2号盒放二个球,3、4号盒各放一个球有2224A C =12种放法;同理,若1号盒空,3号盒放2个球,2、4号盒各放一个球也是12种放法;1号盒空,4号盒放2个球,2、3号盒各放一个球同样是12种放法。
所以,1号盒空共有12×3 = 36种放法。
故满足题设的总放法种数为4×36 = 144种。
例2 6名同学排成一排。
(1)其中甲、乙两个必须排在一起的不同排法有______种.(1997年全国高考题)(2)甲乙两人不能相邻的排法有______种.分析 排列组合中,处理“在与不在”、“邻与不邻”、“接与不接”等问题时,常常利用捆绑法或插空法.解⑴把甲、乙两人看作1人,这样6个人可看成5个人,共有55A 种排法,甲、乙两人有2种顺序,故共有55A ·24022 A 种.⑵ 先排其他4名同学,有44A 种,再把甲乙两人插入到4名同学的5个空挡中有25A 种,所以共有44A ·25A =480种.情景再现1.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方式共有 ( )A .90种B .180种C .270种D .540种 (1998年全国高考题)2.某校从5名优秀学生干部中选出4人分别参加“资源”、“生态”和“环保”三个夏令营,要求每一个夏令营活动至少有选出的一人参加,且每人只参加一个夏令营活动,则不同的参加方案有( )种A .90B .180C .270D .540 B 类例题例3 在正方体的8个顶点,12条棱的中点,6个面的中心及正方体的中心共27个点中,共线的三点组的个数是A 57B 49C 43D 37(1998年全国数学联赛)分析 正方体中,共线三点组的两个端点可能有三种情形:①两端点都是顶点;②两端点都是面的中心;③两端点都是棱的中点,除此之外没有别的情形.解 两端点都是顶点的共线组有2828=C 个,两端点都是面的中心的共线组有3个,两端点都是棱的中点的共线组有182312=⨯个。
第67讲图论问题(一)本节主要内容是:把一个具体问题用图形表示出来,利用图形的直观性可能更有利于问题的解决.有关的一些概念:由假设干个不同的点及连接其中某些点对的线所组成的图形就称为图.图中的点的集合称为图的点集,记为V:V={v1,v2,…,v n,…};图中的线的集合称为图的线集(边的集合),记为E:E={v i v j}(v i,v j∈V).故一个图由其点集V和线集E所决定,假设用G表示图,那么记为G=G(V;E).含有n个点的图称为n阶图.在一个图中,如果某点v共连了k条线,那么说此点的“次数〞(或“度数〞)为k,记为deg v=k.如果一个p阶图的每两个顶点间都连且只连了1条线,那么称该图为p阶完全图,记为K p.假设对每条线确定一个方向(即确定了线的两个端点中一个为“起点〞,另一个为“终点〞.这时,线是点的“有序对〞),那么得到“有向图〞;对有向图的一个顶点v,deg v=k,假设v是其中n条边的起点,m条边的终点(m+n=k),那么称v的出次为n,入次为m.链:假设在一个图G=(V;E)中取n+1个顶点v1、v2、…、v n+1,每两个相邻的顶点v i、v i+1间连有一条边l i,那么边l1,l2,…,l n就称为从v1到v n+1的一条链.n称为链的长度.A类例题例1 ⑴证明任意的六人中一定有三个人互相认识或互不认识(约定甲认识乙就意味着乙认识甲).⑵ K6的边染成红蓝两色,求证:其中必有两个三角形,其三边同色.分析⑴以点表示人,连红、蓝两色的线分别表示“认识〞与“不认识〞,问题转化成图的问题.要会把题目的语言转译成图的语言:“三人互相认识〞就表示三点间都连红线,“三人互不认识〞就表示三点间都连蓝线.⑵考虑每个异色三角形的三个角,其中两个角是异色角,而同色三角形的三个角都是同色角.证明⑴用6个点v1,v2,…,v6表示这6个人,如果某两人相互认识,那么在表示此二人的点间连一条红线,否那么连一条蓝线.于是问题转化为证明此6点间一定连出了三边均为红色或蓝色的三角形.在点v1连出的5条线中,由抽屉原理知,必有某色线连有3条或3条以上.不妨设红线连了至少3条.设v1与v2、v3、v4连的红线.现考虑点v2、v3、v4连线的情况,如果此三点间有任两点连的红线,那么出现红色三角形(例如v2v3连红线,那么v1v2v3是红色三角形),如果这三点间都不连红线,那么出现蓝色三角形(v2v3v4是蓝色三角形).故证.⑵考虑K6共连了C26=15条线,共得到C36=20个三角形.设第i个顶点连了r i(0≤i≤5)条红线,5-r i条蓝线.由于r i(5-r i)≤6.所以,连出的异色角个数≤6×6=36个.由于每个异色的三角形有2个异色角,所以图中异色三角形个数≤18,故图中同色三角形个数≥20-18=2.说明题⑴是早期匈牙利的一个图论竞赛题.解这类“实际问题〞时,重要的是会用图的语言解释题意,把实际问题改写为图的问题.⑵用异色角来解相关问题是较好的方法.例2 由5人组成一个公司,其中任意三人总有2人彼此认识,也总有2人彼此不认识.证明:这五人可以围桌而坐,使每人两旁都是他认识的人.(1978年保加利亚数学竞赛) 证明用5个点表示这5个人,假设两人互相认识,那么在表示这2个人的点间连1条线.题目的条件即是:任三点间至少连1条线,但不能连3条线.首先,每点都至少连了2条线,假设点v 1只连出1条线,那么它至少与某三点(设为v 2、v 3、v 4)未连线,那么此3点间都要连线(假设v 2与v 3没有连线,那么v 1与v 2、v 3就都没有连线,与矛盾).出现了以v 2、v 3、v 4为顶点的三角形,矛盾.其次,假设某点连出了3条线,那么此三点间都不能连线,与矛盾. 故知:每点都恰连2条线.它不能连成三角形,也不能连成四边形,否那么余下的点无法连线,故只能如下图,证毕.说明 仔细体会上述两例的特点,明白什么时候应该用图来解相关的题:当涉及多个元素的某些相互关系时,就可能用图来解释.情景再现1.在例1中,把6个人改为5个人,结论是否一定成立?2.图G 有n 个顶点,n +1条边,证明:图G 至少有一个顶点的次数≥3.B 类例题例3 设竞赛图(每两个点都连了1条线的有向图)中,点A k 的出次与入次分别为w k 与e k (k =1,2,…,n ),证明 w 21+w 22+…+w 2n =e 21+e 22+…+e 2n. 分析 根据竞赛图的特点可知:⑴ 每点的出次与入次的和都等于n -1,⑵ 所有点的出次的和与入次的和相等.由此可以推出:所有点的出次和与入次和都等于12n (n -1).这是两个基本的性质.在要证的式子中把e k 用n -1-w k 代替.证明 对于每个点,出次与入次的和都是n -1,即w k +e k =n -1(k =1,2,…,n ), ①所有出次的和与所有入次的和相等,且都等于图中弧的条数:w 1+w 2+…+w n =e 1+e 2+…+e n =12n (n -1).②所以 e 21+e 22+…+e 2n=(n -1-w 1)2+(n -1-w 2)2+…+(n -1-w n )2=n (n -1)2+w 21+w 22+…+w 2n-2(w 1+w 2+…+w n )(n -1) =w 21+w 22+…+w 2n +n (n -1)2-2 12(n -1)(n -1) = w 21+w 22+…+w 2n. 说明 此题的证明方法与《奇偶分析》中的例6相似.例4 平面上给定7个点,用一些线段连接它们,每三个点中至少有两点相连,问至少要有多少条线段?试给出一个图.(1989蒙古数学竞赛)分析 首先找到连线条数的下界(即至少要连出多少条线),再寻找是否可能达到这个下界,可以分别枚举可能的连线方法,讨论每种方法的连线条数,得到最小的结果.解 7个点中共有三点组C 37=35个.每条线段共与其余5点组成5个三角形.故线段条数≥355=7条. 如果有一个点没有连线,那么其余6点两两都必须连线,要C 26=15条.如果有一点只连了一条线,其余5点必须两两连线,连线数>C 25=10条.设某点只连了2条线,如点A 只连了AB 、AC 这2条线,那么其余4点均未与A 连线,于是它们必须两两互连,应连C 24==6条.此时,取B 、C 两点及其余4点中的任一点,尚不满足条件,故BC 应连线,此时连了9条线,所得图形满足题目要求.假设每点都至少连出3条线,那么总度数≥21,即至少连了[212]+1=11条线. 所以,至少连9条线.例 5 九名数学家在一次国际会议上相遇,发现他们中的任三人中至少有两人能用同一种语言对话,如果每个数学家至多会用三种语言.证明:至少有三人可用同一种语言对话.(1978年美国数学竞赛)分析 9个人用9个点表示.证法1中,多种语言那么用多种颜色的线来表示,转译结论“三人可用同一种语言对话〞时,应注意:如果从一点向另两点连出了同色的两条线,表示另两人也能用相应的语言对话,从而就出现了同色三角形.所以,只要证明从一点一定引出了同色的线即可.而在证法2中,改设假设二人不能对话就连1条线(即不存在二人都会的语言).此时结论就应转译为“存在三点,两两都没有连线〞.证法1 用9个点表示这9个人,某二人如能用第r 种语言交谈,那么在表示此二人的点间连一条线,并涂上第r 种颜色,于是,此题即是证明,存在一个同色的三角形.首先,假设v 1与v 2、v 1与v 3间都连了第k 种颜色线,那么v 2与v 3间也要连第k 种颜色线.此时即出现同色的三角形.所以只要证明从其中某一点出发的线中必有两条线的颜色相同.反设从任一点出发的线中没有同色的线,由于每个人至多会用三种语言.即deg v i ≤3,于是v 1至少与5个点不邻接,设为v 2、…、v 6,同样,v 2至少与5个点不相邻接,于是v 3、…、v 6中至少有一点与v 2不相邻接.设为v 3,于是v 1、v 2、v 3不相邻接.与“任三人中都至少有两人能用同一种语言对话〞矛盾.故证.证法2 取9个点v 1,v 2,…,v 9表示9个人,如果某二人不能对话,那么在表示此二人的点间连一条线,于是在任何三点间,都有两个点不相邻,即不存在三角形.如果有人至少与4个点不连线,由于他最多只能讲三种语言,那么他必与其中某两人讲同一种语言.于是相应三人可以用同一种语言来对话.下面证明存在一点,其度不大于4.从而该点至少与4点不相邻.如果deg v 1≤4,那么v 1即为所求.假设deg v 1>4,那么至少deg v 1=5,即至少有5个点与之连线,设为v 2,…,v 6,由于这些点不能连出三角形,故v 2,…,v 6的任何两个之间都不能连线,从而v 2与v 3,…,v 6均无连线,于是deg v 2≤4.即可证得原题.说明 两点间连了1条线,那么说这两点相邻.此题的两种证明方法从两个方向出发,一种是两人可用同一种语言通话,就在相应两点间连一条边,证法2是反过来,两人不能通话时那么连一条边,都能应用图解决问题.例6 俱乐部里有14个人想打桥牌,过去每个人都与其中的5个人合作过,现在规定4个人中必须任两个人都没有合作过才准许在一起打1局桥牌,这样打了3局就无法再打下去了,如果这时又来了一人,他与原来的14个人都没有合作过,证明:一定可以再打1局.分析 打桥牌时,4人分成合作的两对,合作的两人坐在相对的位置打牌.于是每局桥牌,都有两对人合作.把题目的条件与结论都转述为图的语言,并找出结论的等价命题是:找到三个人互相都没有合作过,即存在3个点互不相邻.证明 用14个点表示这14个人,假设某两人合作过,那么在表示这两人的点间连一条线,于是,题目条件即:其中每个点都已连出了5条线,且在此14个点中,可以找出3组点(每组4个点),这三组点间,两两未连线,假设这3组点之间共连出6条线后,对于任意4点,都至少有两点连了线.(14个点间一共连了41条线),证明此时一定存在3个点,两两都没有连线(从而添入第15个点后,可与此3点合成4点,两两无连线).由于14个点中的每个点原来都与(14-1-5=)8个点不相邻.在又打3局连出了6条边以后,至多有12个点又连了线,所以至少还有2个点,每个点仍与8个点不相邻.设其中一点为v 1.与v 1不相邻的点集为S .下面证明:S 中必有一点v 2至少与7个点不相邻.反设不存在这样的点,那么此8点中,每个点都至多与6个点不相邻,故此8个点都至少连了(14-6-1=)7条边,于是此8点中的每个点又都新连了至少2条边,故又新连出了8×2÷2=8条边(除以2是因为每条边可能在两个点端点处被计算了2次).这与只连了6条边矛盾,所以存在S 中的一点v 2,至少与7个点不相邻.但8+7=15>14,必有一点v 3与v 1,v 2均未连线.此三点即为所求.链接 v 3存在是根据容斥原理:把这14个人的集合记为S ,与v 1相邻的点集记为A ,与v 2相邻的点集记为B ,那么A ∪B S .故card(A ∪B )≤card(S ).而 card(A ∪B )=card(A )+card(B )-card(A ∩B ),故 card(A )+card(B )-card(A ∩B )≤card(S ),现card(A )+card(B )=15,card(S )=14,于是card(A ∩B )>0.情景再现3.⑴右面的有向图由4个顶点及一些弧(有向线段)组成,指出各点的出次(引出的弧的条数)与入次(引入的弧的条数).⑵求出上题中所有各点的出次的和与入次的和,它们与弧的条数有什么关系?⑶证明:任一有向图中,出次的和与入次的和相等.4.在n (n ≥3)个点的竞赛图中,一定有两个点的出次相同吗?5.在集合S 的元素之间引入关系“→〞.⑴ 对于任意两个元素a ,b ∈S ,要么a →b ,要么b →a ,二者有且只有一个成立;⑵ 对任意三个元素a ,b ,c ,如果a →b ,b →c ,那么c →a .问集合S 中最多能有多少个元素?(1972年英国数学竞赛)6.证明:⑴ 如果竞赛图中各点的出次不等, 那么可将这些点排成一列,排在前面的点有弧到达排在后面的任一点(即排在前面的选手胜排在后面的所有选手).⑵ 如果点数n ≥3的竞赛图中有三角形回路,那么,图中必有两点的出次相等.C 类例题例7 某足球赛有16个城市参加,每市派出2个队,根据比赛规那么,每两队之间至多赛一场,同城两队之间不进行比赛.赛过一段时间后,发现除A 城甲队外,其他各队已赛过的场数各不相同.问A 城乙队已赛过几场?证明你的结论.分析 注意分析“各队赛过场次各不相同〞的含义,即能推知比赛场次的取值情况.再从比赛场次最多的队开始讨论,与之比赛的队是哪些队? 证明 用32个点表示这32个队,如果某两队比赛了一场,那么在表示这两个队的点间连一条线.否那么就不连线.由于,这些队比赛场次最多30场,最少0场,共有31种情况,现除A 城甲队外还有31个队,这31个队比赛场次互不相同,故这31个队比赛的场次恰好从0到30都有.就在表示每个队的点旁注上这队的比赛场次.考虑比赛场次为30的队,这个队除自己与同城的队外,与不同城的队都进行了比赛,于是,它只可能与比赛0场的队同城;再考虑比赛29场的队,这个队除与同城队及比赛0场、1场(只赛1场的队已经与比赛30场的队赛过1场,故不再与其它队比赛)的队不比赛外,与其余各队都比赛,故它与比赛1场的队同城;依次类推,知比赛k 场的队与比赛30-k 场的队同城,这样,把各城都配对后,只有比赛15场的队没有与其余的队同城,故比赛15场的队就是A 城乙队.即A 城乙队比赛了15场.说明 有些题的条件讨论起来头绪纷繁,如果利用图来讨论那么可以化繁为简.利用点与线的相邻与否来研究这一类题目需要一定的技巧,也需要相当的抽象概括能力与逻辑推理能力.请大家多做些练习.例8 n (n >3)名乒乓球选手单打假设干场后,任意两个选手已赛过的对手恰好都不完全相同,试证明:总可以从中去掉一名选手,而使在余下的选手中,任意两个选手已赛过的对手仍然都不完全相同.(1987年全国高中数学联赛)分析 此题的求证暗示要用反证法,设去掉任一个选手,都会有两个选手赛过的对手完全相同.于是这两人组成一个点对.这样就会得到n 个点对.每个点对连一条线,n 个点连出了n 条线,就可用图的性质得到圈,使问题得证.这是证法1的思路.每个选手的对手可以组成集合,研究对手集的性质,用最小数原理来证明,这是证法2的思路.证法1 把这些选手编为1至n 号,以n 个点表示这n 个人,各点也相应编为1至n 号. 反设去掉任何一个选手后,都有两个选手的已赛过的对手完全相同.于是,如果先去掉1号选手,那么有两个选手的已赛过的对手完全相同,设为第i 号与第j 号,在表示此二人的点间连一条线,并在线上注上“1号〞.这说明,此二人在去掉1号选手之前必是一人与1号赛过,另一人与1号没有赛过.而且不可能在去掉1号后有三人都相同,否那么,此三人与1号选手比赛的情况只有两种:赛过或没有赛过,如果去掉1号后,此三人的情况完全相同,那么去掉1号之前必有2人赛过的对手完全相同.(如果去掉1号后有不止一对选手的已赛过对手完全相同,那么只任取其中的一对连线,其余的对那么不连线.)同样,如果再依次去掉2号、3号,…,直至n 号,每去掉1个选手,都会在某两点之间连1条线.这样,就在n 个点间连了n 条线.且这些线上分别注了1至n 号,每条线注了1个号码,每个号码只注在1条线上.由于在10个点间连了10条线,故图中必存在一圈.现从圈上一点i 出发,经过点j 、k 、…最后回到点i .注意到点i 与点j 所代表的两个选手中1个是与1号比赛的,另一个是没有与1号比赛的,不妨设i 号没有与1号比赛过,j 号与1号比赛过.而j 与k 所连线上注的号码不是1,故j 与k 与1号比赛的情况相同,即k 号与1号比赛过,…,这样沿线走一圈后回到i ,就应该得出i 号与1号比赛过,矛盾.故证.证明2 用A 、B 、…表示选手,而用α(A )、α(B )A=E α(D)α(B)A 城乙队A 城表示A、B已赛过的对手集合.显然,假设A∈α(B),那么B∈α(A).设A是对手集中元素最多的的选手.假设命题不成立,那么存在两个选手B、C使去掉A后,B、C的对手集相同,由于α(B)≠α(C),故A必属于α(B)与α(C)之一.不妨设A∈α(B),于是,B∈α(A),C∉α(A)且α(C)=α(B)\{A}.(在α(B)中去掉它的一个元素A后的集合表示为α(B)\{A}) 同样对于选手C后,存在D、E,使去掉C后,D、E的对手集相同,即去掉C后,α(D)=α(E),又设C∈α(D)且C∉α(E),于是D∈α(C),E∉α(C).由于A∉α(C),D∈α(C),故D≠A:又D∈α(C),故D∈α(B),即B∈α(D) =α(E)∪{C},从而B∈α(E),C∉α(E),而去掉A后,B、C的对手集相同,从而E=A.于是α(A) =α(E) =α(D)\{C},即α(A)比α(D)少一个元素C,这与A是“对手集中元素最多的〞矛盾.故证.说明证法1是根据如下结论:如果n个点间连了n条线,那么必出现“圈〞:即从某一点出发,沿边前进,最后还能回到出发点.证法2用最小数原理对集合的元素进行讨论,较难理解,可对照图理解相应的结论.7.某个团体有1982个人,其中任意4人都至少有一人认识其他三个人,认识其他所有人的人数最少是多少?(1982年美国数学竞赛)8.⑴在一所房子里有10个人,其中任意3人中至少有2人互相认识,证明:其中有4人,他们任意2人都互相认识.(1980英国数学竞赛)⑵如果把⑴中的数10改为9,结论仍成立否?(1977年波兰数学竞赛)习题131.如果每个点的出次都是2,那么,一个点经过两条弧就可以到达的点至多有几个?经过一条弧或两条弧可以到达的点至多有几个?2.在竞赛图中必有一个点,从它到其它的顶点,只需经过一条弧或两条弧.3.一个有n个点的竞赛图,各点的出次为w1≥w2≥…≥w n.如果w1=n-1,w2=n-2,…,w k-1=n-(k-1),但w k≠n-k(1≤k≤n).证明:w k<n-k.4.⑴如果在点数n≥3的竞赛图中,有两个点的出次相等.证明,图中必有三角形回路(即有三个选手A、B、C,其中A胜B,B胜C,C又胜A).⑵在一个n人参加的循环赛中,每两人比赛一场,如果没有平局,参赛者赢的场数分别是w1,w2,…,w n.求证:出现三个参赛者A,B,C,满足A胜B,B胜C,C胜A的充分必要条件是w 21+w22+…+w2n<(n-1)n(2n-1)6.5.亚洲区足球小组赛,每组有4个队,进行循环赛,每两个队赛一场,胜者得3分,负者得0分,平局各得1分,赛完后,得分最高的前两名出线.如果几个队得分相同,那么便抽签决定这些队的名次,问一个队至少要得多少分,才能保证一定出线?6.条件同上题,问一个队如果出了线,它至少得了多少分?7.在8×8棋盘上填入1~64的所有整数,每格一数,每数只填一次,证明:总可以找到两个相邻的方格〔具有公共边的两个方格叫相邻〕,在此两个方格中填入的数的差不小于5?8.平面上有n条直线,把平面分成假设干个区域.证明:用两色就足以使相邻的区域都涂上不同的颜色.9.在某个国家,任意两个城市之间用以下交通工具之一进行联络:汽车,火车和飞机.没有一个城市拥有这三种交通工具,并且不存在这样三个城市,其中任意两个在联络时都用同一种交通工具.而且这个国家用了这三种工具.这个国家最多有多少个城市?(1981年保加利亚,美国数学竞赛)10.一个大三角形的三个顶点分别涂红、黑、兰三色,在三角形内部取假设干点也任意涂红、黑、兰三色之一,这些点间连有一 些线段,把大三角形分成假设干互相没有重叠部分的一些小三角形.求证:不论怎样涂,都有一个小三角形,其三个顶点涂的颜色全不同.11.证明:在2色K 6中一定存在两个同色三角形〔即同色K 3〕.12.某个国家有21个城市,由假设干个航空公司担负着这些城市之间的空运任务.每家公司都在5个城市之间设有直达航线(无需着陆,且两城市间允许有几家航空公司的航线),而每两个城市之间都至少有一条直达航线.问至少应有多少家航空公司?(1988年前苏联数学竞赛)本节“情景再现〞解答:1.解 如图的5个点即不存在同色三角形,故例2中把6个人改为5个人后,结论可能不再成立.2.证明 计算每个顶点引出的边的条数(次数),如果每个顶点的次数都≤2,那么统计得到的边数≤2n ,但每条边都被统计过2次,故应统计得到边数=2(n +1).矛盾.故至少有一个顶点,其次数≥3.3.解 ⑴点A :出次3,入次1;点B :出次1,入次1;点C :出次0,入次2;点D :出次1,入次1.⑵ 出次的和=3+1+0+1=5;入次的和=1+1+2+1=5.出次的和=入次的和.⑶证明 由于每条弧起点所是出次的点,终点都是入次的点,故出次和与入次和相等,都等于弧的条数.4.解 不一定,例如右面的一个图中,就没有两个点的出次相同.A 、B 、C 、D 四点的出次依次为3,2,1,0.一般的n 个点的竞赛图中,可以出现n 个点的出次分别为n -1,n -2,n -3,…,2,1,0这n 个值,于是不一定有两个点的出次相同.5.解 S 中有3个元素是可以的,a →b →c →a .满足要求.假设S 至少有4个元素,取其中4点,由⑴, S 中每两点间都要连出1条有向线段,4点间连出6条有向线段.每条有向线段都记一个出次,共有6个出次.因此至少有一个点至少有2个出次.设a →b ,a →c ,那么无论b →c 或是c →b 均引出矛盾.即S 的元素个数≤3.故S 最多有3个元素.6.证明 ⑴ 设共有n 个点,由于各点出次互不相等,故这n 个点的出次取得0,1,2,…,n -1这n -1个值中的每个值.把出次为0的点排在最后,其余各点均到达此点.出次为1的点必到达此点,由于出次为1的点只到达1个点,故出次为1的点只到达出次为0的点,把出次为1的点排在倒数第二位;再考虑出次为2的点,由于此点只到达2个点,故它只到达已排的两个点而不能到达其余的点,把出次为2的点排在倒数第3位;……,依此类推,把出次为k 的点排在倒数第k +1位,直到出次为n -1的点排在第1位.这就得到满足题目要求的排法.⑵ 反设图中所有各点的出次均互不相等,那么由上题,可把这些点排成一列,使前面的点到达后面的点.而后面的点不能到达前面的点,于是该图中没有回路,与此图有回路矛盾.故必有两点出次相等.7.解 先证明:任意4人中都有1人与其余n -1人认识.用n 个点表示这n 个人,假设两个人认识,那么在表示这两个人的点间连一条实线,否那么连一条虚线. 设任取4人v 1、v 2、v 3、v 4,其中v 1与v 2、v 3、v 4都认4'A B C D识,但此四人中无人与n -1人都认识.即每个点都有与之不相邻的点.设与v 1、v 2、v 3、v 4不相邻的点分别为v 1΄、v 2΄、v 3΄、v 4΄,显然v 1΄≠v 2,v 2΄≠v 1,假设v 1΄≠v 2΄,那么四点v 1、v 2、v 1΄、v 2΄不满足题意.于是v 1΄=v 2΄,同理v 1΄=v 3΄,于是得v 1΄=v 2΄=v 3΄,此时v 1、v 2、v 3、v 1΄这四点仍不满足条件.故证.又证 设图G 中度数小于n -1的点为v 1、v 2、…、v k ,记F ={v 1、v 2、…、v k },用实线表示相邻(认识),用虚线表示不相邻.假设k <4,那么命题正确(因为图中找不到4个人,他们中任1人都没有与其余n -1人认识).假设k ≥4,由于v k +1、v k +2、…、v n 的度数都=n -1,故与v 1不相邻的点都在F 中,设为v 2,此时假设还能找到v 3、v 4∈F ,且v 3与v 4不相邻.那么此四人不满足题目要求(图7⑴).假设在F 中除v 1、v 2外无不相邻的人,那么v 3、…、v k 均至少与v 1、v 2中某一人不相邻.那么如图⑵、⑶,亦与矛盾.故k ≥4不可能.故证.再考虑此题:把1982个人中的任意4人组成一组,该组中必有1人认识其余所有的人.去掉这个人,在余下的人中再任取4人,又成一组,又可找出一个认识其余所有人的人;…,这样一直做下去.直到余下3人为止,此3人可能与其余的人不全认识.故至少有1979人认识其余所有的人.8.解 ⑴用10个点表示这10个人,如果某2人互相认识,那么在表示这两人的点间连1条线.即任3点都至少连了1条线,要求证明存在一个K 4.设不存在K 4,即任意4点中总有2点没有连线,① 设某一点A 与4点都没有连线,那么由假设此4点中有2点未连线,那么此2点与A 共3点均未连线,与题设矛盾.故A 至多与3点未连线,即至少与6点连了线. ② 设A 与A 1、A 2、…,A 6连线,那么A 1,…,A 6中任意3点必有2点未连线,否那么存在K 4, ③ 设A 1与B i 、B j 、B k 都未连线,那么B i 、B j 、B k 间假设有两点未连线,那么出现3点,都未连线,与矛盾.故此三点间都连了线,于是此三点与A 成为K 4.④ 由③知A 1,…,A 6中任一点至多与其余5点中的2点未连线.即与其余5点中至少3点连了线.设A 1与A 2、A 3、A 4连了线.此时A 2、A 3、A 4间至少连了1条线,设A 2A 3连了线,那么A 、A 1、A 2、A 3成为K 4.由上证可知,不存在K 4的假设不成立.⑵ 假设有某点连出6条线,那么如上证.假设每点连线数<6,当每点连线数都=5时.此时9个点连线统计为45,为奇数.不可能.假设有某点连线数<5,即该点至少与4点未连线,那么如上①,矛盾.从而必有点连线数=6的点.“习题67〞解答:1.解 一个点经过两条弧就能到达的点至多有4个.经过一条弧或两条弧就能到达的点至多有6个.如图,每个点的出次都是2,点A 经过1条弧能到达B 、C ,A BCAA 4图7V2V 43()V 2V 42()1()4V 32V。
大家好!今天,我非常荣幸能够站在这里,与大家分享一些关于数学竞赛教育的想法和心得。
首先,请允许我代表所有数学竞赛优秀教师,向长期以来关心和支持数学竞赛教育的各位领导、老师表示衷心的感谢!数学竞赛作为一项重要的课外活动,在我国有着悠久的历史和丰富的内涵。
它不仅能够激发学生的学习兴趣,提高学生的数学素养,还能够培养学生的逻辑思维能力、创新能力和团队合作精神。
作为一名数学竞赛优秀教师,我们肩负着培养优秀竞赛选手的重任,下面我就从以下几个方面谈谈我的看法。
一、树立正确的教育理念作为一名数学竞赛教师,我们要树立正确的教育理念,充分认识到数学竞赛教育的重要性。
我们要把竞赛教育作为提高学生综合素质、培养创新人才的重要途径,把竞赛与课堂教学相结合,引导学生积极参与竞赛活动。
二、注重培养学生的兴趣兴趣是最好的老师。
我们要关注学生的兴趣爱好,引导学生发现数学的乐趣,激发他们的求知欲。
在教学中,我们要善于运用生动形象的语言、丰富的教学手段,让学生在轻松愉快的氛围中学习数学。
三、提高学生的思维能力数学竞赛注重培养学生的逻辑思维能力和创新精神。
我们要在教学中注重培养学生的抽象思维能力、空间想象能力和分析问题、解决问题的能力。
通过竞赛训练,让学生学会从不同角度思考问题,提高他们的创新能力。
四、强化团队合作意识数学竞赛往往需要团队合作完成。
我们要在教学中培养学生的团队合作意识,让他们学会沟通、协作,共同面对挑战。
在竞赛过程中,我们要鼓励学生相互学习、共同进步,形成良好的团队氛围。
五、关注学生的心理健康在数学竞赛过程中,学生可能会面临各种压力。
我们要关注学生的心理健康,及时发现并解决他们在竞赛中遇到的问题。
同时,我们要引导学生树立正确的价值观,让他们明白竞赛的真正意义。
六、加强与家长的沟通数学竞赛的成功离不开家长的支持。
我们要加强与家长的沟通,让他们了解数学竞赛的意义和目的,共同关注学生的成长。
在竞赛过程中,我们要鼓励家长为孩子提供必要的帮助,共同为孩子创造一个良好的成长环境。
第2讲 多项式理论多项式理论是代数学的重要组成部分,它在理论上和方法上对现代数学都有深刻的影响,与多项式有关的问题除了出现在函数、方程、不等式等代数领域中,还涉及到几何、数论等知识,是一个综合性的工具,也是数学竞赛中的热点问题.多项式的基本理论主要包括:余数定理与因式定理;多项式恒等条件;韦达定理;插值公式等.具体如下: 1.多项式恒等:(1) 多项式恒等条件:两个多项式相等当且仅当它们同次幂的系数相等.(2)带余除恒等式:多项式f (x )除以多项式g (x ),商式为q (x ),余式为r (x ),(则r (x )的次数小于g (x )的次数),则()()()()f x q x g x r x =+.特别是多项式f (x )除以x -a ,商式为g (x ),余数为r ,则f (x )=(x -a )g (x )+r .(3)多项式恒等定理:若有n +1个不同的x 值使n 次多项式f (x )与g (x )的值相同,则()()f x g x ≡.在数学竞赛中,经常用到先猜想后证明的思想:比如先找出一个n 次多项式f (x )符合题意,再验证f (x )与g (x )在n +1个不同的x 值处,均有f (x )=g (x ),则()()f x g x ≡. 2.余数定理与因式定理:(1)余数定理:多项式f (x )除以x -a 所得的余数等于f (a ).(2)因式定理:多项式f (x )有一个因式x -a 的充要条件是f (a )=0. (3)几个推论:①若f (x )为整系数多项式,则f (x )除以(x -a )所得的商也为整系数多项式,余数为整数. ②若f (x )为整系数多项式,a 、b 为不同整数,则|()().a b f a f b -- ③f (x )除以(0)px q p -≠所的的余数为()qf p.3.代数基本定理(1)代数基本定理:一个n 次多项式在复数范围内至少有一个根. (2)根的个数定理:一个n 次多项式在复数范围内有且仅有n 个根. 4.韦达定理与虚根成对定理(1)韦达定理:如果一元n 次多项式110()n n n n f x a x a x a --=+++的根是12,,,n x x x ,那么有112,n n na x x x a --+++=212131,n n n na x x x x x x a --+++=131231242,n n n x n na x x x x x x x x a ----+++= 012(1).nn n a x x x a =-简写成12121(1)r r rn rj j j j j j nna x x x a -≤≤≤≤=-∑. (2)复根成对定理:若实系数多项式f (x )有一个虚根(,,0),a bi ab R b α=+∈≠那么它的共轭复数a bi α=-也是f (x )的根,并且a 和α有相同重数.运用时要注意必须是实系数方程.5.拉格朗日(L agrange )插值公式设f (x )是一个次数不超过n 的多项式,数a 1,a 2,…,a n +1两两不等,则2311121311()()()()()()()()n n x a x a x a f x f a a a a a a a ++---=+---1312212321()()()()()()()n n x a x a x a f a a a a a a a ++------12111121()()()()()()()n n n n n n x a x a x a f a a a a a a a ++++---+---.简写成f (x )=1111111111()()()()()()()()()n i i i n i i i i i i i n f a x a x a x a x a a a a a a a a a +-++=-++--------∑.A 类例题例1 将关于x 的多项式2019321)(x xx x x x f +-+-+-= 表为关于y 的多项式=)(y g ,202019192210y a y a y a y a a +++++ 其中.4-=x y 则=+++2010a a a .(2005年全国联赛一试)分析 先利用等比数列的求和公式求出f (x )的表达式,然后用变量代换转化为关于y 的多项式,最后对它赋值即可.解 由题设知,)(x f 和式中的各项构成首项为1,公比为x -的等比数列,由等比数列的求和公式,得:.1111)()(2121++=----=x x x x x f 令,4+=y x 得,51)4()(21+++=y y y g 取,1=y有.615)1(2120210+==++++g a a a a说明 赋值法在解决多项式系数之和问题中经常被使用.例2 在一次数学课上,老师让同学们解一个五次方程,明明因为上课睡觉,没有将方程抄下,到下课时,由于黑板被擦去了大半,明明仅抄到如下残缺的方程54151200x x --=,若该方程的五个根恰构成等差数列,且公差||1d ≤,试帮明明解出该方程.分析 题目已知一个五次方程的五次项系数、四次项系数和常数项,可由韦达定理确定出方程5个根的和与积,再利用其为等差数列的特点,解方程.解 设该方程的5个根为2,,,,2a d a d a a d a d --++,则由韦达定理可得2215,{(2)()()(2)120.a d a d a a d a d a d a d a a d a d -+-+++++=--++= 由此得3,a =及22(94)(9)40.d d --= 令2d t =,得241445410,4t t t -+==或1.于是d =1d =±.由条件||1d ≤,可知1d =±. 因此这5个根为1,2,3,4,5.说明 韦达定理给出了如果一元n 次多项式方程的n 个根与方程的系数的之间关系,在解决方程问题时,有着极其广泛的应用.运用韦达定理时,特别要注意符号不能搞反.例3 若422()f x x px qx a =+++可被21x -整除,求f (a ).分析 由于422()f x x px qx a =+++可被21x -整除,故可以用待定系数法设出f (x )因式分解后的形式,利用多项式恒等条件确定p ,q ,a 的关系,最后求出f (a ).解 设42222()(1)().f x x px qx a x x mx n =+++=-++ 展开得422432(1).x px qx a x mx n x mx n +++=++---比较两边系数得22011,q m p n p a n a =-=⎧⎪=-∴=--⎨⎪=-⎩故4224222()(1)0f a a pa qa a a a a a =+++=-++=.说明 多项式恒等条件即两个多项式相等当且仅当它们同幂次得系数相等,往往是解决多()f x x =(-1)=f (1)=0.因此得由①4)a a pa =+1.设()n n nx a x a a xx 221021+++=++ ,求n a a a 242+++ 的值为( )(2005年浙江省数学竞赛)A .n3 B .23-nC .213-nD .213+n2.设235293212x a bx x x x -=+-+--是关于变量x 的一个恒等式,则ab 的值为 ( )A . -246B . -210C . 29D . 2103.四次多项式432182001984x x kx x -++-的四个根中有两个根的积为-32,求实数k .B 类例题例 4 已知123,,x x x 是多项式32()f x x ax bx c =+++的三个零点,试求一个以222123,,x x x 为零点的三次多项式g (x ).分析 由于原多项式和所求多项式的零点之间存在着平方关系,利用韦达定理就能构造出满足题意的多项式g (x ).解 设32()g x x mx nx p =+++,则由韦达定理知222123222222122323222123(), ,.m x x x n x x x x x x p x x x ⎧=-++⎪=++⎨⎪=-⎩故22123122323()2()2,m x x x x x x x x x b a =-+++++=-222222122323n x x x x x x =++22122323123123 ()2() 2,x x x x x x x x x x x x b ac =++-++=- 22222123123()p x x x x x x c =-=--=-.因此32222()(2)(2)g x x b a x b ac x c =+-+--.说明 利用韦达定理构造出满足题意的多项式g (x )是本题的关键.例5 设,,,是4个不同实数,()是实系数多项式,已知①(x )除以(x -a )的余数为a ;②p (x )除以(x -b )的余数为b ;③p (x )除以(x -c )的余数为c ;④p (x )除以(x -d )的余数为d .求多项式p (x ) 除以(x -a ) (x -b ) (x -c ) (x -d )的余数.(1990年意大利数学奥赛题)分析 首先利用余数定理将条件转化,再通过构造一个新函数F(x ),使得它能被(x -a ) (x -b ) (x -c ) (x -d )整除,再确定出F(x )与p (x )的关系.解法一 根据余数定理,p (x )除以(x -a )的余数为p (a ),故p (a )=a . 同理,p (b )=b ,p (c )=c ,p (d )=d .考察多项式F(x )= p (x )-x ,则有F(a )=0,F(b )=0,F(c )=0,F(d )=0.由因式定理可知,F(x )含有因式(x -a ) (x -b ) (x -c ) (x -d ),而p (x ) = F(x )+x ,故多项式p (x ) 除以(x -a ) (x -b ) (x -c ) (x -d )的余数为x .解法二 利用待定系数法 设p (x )= (x -a ) (x -b ) (x -c ) (x -d )q (x )+r (x ),其中32().r x mx nx lx t =+++由题设得p (a )=a ,p (b )=b ,p (c )=c ,p (d )=d 知a ,b ,c ,d 是320mx nx lx t +++=的4个互不相同的根,但该方程是个三次方程,故m =n =l -1=t =0,即m =n =t =0,l =1.故所求余式为x .说明 灵活运用因式定理和余数定理,并巧妙构造多项式函数是解决本题的关键,而这些都可以通过仔细观察题目条件的特点后能自然得出.本题还可以用待定系数法解决,一题多解,有利于拓宽视野,把问题看的更加透彻. ()n x a -1210012100,,;,,,a b b b 为互不相同的两组实数,将它们按如下法则填入100×100的方格表内,即在位于第i 行第j 列处的方格处填入.i j a b +现知任何一列数的乘积为1,求证:任一行数的积为-1.分析 注意到100×100的方格表内,位于第i 行第j 列处的方格处填入的数为(,1,2,,100)i j a b i j +=,且任何一列的乘积为1,故可以构造两个恒等的多项式解之.解 考察多项式12100()()()() 1.p x x a x a x a =+++-由于任何一列的乘积为1,故知12100,,,b b b 是p (x )的根, 故有12100()()()().p x x b x b x b =---由多项式恒等可知1210012100()()()1()()().x a x a x a x b x b x b +++-=--- 取i x a =-,代入上式可得:100121001(1)()()()(1,2,100).i i i a b a b a b i -=-+++=即12100()()() 1.i i i a b a b a b +++=-故知任何一行数的乘积为-1.说明 本题的关键是巧妙地构造两个恒等的多项式,是一利用多项式恒等定理解决问题的11)())(n n x a a a ++--12)())(n n x a a a ++--1)())(n n x a a a a +--11111111)()()()())()()()i i n i i i i i n x a x a x a x a a a a a a a a -++-++--------.存在性:令11111111()()()()().()()()()i i n i i i i i i i n x a x a x a x a l x a a a a a a a a -++-++----=----的特点,可知()1,()0().i i i j l a l a j i ==≠故()()().i i i i f a l a f a = 故该多项式满足题目条件.(x )是一个满足题意的n 次多项式,则,1).n +则由多项式恒等定理可知()().f x g x ≡ 故惟一性得证.拉格朗日插值公式在数学的许多领域都有着广泛的应用,拉格朗日插值多项式的构造是十分巧妙,值得好好领会和应用,以下一例就是拉格朗日插值公式的简单应用.例7 已知函数2()f x ax c =-满足4(1)1,1(2)5,f f -≤≤--≤≤则f (3)的取值范围是 ( )A .7(3)26f ≤≤B .4(3)15f -≤≤C .1(3)20f -≤≤D .2825(3)33f -≤≤分析 由于所给函数为偶函数,故有(1)(1)f f -=,再运用拉格朗日插值公式将f (3)表示为关于f (-1)、f (1)和f (2)的关系式即可.解 选C .由拉格朗日插值公式,得从而58(3)(1)(2).f f f =-+故1(3)20f -≤≤.本题还可以利用不等式知识来处理:(2)(1),(1),3(2)4,(2)4(1),3f f a f a c f a c f f c -⎧=⎪=-⎧⎪∴⎨⎨=--⎩⎪=⎪⎩(2)4(1)8(2)5(1)(3)93(2)3(1).33f f f f f a c f f --∴=-=--= 又4(1)1,1(2)5f f -≤≤--≤≤,故由不等式的性质知1(3)20.f -≤≤ 例8 是否存在二元多项式(,)p x y ,满足条件 (1)对任意的,,(,)0;x y p x y >(2)对于任意的c >0,存在x ,y ,使得(,).p x y c =分析 本题是关于二元多项式问题,关键是消去一元转化成一元多项式问题. 解 存在.取22(,)(1)21,p x y y x xy =+++将y 看成常数,则关于x 的二次三项式的判别式40,∆=-<∴对所有的x ,y 均有(,)0.p x y >又将p (x ,y )看成x 的函数(y 固定),则p (x ,y )的值域为21[,).1y +∞+因为当21,01y y →∞→+时. 所以对于任意的c >0,存在0201,.1y c y >+使得 从而存在000,(,).x p x y c =使得情景再现4.若3x px q ++可被21x mx +-整除,则m ,p ,q 应符合的条件是( )A .0,1q m p ===-B .1,0m p q +=-=C .2,1q m m p =+=-D .,|m q p m =±5.求次数小于3的多项式f (x ),使f (1)=1,f (-1)=3,f (2)=3. 6.求所有的值a ,使多项式326x x ax a -++的根123,,x x x 满足333123(3)(3)(3)0.x x x -+-+-=(奥地利数学竞赛题)C 类例题例9 已知数列)0(,,,0210≠a a a a 满足),,3,2,1(211 ==++-i a a a i i i 求证:对于任何自然数n ,01101()(1)(1)n n n n p x a C x a C x x -=-+-+2222(1)n n a C x x --+111(1)n n nn n n n a C x x a C x ---+-+是x 的一次多项式或零次多项式.(1986年全国联赛一试题)分析 由112i i i a a a -++=知{}n a 是等差数列,则),,2,1(01 =+=+=-i id a d a a i i 从而可将)(x p 表示成d a 和0的表达式,再化简即可.解 因为),3,2,1(211 ==++-i a a a i i i ,所以数列}{n a 为等差数列,设其公差为d 有),3,2,1(0 =+=i id a a i ,从而011222000()(1)()(1)(2)(1)n n n n n n P x a C x a d C x x a d C x x --=-++-++-0()n nn a nd C x+++011112220[(1)(1)][1(1)2(1)n n n n n n n n n n n a C x C x x C x d C x x C x x ---=-+-+++⋅-+- ],n nn nC x ++由二项定理,知,1])1[()1()1()1(222110=+-=++-+-+---n nn n n n n n n n x x x C x x C x x C x C 又因为,)]!1()1[()!1()!1()!(!!11--=-----⋅=-⋅=k n k n nC k n k n n k n k n k kC 从而nn n n n n n x nC x x C x x C ++-+--- 22211)1(2)1(所以.)(0ndx a x P +=当0d ≠式,P (x )为x 的一次多项式,当d =0时,P (x )为零次多项式. 例10 求一切实数p ,使得三次方程55171116632x p x p x p -++-+=()()的三个根均为自然数.(1995年全国联赛二试题)分析 容易看出x =1是原三次方程的一个自然数根,原方程可用综合除法降次为2556610.x px p -+-=① 当且仅当二次方程①的两个根均为自然数时,原三次方程的三个根才均为自然数.设方程①的两个正整数根为u ,v ,则由韦达定理得,1(661).5u v p uv p +=⎧⎪⎨=-⎪⎩从而p 为正整数.因此本题相当于解不定方程,5661,u v p uv p +=⎧⎨=-⎩消去p 得66(u +v )=5uv +1,由该不定方程解出u ,v ,再求出p =u +v 即可.解 容易看出x =1是原三次方程的一个自然数根,由综合除法,原三次方程可降次为二次方程2556610.x px p -+-=①当且仅当二次方程①的两个根均为自然数时,原三次方程的三个根才均为自然数.设方程①的两个正整数根为,(0),u v u v <≤由韦达定理则得,1(661).5u v p uv p +=⎧⎪⎨=-⎪⎩故p 为正整数.消去p 得66(u +v )=5uv +1②,由②得v (5u -66)=66u -1>0,从而5v -66>0.对方程②两边乘5后,移项、分解得(5u -66)(5v -66)=19×229,其中19,229均为素数,于是56619,566229;u v -=⎧⎨-=⎩或5661,5664351;u v -=⎧⎨-=⎩(无解) 从而得到不定方程②的唯一自然数解,u =17,v =59,这样p =u +v =17+59=76. 所以当且仅当p =76时方程①有三个自然数根1,17,59.说明 由于我们对三次方程的求根公式(卡当公式)不很熟悉,因此在遇到此类问题时,我们一般先用观察法找到它的一个根,通常是整数根,再将原三次方程降次为二次方程,降次的一般用综合除法.然后再设法处理我们熟悉的二次函数问题.7.求证:2004log x 不能表示成()()f xg x 的形式,其中(),()f x g x 为实系数多项式,且(),()f x g x 互质.习题1.已知多项式2012n n a a x a x a x ++++是195819571959(2)x x ++的展开式,则5124032222a a a a a a --+--+等于( )A .1B .-1C .0D . 22.满足条件22()()(())f x f x f f x ==的二次函数f (x )有( ) A .0个 B .1个 C .2个 D .无穷多个3.设一个二次三项式的完全平方展开式是43267,x x x ax b -+++那么这个二次三项式是________________________.4.已知实数,αβ均不为0,多项式32()f x x x x ααββ=-++的三个根为123,,x x x ,则123123111()()x x x x x x ++++= . (德国高中数学竞赛题)5.若f (x )、g (x )为两个实系数多项式,并且33()()f x xg x +可被21x x ++整除,则(1)f = ,(1)g = .6.当310a a --=时,2a +是某个整系数多项式的根,求满足上述条件的次数最低的首项系数为1的多项式.(1997年日本数学竞赛题)7.设432(),f x x ax bx cx d =++++若(1)10,(2)20,(3)30,f f f ===则(10)f +(6)f -的值为 ( )A .8014B .40C .160D .82708.以有理数a ,b ,c 为根的三次多项式32()f x x ax bx c =+++有( )A .1个B .2个C .3个D .无穷多个9.多项式742()1f x x x x =+++在实数范围内有多少个零点? 10.设(),(),()()p x q x r x s x 及都是多项式,且 求证:x -1是(),(),(),()p x q x r x s x 的公因式.11.设p (x )是2n 次多项式,满足(0)(2)(2)0,p p p n ====12.任给实多项式:()2212111nn n f x xa x a x --=++++.其中n 为正整数,系数1221,,,n a a a -用下面方法来确定:甲,乙两人,从甲开始,依次轮流给出一个系数的值,最后一个系数由甲给出后,如果所得的多项式()f x 没有实根,则甲胜;若所得的多项式()f x 有实根,则乙胜.试问不管甲如何选取系数,乙必胜吗?(2004年江苏省数学夏令营一级教练员测试题十)本节“情景再现”解答:1.C2.A 解 将该恒等式变形成多项式恒等,则有3529()(2),x a b x a b -=+-+比较两边系数得35,229a b a b +=+=.解得6,41a b =-=.因此246ab =-.3.86 解 设多项式432182001984x x kx x -++-的四个根为1234,,,.x x x x 则由韦达定理,得设123432,62,x x x x =-=则故123462()32()200.x x x x +-+=-又121234344,18,14.x x x x x x x x +=⎧+++=∴⎨+=⎩故12341234()()86.k x x x x x x x x =++++=4.C 解3232(1)()()(1),x px q x mx x q x m q x qm x q ++=+--=+--++ 5.21x x -+ 解 由拉格朗日插值公式得2(1)(2)3(1)(2)3(1)(1)()1(11)(12)(11)(12)(21)(21)x x x x x x f x x x +----+=++=-++------+.6.-97.解 (反证法)假设有2004()log ,()f x x g x =且(),()f x g x 互质.22200420042()2log log ()f x x x g x ==,又20042()2log ()f x x g x =,又222((),())1,()|2().f x g x f x f x =∴但当f (x )的次数1≥时,恒有2()f x 的次数大于2()f x 的次数,()f x ∴为常数.同理g (x )也为常数,故2004log x 为常数,矛盾.故原命题得证.本节“习题”解答:1.A 2.B 3.23 1.x x -- 4.-1 5.0, 06.6432()821310 1.f x x x x x x =--+--解记x a =则a x =代入方程,得3((10,x x ---=即3251)0.x x -+-=32511).x x x ∴+-=+两边平方,得624342*********(961).x x x x x x x +++--=++故所求的多项式为6432()821310 1.f x x x x x x =--+--7. A 解 设()()10g x f x x =-,则(1)0,(2)0,(3)0g g g ===,故()(1)(2)(3)(),g x x x x x r =----于是8. C 解 由韦达定理知 ,,a b c a ab bc ca b abc c ++=-++==-.如果a =0(或b =0)得c =0,b =0.如果0,0,0,1, 2.a b c a b ≠≠===-但得如果a ,b ,c 均不为零,得1,1a b c ===-.故满足题设的多项式为332,2,x x x x +-321x x x +--. 9.1 解 显然,x =0不是f (x )=0的根.令1y x =,则 又753()1f y y y y =+++单调递增,且当y →-∞时,();,()f y y f y →-∞→+∞→+∞,因此,恰有一个根.10.解 设432() 1.f x x x x x =++++取1的5次虚单位根234,,,,()0(1,2,3,4).k f k εεεεε==则所以2()(1)(1)(1)0(1,2,3,4).k k r q p k εε++==即方程2(1)(1)(1)04(1,2,3,4).k x r xq p k ε++==有个不同根故(1)(1)(1)0.r q p ===再把x =1代入所设等式,得s (1)=0.命题得证.11.解 令1()()1,()(1),0,1,2,,2.k f x p x f k k n +=-=-=则又 其中(0,1,2,,2).k x k k n ==将x =2n +1代入上式,得这表明p (x )是四次多项式,由(0)(2)(4)0,(1)(3)2,p p p p p =====得12.解 乙有必胜策略.证明如下.在选取过程中,不管甲取了那个系数,接下去,乙必取余下的一个偶数次项的系数,如果已经没有偶数次项的系数,乙才取奇数次项的系数.因此当最后留下两个系数,必由乙先取.注意到乙的选系数方式以及偶项系数的总数,恰好比偶项系数的总数少一个,所以最后两个系数只能是两个奇数项系数或者一个奇数项系数,一个偶数项系数,它们可设为2121t t a x ++,s s a x .这里21s t ≠+,s 可奇,也可偶.于是()()2121s t s t f x g x a x a x ++=++.其中()g x 是已经确定的多项式.接下来由乙来取s a ,我们希望不管最后甲取的21t a +的值是什么,都不影响()f x 必有实根,为此,我们给出如何选取s a 的值的方法,并证明最终所得的多项式()f x 有实根.任取2m <-,则()()2111s t f g a a +=++,()()2121s t s t f m g m a m a m ++=++.为了不管21t a +如何选取,这意味着从上两式中消去21t m +,于是有:()()()21211t t s s m g g m a m m ++=-+-.注意到等式右边和21t a +无关,所以()()211t mf f m +-和21t a +无关,又由2m <-,所以21t s m m +≠.令 ()()21211t s t sg m m g a m m++-=-,则有 ()()211t m f f m +=. 我们来证明()f x 必有实根.显然()0f ±∞>.如果()10f ≤,则在[)1,+∞必有实根.如果()10f >,由于2m <-,所以210t m +<,因此()0f m <,这证明了(),m +∞中必有实根.总之,()f x 必有实根.这证明了乙必胜.。
极限和导数相关知识1.导数的有关概念。
(1)定义:函数y=f(x)的导数f /(x),就是当0→∆x 时,函数的增量y ∆与自变量的增量x ∆的比xy ∆∆的极限,即xx f x x f x y x f x x ∆-∆+=∆∆=→∆→∆)()(limlim)(00/。
(2)实际背景:瞬时速度,加速度,角速度,电流等。
(3)几何意义:函数y=f(x)在点x 0处的导数的几何意义,就是曲线y=f(x)在点P(x 0,f(x 0))处的切线的斜率。
2. 求导的方法: (1)常用的导数公式:C /=0(C 为常数); (x m )/=mx m-1(m ∈Q); (sinx)/=cosx; (cosx)/= -sinx ; (e x )/=e x ; (a x )/=a xlnax x 1)(ln /=; e x x a a log 1)(log /=.(2)两个函数的四则运算的导数:(3)复合函数的导数:x u xu y y ///⋅=3.导数的运用: (1)判断函数的单调性。
当函数y=f(x)在某个区域内可导时,如果f /(x)>0,则f(x)为增函数;如果f /(x)<0,则f(x)为减函数。
(2)极大值和极小值。
设函数f(x)在点x 0附近有定义,如果对x 0附近所有的点,都有f(x)<f(x 0)(或f(x)>f(x 0)),我们就说f(x 0)是函数f(x)的一个极大值(或极小值)。
(3)函数f(x)在[a,b]上的最大值和最小值的求法。
A 类例题例1求函数的导数(2)解 y =μ3,μ=ax -b sin 2ωx ,μ=av -by v =x ,y =sin γ γ=ωxy ′=(μ3)′=3μ2·μ′=3μ2(av -by )′=3μ2(av ′-by ′)=3μ2(av ′-by ′γ′)=3(ax -b sin 2ωx )2(a -b ωsin2ωx )(3)解法一 设y =f (μ),μ=v ,v =x 2+1,则y ′x =y ′μμ′v ·v ′x =f ′(μ)·21v -21·2x=f ′(12+x )·21112+x ·2x=),1(122+'+x f x x解法二 y ′=[f (12+x )]′=f ′(12+x )·(12+x )′=f ′(12+x )·21(x 2+1)21-·(x 2+1)′=f ′(12+x )·21(x 2+1) 21-·2x=12+x x f ′(12+x )说明 本题3个小题分别涉及了导数的四则运算法则,复合函数求导的方法,以及抽象函数求导的思想方法 这是导数中比较典型的求导类型 解答本题的关键点是要分析函数的结构和特征,挖掘量的隐含条件,将问题转化为基本函数的导数本题难点在求导过程中符号判断不清,复合函数的结构分解为基本函数出差错 例2.观察1)(-='n nnxx ,x x cos )(sin =',x x sin )(cos -=',是否可判断,可导的奇函数的导函数是偶函数,可导的偶函数的导函数是奇函数。
第68讲 图论问题(二)本讲主要内容:本讲将继续研究用图来解决问题的方法.偶图 取图G =(V ,E ),如果V =X ∪Y ,X ∩Y = ,其中X ={x 1,x 2,…,x n },Y ={y 1,y 2,…,y m },且x i 与x j (1≤i <j ≤n ),y s 与y t (1≤s <t ≤m )均互不相邻,那么称G 为偶图.色数:将图G 的顶点涂上颜色,如果至少要k 种颜色才能使任意两个相邻的顶点颜色不同,那么称G 的色数为k .显然,偶图的色数≤2.即偶图色数不超过2.A 类例题例1 在空间中给定2n 个不同的点A 1,A 2,…,A 2n ,n >1,其中任意三点不共线.设M 是n 2+1条以给定的点为端点的线段的集合.⑴证明:存在一个三角形,其顶点为给定的点,其边都属于M .⑵证明:假设集合M 的元素不超过n 2个,那么这样的三角形可能不存在.(1973年奥地利数学竞赛)分析 可以从简单的情况开始试验,发现规律再证明.从K 4(4阶完全图,见67讲)共有多少条线及多少个三角形、擦去1条线去掉几个三角形入手得出结论,对于K 5、K 6也能用此法得到结论,但对于p >6,K p 难用此法,如何过渡到一般情况?可以用数学归纳法.证明:n =2时,在4个点间连了5条线,由于4阶完全图在4个点间共可连出6条线,这6条线连出了4个以此4点中的某3点为顶点的三角形.而每条线的两个端点与(除这条线的两个端点外的)另两个顶点可以连出共2个三角形,故去掉任何一条边都使连出三角形数减少2,于是在4个点间连5条线必连出了以此4点中的3点为顶点的三角形.设n =k 时,2k 个点间连有k 2+1条线时,必有三角形出现.那么当n =k +1时,2(k +1)个点间连了(k +1)2+1条线.此时,任取两个相邻的顶点v 1,v 2,如果在其余的顶点中有某个顶点与v 1,v 2都连了线,例如v 3与v 1,v 2都连了线(图4(1)),那么出现了三角形.如果其余所有的点与此二点都至多连出1条线(图4(2)),那么去掉点v 1,v 2及与这两点相邻的边,此时,余下2k 个点,至多去掉了2k +1条边,余下至少(k +1)2+1-(2k +1)=k 2+1条边,由归纳假设知,其中必有三角形.综上可知,命题成立.说明 假设2n 个点间连了n 2条边,可以把这2n 个点分成两组,每组n 个点,规定同组的点间都不连线,不同组的任何两点都连1条线,这样得到了一个完全偶图K n ,n ,此时共计连了n 2条线,但任取三点,必有两点在同一组,它们之间没有连线,于是不出现三角形.例2 一个舞会有n (n ≥2)个男生与n 个女生参加,每个男生都与一些女生(不是全部)跳过舞,而每个女生都至少与1名男生跳过舞,证明,存在男生b 1,b 2与女生g 1,g 2,其中b 1与g 1跳过舞,b 2与g 2跳过舞.但b 1与g 2没有跳过舞,b 2与g 1没有跳过舞.分析 就是要给出一种选择方法,按此方法操作,即可选出满足要求的两个男生与两个女生.可以用极端原理来证明这样的存在性命题.证明 取所有男生中与女生跳舞人数最多的一个,设是b 1.b 1至少与1名女生没有跳过舞,取没有与b 1跳过舞的一名女生为g 2,g 2至少与1名男生跳过舞,设为b 2,显然b 1不是b 2,现在考虑所有没有与b 2跳过舞的女生,她们不能都没有与b 1跳过舞,(否那么没有与b 1(2)(1)图412122k (3)(1)跳舞的女生人数就比没有与b 2跳舞的人数多,b 1就不是与女生跳舞人数最多者).即至少有1个女生没有跟b 2跳过舞但跟b 1跳过舞.这个女生即为g 1.说明 这里就得到了一个偶图{b 1,b 2}∪{g 1,g 2}.(图中,括号内的数字表示证明中出现的先后顺序).极端原理常用于证明存在性命题.情景再现1.求证:顶点多于1的树是偶图.2.证明 偶图的色数≤2,反之,色数≤2的图是偶图.B 类例题例3 某镇有居民1000人,每人每天把昨天听到的消息告诉自己认识的人,任何消息只要镇上有人知道,都会经过这样的方式逐渐地为全镇的人所知道.证明可以选出90名代表,使得同时向他们报告一个消息,经过10天,这一消息就为全镇的人知道.分析 就是要给出一个把1000个点的连通图分成90个子图的方法,使每个点都在其中一个子图中,且每个子图的最长的链的长度不超过10.这样,只要把每个子图的最长链的一个端点选为“代表〞,就能完成这个任务.证明 用1000个点代表1000个居民,两名居民相识,那么在两点之间连一线,如此可得一图,依条件,这个图是连通图.假设图中有圈,那么我们去掉圈中的一边使圈被破坏而不影响图的连通性,经过有限次这种手续,可得树T 1000.在T 1000中取一条主干v 1v 2…v n ,取v 11作为1个代表,把边v 11v 12去掉,那么此图分成了2个连通分支,在含有v 1的一棵树中,每点到v 11的路的长度都不超过10,否那么v 1v 2…v n 在T 1000中不是主干,故v 11知道的消息在10天内可以传遍它所在分支的点集所代表的居民;余下另一分支再取其主干,又按此法得出第二个代表v 22,依此类推,那么T 1000分割成假设干棵树:同样,在含v 22,v 33,…的树中,v 22,v 33,…知道的消息在10天内都能传遍树的点集所代表的居民;由于1000=11×89+21,且每一个小分支树可能还有分支,从而其顶点数可能超过11,所以这样分法,至多分出89棵树并余下一个至多有21个点的树,该树的链长≤20,取此链的中心v ,那么该链上每个点到v 的距离都≤10.现在取v 11,v 22,v 33,…为代表,最后一棵树取其中心v 为第90名代表,只要将消息告诉这些代表,那么在10天之后,每个分支树的点集所表示的居民全都知道这个消息,问题已获解决.说明 注意每次在最长链上截去一段后,余下的链的主干不一定就是原来主干的截剩部分,所以每次都要重新确定主干.例4 一个国家的国王打算建n 个城市且修(n -1)条道路,使每条道路连接两个城市而不经过其他城市.而每两个城市都可以互相到达,其间的最短距离恰是1,2,…,C 2n =12n (n -1)这些数,问在以下情况下,国王的打算能否实现:(1)n =6;(2)n =1998.分析 就是要画一个树,使任两个顶点的距离都不能相同.对于顶点数少的情况估计是可能存在的,而要得到n =6图可以用构造法.对于n =1998,估计不会存在,所以可以用反证法证明.为了得到n =6的情形,长度为1与2的线段是要取的,否那么得不到1,2,这两条线段连结可以得到长度3,为得到距离为15、14、…的线段,可以取某两个城市间距离为8(15的一半),此时8+7=15,8+6=14,8+5=13可以通过增加一条长度为5的线段如图得到,再增加一条长为4的线即可得到全部的153个数.解 (1) n =6时,国王的打算可以实现,城市和道路的分布可依据图所示.⑵ n =1998时,国王的打算不能实现,因为符合要求的道路网存在的必要条件是:n 或(n -2)是完全平方数,证明如下:用点表示城市,用线表示连接城市的道路,得到一个图G .由题设,知G 是n 阶连通图,又其线的数目恰为(n -1),故G 是n 阶树,因而G 的任两点之间只存在唯一的通道.把G 的顶点二染色:任取一个点A ,对于图中任一点,假设它沿唯一的通道到A 的距离是一个偶数,那么把此点染红(A 也应染红,因A 到A 的距离为0,0是偶数),否那么染蓝.设红点的数目为x ,那么蓝点的数目为y =n -x .考虑距离为奇数的点对,易知:两点之间的距离为奇数,当且仅当这两个点一红一蓝.由一个红点和一个蓝点组成的点对有xy 个.又在1,2,…,12n (n -1)中,当12n (n -1)为偶数时,其中的奇数有14n (n -1)个;当12n (n -1)为奇数时,奇数有14[n (n -1)+2]个.于是,如果国王的打算可以实现,那么必须满足 xy =14n (n -1) ① 或 xy =14[n (n -1)+2] ②. 此时,对于①,有4x (n -x )=n (n -1),即 4x 2-4nx +n 2-n =0,解得 x =n ±n2,相应的y =n ∓n2.同样,对于②: 有x =n ±n -22,y =n ∓n -22. 故只有n 或(n -2)是完全平方数时,国王的愿望才可能实现.但1998和1998-2=1996都不是完全平方数,故当n =1998时,国王的打算不可能实现.说明 我们只证明了这个条件是必要条件,没有证明这个条件是充分的.对于n =6,有6-2=4是完全平方数,有可能存在满足要求的图,再通过构造出满足要求的图,才能确定解存在.例5证明:任意的9个人中,必有3个人互相认识或4个人互相不认识.分析 即证明,在任意的K 9中,把边涂成红或蓝两种颜色,那么必存在红色K 3或蓝色的K 4.或在一个有9个顶点的图G 中,必存在K 3,或在其补图中,存在K 4.证明⑴ 如果存在一个顶点,从这点出发的8条线中,有至少4条为红色,设从v 1引出的4条线为红色,引到v 2,v 3,v 4,v 5.假设此4点中的某2点间连了红色线,那么存在红色K 3,假设此4点间均连蓝线,那么存在蓝色K 4.⑵ 如果从任一点出发的8条线中,红色线都少于4条.于是从每点出发的蓝色线都至少5条.但由于任何图中的奇顶点个数为偶数,故不可能这9个顶点都引出5条蓝线.于是至少有一个顶点引出的蓝线≥6条,例如从v 1到v 2,v 3,…,v 7都引蓝线,那么在v 2,v 3,…,v 7这6个点的图中,必存在红色三角形或蓝色三角形,于是G 中必有红色K 3,或蓝色K 4.链接 拉姆赛(Ramsey )问题此题实际上说的是:在有n 个顶点的图G 中,有一个K 3,或在其补图-G 中(在K 9中去掉G的所有边后余下的图即G 的补图)有一个K 4,二者必有一成立.n =9是保证这一个结论成立的n 的最小值.一般的,在一个有t 个顶点的图中存在K m ,或在其补图中存在K n ,t 的最小值是多少?这就是拉姆赛问题.记满足上述要求的t 的最小值为r (m ,n ).那么有 r (m ,n )=r (n ,m ),r (1,n )=r (m ,1)=1,r (2,n )=n ,r (m ,2)=m .并可证:定理一 在m ≥2,n ≥2时,r (m ,n )≤r (m ,n -1)+r (m -1,n ).现在已经求出的r (m ,n )有:r (3,3)=6,r (3,4)=9,r (3,5)=14,r (3,6)=18,r (3,7)=23;r (4,4)=18.定理二 设完全图K N 的边涂了n 种颜色,那么在N 充分大时,K N 中必有一个同色三角形.设r n 是使K N 中有同色三角形存在在N 的最小值,那么⑴ r 1=3,r 2=6,r 3=17;⑵ r n ≤n (r n -1-1)+2;⑶ r n ≤1+1+n +n (n -1)+…+n !2!+n !1!+n !. 上述两个定理都是拉姆赛定理的特例,更一般的结论请参阅单墫教授的有关图论的著作.例如《趣味的图论问题》等情景再现3.平面α上有n 条直线,把α分成假设干区域,证明:可以用两种颜色就可使相邻的区域都涂上不同的颜色.4.在8×8的棋盘上填入1~64的所有整数,每格填一个数,每个数填一次.证明:总能找到两个相邻的格子(有公共边的两个方格就是相邻的方格),这两个方格中填的数相差不小于5.5.证明:任意14人中,必有3人互相认识或有5人互相不认识. C 类例题例6 1990个人分成n 组,满足(a ) 每个组中没有人认识同组的所有的人;(b ) 每个组中,任意三人中至少有两人互不认识;(c ) 每个组中两个互不认识的人,必可在同组中恰好找到一个他们都认识的人.证明:在每一组中,各人在该组中认识的人数都相同.并求分组个数n 的最大值.(1990亚洲与太平洋地区数学竞赛)分析 条件都是针对某一组的,所以证明应在某个组内进行,由于两点或连线,或未连线,故可以分两点未连线及两点已连线的情况证明.要求组数最多,应使每组的人数最少.故求应每组人数的最小值.解 取其中一组M ,设|M |=m ,用m 个点表示组M 中的人,假设两人认识,那么在相应点间连一条线.于是题设条件可写为:(a ) M 中任何一点,与M 中其余的点没有都连线,即设x ∈M ,用d (x )表示x 在M 中的次数.那么d (x )≤m -1.(b ) M 中没有连出三角形;(c ) 设x ,y ∈M .假设x ,y 未连线,那么存在唯一z ∈M ,与x ,y 均连线.原题即求证:M 中每个点向M 中点连的线数均相等.由于M 中没有点与其余所有的点都连了线,故存在x ,y ∈M ,且x ,y 未连线.由(c )存在惟一z ∈M ,且z 与x ,y 都连了线. ⑴ 记M 中除z 外与x 连线的点集为A ,与y 连线的点集为B ,由(c ),A ∩B =∅,且由(b ),A 、B 中任何两点均不相邻.对于p ∈A ,由于p与y 不相邻,那么有唯一点与p 及y 都相邻,此点必在B 中,设为q ,同样,B 中任何一点q ',也必与A 中唯一点p '相邻.且假设p 1、p 2∈A ,那么在B 中与它们相邻的点q 1、q 2互不相同,否那么与(c )矛盾(p 1、p 2假设与B 中的q 都连线,那么它们与两个不同的点x 及q 都连了线).这说明A 与B 的元素有一一对应关系,|A |=|B |.那么d (x )=d (y ).⑵ 假设x ,y 连线,那么由(a ),存在u ∈M ,u 与x 未连线,那么d (x )=d (u ).假设u 与y 也未连线,那么由上证,d (u )=d (x )=d (y ).假设u 与y 连线,那么存在v ∈M ,v 与y 未连线,d (v )=d (y ),当v 与x 未连线时,d (x )=d (v )=d (y );当v 与x 连线时,由(c ),v 与u 必不连线,于是d (v )=d (u ),从而d (x )=d (y ).故每组中的人认识本组的人数相同.⑶ 为了求分组个数的最大值,应找出满足条件的组中人数的最小值,由(a ),有x ,y ∈M ,x 与y 不相邻.于是由(c ),存在z ∈M ,与x 、y 都相邻.由(a ),必还有u ,u 与z 不相邻(否那么z 与同组的点都相邻);于是由(c ),u 必与x 、y 之一相邻,设u 与x 相邻,于是u 与y 不相邻.故又存在v 与u 、y 相邻.这样就有了5个点.从而每组至少5个点.而图中5个点满足全部要求.于是至多可分出1990÷5=398组.例7 给定平面上的点集P ={P 1,P 2,…,P 1994}, P 中任三点均不共线,将P 中的所有的点任意分成83组,使得每组至少有3个点,且每点恰好属于一组,然后将在同一组的任两点用一条线段相连,不在同一组的两点不连线段,这样得到一个图案G ,不同的分组方式得到不同的图案,将图案G 中所含的以P 中的点为顶点的三角形个数记为m (G ).(1)求m (G )的最小值m 0;(2)设G *是使m (G *)=m 0的一个图案,假设G *中的线段(指以P 的点为端点的线段)用4种颜色染色,每条线段恰好染一种颜色.证明存在一个染色方案,使G *染色后不含以P 的点为顶点的三边颜色相同的三角形.(1994年全国高中数学联赛)分析 估计当各组点数尽可能接近时三角形个数最少.因此只要证明当两组点数差≥2时,不能达到最小值.可以用逐步调整法来证明.第⑵小问可以用构造法来解.注意K 5的边2染色时,可以找到不存在同色三角形的染色法,于是可以据此构造出满足要求的图来.解:设G 中分成的83个子集的元素个数分别为n i (1≤i ≤83),i =1∑83n i =1994.且3≤n 1≤n 2≤…≤n 83.那么m (G )= i =1∑83C n i3.即求此式的最小值. 设n k +1>n k +1.即n k +1-1≥n k +1.那么C n k +13 +C n k +1-13 -(C n k 3+C n k +13 )=C n k 2-C n k +1-12 <0.这就是说,当n k +1与n k 的差大于1时,可用n k +1-1及n k +1代替n k +1及n k ,而其余的数不变.此时,m (G )的值变小.于是可知,只有当各n i 的值相差不超过1时,m (G )才能取得最大值.1994=83×24+2.故当81个组中有24个点,2个组中有25个点时,m (G )达到最小值. m 0=81C 3 24+2C 325=81×2024+2×2300=168544.y⑵ 取5个点为一小组,按图1染成a 、b 二色.这样的五个小组,如图2,每个小圆表示一个五点小组.同组间染色如图1,不同组的点间的连线按图2染成c 、d 两色.这25个点为一组,共得83组.染色法相同.其中81组去掉1个点及与此点相连的所有线.即得一种满足要求的染色. 识其中的⎣⎢⎡⎦⎥⎤n 2个例8有n 人聚会,每人至少认人.而对任意的⎣⎢⎡⎦⎥⎤n 2个人,或者其中有两人认识,或者余下的n -⎣⎢⎡⎦⎥⎤n 2人中有两人相识.证明:当n ≥6时,这n 个人中必有3人两两认识.(1996年全国联赛)分析 此题与例6类似,要通过分析连线的情况找出三角形来.由于题中给出了⎣⎢⎡⎦⎥⎤n 2,故应分n 为偶数或奇数的情况分别讨论.证明 作一个图,用n 个点表示这n 个人,凡二人认识,那么在表示此二人的点间连一条线.问题即,在题设条件下,存在以这n 点中的某三点为顶点的三角形.设点a 连线条数最多,在与a 连线的所有点中点b 连线最多,与a 连线的点除b 外的集合为A ,与b 连线的点除a 外的集合为B .1° 设n =2k ,那么每点至少连k 条线,集合A 、B 中都至少有k -1个点. ⑴假设存在一点c ,与a 、b 都连线,那么a 、b 、c 满足要求; ⑵假设没有任何两点与a 、b 二点都连线(图1),那么由A ∩B =∅,|A ∪B |≤2k -2,|A |≥k -1,|B |≥k -1, 故得 |A |=|B |=k -1,且图中每点都连k 条线.假设A 中任何两点间均未连线,B 中任两点也未连线,那么A ∪{b }中不存在两点连线,B ∪{a }中也不存在两点连线.与矛盾.故在A (或B )中必存在两点,这两点间连了一条线,那么此二点与a (b )连出三角形,2° 设n =2k +1.那么每点至少连k 条线,A 、B 中都至少有k -1个点. ⑴假设存在一点c ,与a 、b 都连线,那么a 、b 、c 满足要求; ⑵假设没有任何两点与此二点都连线,且|A |≥k ,那么由|B |≥k -1(图2),A ∩B =∅,|A ∪B |≤2k -1,可得|A ∪B |=2k -1,|A |=k ,|B |=k -1,假设A 中任何两点间均未连线,B 中任两点也未连线,那么A ∪{b }中不存在两点连线,B ∪{a }中也不存在两点连线.与矛盾.故A (或B )中存在两点,这两点间连了一条线,那么此二点与a 连出三角形,⑶假设没有任何两点与此二点都连线,且|A |=k -1,即每点都只连k 条线.这时,必有一点与a 、b 均未连线,设为c (图3).c 与A 中k 1个点连线,与B 中k 2个点连线,k 1+k 2=k ,且1≤k 1,k 2≤k -1.否那么假设k 2=0,那么A ∪{b }中各点均未连线,B ∪{a ,c }中各点也未连线.矛盾.故k 1,k 2≥1.且由于n ≥6,那么k 1+k 2≥3,故k 1,k 2中至少有一个不小于2,不妨设k 1≥2,现任取B 中与c 连线的一点b 1,由于b 1与B 中其余各点均未连线,假设b 1与A 中的所有与c 连线的点均未连线,那么b 1连线数≤2+k -1-k 1≤k -1,矛盾,故b 1至少与此k 1个点中的一点连线.故证.图1图2cd cd cd a b a b d b c a d b a b c a图1图2.情景再现 6.在正整数n 与δ满足什么条件时,可以作出一个n 阶δ正那么图.即是:n 个点,其中某些点间连了一条线,且每个点都恰好与δ个点连了线.问δ可以取什么样的数值?7. 某次体育比赛,每两名选手赛一场,每场一定决出胜负,通过比赛确定优秀选手,选手A 被确定为优秀选手的条件为:对任何其他选手B ,或A 胜B ,或存在选手C ,有A 胜C 而C 胜B .如果按这个条件确定的优秀选手只有1名.求证:这名选手胜所有其余的选手.(1988年中国数学冬令营)8.给定空间中的9个点,任意4点不共面,每两点间连一线段.求最小的n 值,使当对其中任意n 条线段用红、蓝两色之一任意染色时,都一定出现一个三边同色的三角形.(1992中国数学奥林匹克)习题131.⑴ 如果在偶图G =(X ,Y ,E )中,|X |>|Y |,且X 中每个顶点的次数都不小于δ,求证:Y 中至少有一个顶点的次数>δ.⑵ 假设图G 为偶图,且G 有圈,那么G 的圈的长为偶数.反之,假设图G 有圈,且所有的圈长为偶数,那么G 为偶图.2.设C 是100阶3正那么图,现用红、白两色给这100个点着色,其中红点40个,白点60个,如果一条线的两个端点都是红色,那么将这条线也染成红色;如果一条线的两个端点都是白色,那么将这条线也染成白色,现红色线有38条,问白色线有多少条?3.假设干人相聚,其中有些人彼此认识,假设⑴如果某两个人认识的人数相等,那么他们没有共同的熟人;⑵有一个人至少有100个熟人.证明:可以找到一个参加聚会的人,他恰好有100个熟人.4.有2n 个学生,每天出去散步,每两人一组,如果每一对学生只在一起散步一次,这样的散步至多可以持续多少天?5.20名选手参加14场单打比赛,每名选手都至少参加过1场.证明:必有某6场比赛的参赛者是12名不同的选手.(1989年美国数学竞赛)6.在n n 棋盘的方格中分别填写1,2,…,n 2(n ≥2),每格一个数.证明:必有两个相邻方格(有公共边的方格),方格中的两个数的差至少为n .(1988年捷克数学竞赛)7.把K n 中的每条线段染上红色或蓝色.把某一点出发引出两条同色线段组成的角叫做同色角.证明:同色角的总数不小于14n (n -1)(n -3). 8.用黑白两种颜色去涂正九边形的顶点,每个顶点只涂黑、白两色之一,证明:在以这九点为顶点的所有三角形中,必有两个顶点同色的全等三角形.9.⑴ 将完全图K 5中的10条线段进行染色,使得有公共端点的线颜色不相同.至少要用几种颜色?⑵ 将完全图K 2n 中的所有线段染上颜色,使得有公共端点的线颜色不相同.至少要用几种颜色?⑶ 证明:将完全图K 2n -1中的所有线段染上颜色,使得有公共端点的线颜色不相同.至少要用2n -1种颜色.10.某团体中任意两个认识的人都没有共同的熟人,而任意两个不认识的人都恰有两个彼此共同的熟人.证明:该团体中每个人认识的人数都相同.(1975南斯拉夫数学竞赛)图311.某次体育比赛,每两名选手各赛一场,无平局.通过比赛确定优秀选手.设A为选手,如果对其他任意选手B,要么A胜B,要么存在选手C,使得A胜C,C胜B,那么A即是优秀选手.证明:如果按上述规那么选出的优秀选手只有1名,那么这名选手胜其他所有的选手.(1987年中国数学奥林匹克)12.排球比赛中,每两队都各比赛一场.对两个球队A与B,如果A胜B,或者存在某个球队C,使得A胜C,C胜B,那么称A优于球队B.比赛结束后,优于其他所有球队的球队即被授予冠军称号.比赛结束后能否恰有两个冠军队?(1988年前苏联数学竞赛)本节“情景再现〞解答:1.证明任取树T的一个悬挂点v1,把v1涂红,所有与v1距离为奇数的顶点都涂蓝,所有与v1距离为偶数的顶点都涂红,所有涂红的顶点组成集合X,所有涂蓝的顶点组成集合Y,那么得到一个二色图,即为偶图.2.证明设G=(X,Y,E)是偶图,把X中的点全部涂成红色,把Y中的点全部涂成蓝色,那么所得的图中,相邻的顶点涂色都不同,即只用2色即可涂完G的所有顶点,使相邻的顶点涂色不同.又如果G没有边,那么只用1种颜色即可把G的所有顶点涂好,且没有任何相邻的顶点同色(因没有顶点相邻),故偶图的色数≤2.反之假设图G的色数≤2,假设色数=1,表示G中任何两顶点都不相邻,即G没有边,此时,设G为n阶的,可把G中k(1≤k≤n-1)个点涂成一种红色,另外n-k个点涂成蓝色,即得一个二色图,涂红的点集为X,涂蓝的点集为Y,即为偶图.假设色数=2,即用两种颜色可以把所有顶点涂色,且同色点都不相邻,那么取涂一种颜色的点的集合为X,涂另一种颜色的点的集合为Y,那么得到一个偶图.即色数≤2的图是偶图.3.证明n=1时,1条直线把平面分成2部分,可用两种颜色涂.设n=k时,k条直线把平面分成的区域有满足题意的涂色法,当n=k+1时,先画出其中k 条直线,而暂把第k+1条直线擦去.这时k条直线把平面分成的区域可以涂色.涂好色后,把第k+1条直线画出,凡在这条直线某一侧的部分,涂色不动,而在直线另一侧的部分,把涂的色全部改为另一色,那么所得涂色满足题意.即n=k+1时,命题成立.综上可知,命题成立.4.证明取每个方格的中心,凡是相邻的两个方格,就把相应的中心连一条线.这样得到了一个图G(图中红线组成的图即为图G).图G的的直径=14,,故图G中任意两点的距离≤14.假设相邻两个方格中填的数相差<5,那么差≤4,于是图G中所填两个数的差≤14×4=56.但图中填了1与64,此二数必有一条链相连,此链的长≤14.即其差≤56,与64-1=63矛盾.5.证明:以点表示人,红色线表示认识,蓝色线表示不认识.⑴假设存在一个点,从这点引出了至少5条红线,例如从v1向v2,v3,…,v6引出了5条红线,假设v2,v3,…,v6间有某两点间连了红线,那么这两点与v1组成红色三角形,否那么此五点间全部连蓝色线,为一蓝色五边形.⑵假设从任一点引出的红线都少于5条,那么每点引出的蓝色线都至少9条.由例如从v1到v2,v3,…,v10均连蓝色线,那么由例5可知v2,v3,…,v10中或存在红色三角形或存在蓝色四边形,于是原图中或有红色三角形,或此蓝色四边形与v1合成一蓝色五边形.故证.6.证明:由于共计连了12nδ条线.故δ应是不超过n -1且使12nδ为整数的那些正整数值.反之假设正整数δ不超过n -1,且使12nδ为整数,可构造一种连法:取一圆分成n 等分. 任取一数i ,满足1≤i ≤⎣⎢⎡⎦⎥⎤n 2,把圆上这n 个点中,距离为i 的点都连起来,这时当i ≠n 2时,每个点都连了2条线,当n 为偶数,且i =n 2时,每个点都连了1条线. 如果n 为奇数,那么δ必须为偶数:δ=2k ,如果n 为偶数,那么δ可为奇数,也可为偶数.假设δ=2k <n ,依次取i =1,2,…,k ,按上法连线,那么得到每个点都连了2k 条线;假设δ=2k +1<n ,那么按上法连了2k 条线,后再取i =n 2连线,此时每个点又连了1条线,即每个点都连了2k +1条线.于是可知,可以连出满足要求的图.如图示即是一个16阶5正那么图,分别取i =2,4,8画出.7.证明:取A 为胜场最多者,假设A 胜所有选手,此时A 为优秀选手.假设A 未全胜,那么A 必负于某个选手B ,此时假设找不到C ,使A 胜C 而C 胜B ,即所有负于A 的选手都负于B ,那么B 比A 胜场更多,矛盾.故必存在这样的C 胜B .故此时A 为优秀选手.假设只有1名优秀选手,即优秀选手只有A ,于是其余选手均不是优秀选手.假设A 负于B ,由于B 不是优秀选手,那么存在D ,D 胜A 与B ,假设D 不存在.即其余所有选手或负于A ,或负于B ,那么B 也为优秀选手.故D 必存在.现D 胜A 、B ,由于D 不是优秀选手,同理,故必能找到E ,胜A 、B 、D ,…,这样一直下去,最后必有一人胜所有其余的人,为优秀选手,与只有1名优秀选手矛盾.故A 全错误!未定义书签。
第24讲 三角不等式含有未知数的三角函数的不等式叫做三角不等式.三角不等式首先是不等式,因此,处理不等式的常用方法如配方法、比较法、放缩法、基本不等式法、反证法、数学归纳法等也是解决三角不等式的常用方法.其次,三角不等式又有自己的特点——含有三角式,因而三角函数的单调性、有界性以及图像特征、三角公式及三角恒等变形的方法等都是处理三角不等式的常用工具.A 类例题例1 已知α、β为锐角,且()02x παβ+->,求证对一切0x ≠,有(cos )(sin )x x αβ<分析 要证的不等式两边均为指数式,且指数相同,可考虑利用函数()f x x α=的单调性,因此首先应比较cos α与sin β的大小,而函数()f x x α=的单调性与α的符号有关,可分情况讨论.证明 (1)若x >0,则2παβ+>,则022ππβα>>->,由正弦函数的单调性,得0sin()sin 12παβ<-<<,即0cos sin 1αβ<<<,又x >0,故有(cos )(sin )x x αβ<.(2)若x <0,则2παβ+<,则022ππβα<<-<,由正弦函数的单调性,得0sin sin()12πβα<<-<,即0sin cos 1βα<<<,又x <0,故有(cos )(sin )xx αβ<.说明 比较不同角的正弦与余弦的大小,可先化同名,再利用正余弦函数的单调性比较,而一组2πα±的诱导公式是实现正、余弦转化的有力工具.例2 已知0απ<<,试比较2sin2α和cot 2α的大小.分析 两个式子分别含有2α与2α的三角函数,故可考虑都化为α的三角函数,注意到两式均为正,可考虑作商来比较.解法一 2sin 21cos 4sin cos tan 4sin cos 2sin cot2ααααααααα-== =2214cos 4cos4(cos )12ααα-=--+,∵0απ<<,所以当1cos 2α=,即3πα=时,上式有最大值1,当0απ<<且3πα≠时,上式总小于1.因此,当3πα=时,2sin2α=cot 2α;当0απ<<且3πα≠时,2sin2α<cot2α.解法二 设tan 2tα=,由0απ<<得022απ<<,故tan 02t α=>,则1cot2tα=,2224(1)22sin 24sin cos (1)t tt ααα-⋅==+,于是有cot 2α-2sin2α=2422222222214(1)2961(31)0(1)(1)(1)t t t t t t t t t t t -⋅-+--==≥+++ 因此,当πα=时,2sin2α=cot 2α;当0απ<<且πα≠时,2sin2α<cot2α.例3 已知[0,]x π∈,求证:cos(sin x )>sin(cos x )分析一 从比较两数大小的角度来看,可考虑找一个中间量,比cos(sin x )小,同时比sin(cos x )大,即可证明原不等式.证法一 (1)当0,,2x ππ=时,显然cos(sin x )>sin(cos x )成立.(2)当2x ππ<<时,0sin 12x π<<<,cos 02x π-<<,则cos(sin x )>0>sin(cos x ).(3)当02x π<<时,有0<sin x <x <2π,而函数y =cos x 在(0,)2π上为减函数,从而有cos(sin x )>cos x ;而0cos 2x π<<,则sin(cos x )<cos x ,因此cos(sin x ) >cos x >sin(cos x ),从而cos(sin x )>sin(cos x ). 分析二 cos(sin x )可看作一个角sin x 的余弦,而sin(cos x )可看作一个角cos x 的正弦,因此可考虑先用诱导公式化为同名三角函数,再利用三角函数的单调性来证明.证法二 当02x π<<时,有0<sin x <1,0<cos x <1,且sin x +cos x)4x π+2π≤,即0<sin x <2π-cos x <2π,而函数y =cos x在(0,)2π上为减函数,所以cos(sin x )>cos(2π-cos x )=sin(cos x ),即cos(sin x )>sin(cos x ).x 在其他区域时,证明同证法1.说明 (1)本题的证明运用到结论:(0,)2x π∈时,sin tan x x x <<,这是实现角与三角函数值不等关系转化的重要工具,该结论可利用三角函数线知识来证明.(2)证法一通过中间量cos x 来比较,证法二利用有界性得sin x +cos x 2π<,再利用单调性证明,这是比较大小常用的两种方法;(3)本题结论可推广至x R ∈.情景再现1.在锐角△ABC 中,求证: sin sin sin cos cos cos A B C A B C ++>++. 2.已知,(0,)2x y π∈,tan 3tan x y =,求证:6x y π-≤.3.当[0,]2x π∈时,求证:coscos sinsin x x >.B 类例题例4 在ABC ∆中,证明: sin sin sin A B C ++≤分析一 本题中有三个变量A 、B 、C ,且满足A +B +C =180°,先固定其中一个如角C ,由于A +B =180°- C ,故对不等式的左边进行和差化积,将其转化为与A -B 有关的三角函数进行研究.证法一 我们先假定C 是常量,于是A +B =π-C 也是常量.sin sin sin 2sincos sin 22A B A B A B C C +-++=+2cos cos sin 22c A BC -=+, 显然,对于同一个C 值,当A =B 时,上式达到最大值.同样,对同一个A 或B ,有类似结论;因此,只要A 、B 、C 中任意两个不等,表达式sin sin sin A B C ++就没有达到最大值,因而,当A =B =C =3π时,sin sin sin A B C ++,∴原不等式得证.说明 不等式中含有多个变量时,我们往往固定其中部分变量,求其他变量变化时,相应表达式的最值,这种方法称为逐步调整法.分析二 即证sin sin sin 3A B C ++≤用琴生不等式进行证明.证法二 函数sin y x =是区间(0,π)上的上凸函数,从而对任意的三个自变量123,,(0,)x x x π∈,总有123123sin sin sin sin()33x x x x x x ++++≥,等号当123x x x ==时成立.因此有sin sin sin sin()33A B C A B C ++++≥,从而有sin sin sin 180sin 33A B C ++︒≤=,因此原不等式成立.说明 本方法是利用凸函数性质解题,三角函数在一定区间内均为凸函数,因此很多三角不等如均可利用凸函数的性质证明.(122x x +)≥12[f (x 1)+f (x 2)],则称f (x )是上凸函数,等号当x 1=x 2时成立. 其几何意义是,不等式①表示定义域中任意两点x 1、x 2,中点M 所对应的曲线上点Q 位于弦上对应点P 的下面,不等式②则有相反的意义.定理:若f (x )是在区间I 内的下凸函数,则对区间I 内的任意n 个点x 1,x 2,…,x n ,恒有f (12nx x x n+++)≤1n[f (x 1)+f (x 2)+…+f (x n )],等号当x 1=x 2=…=x n 时成立.若f (x )为上凸函数,不等号反向.上述不等式称为琴生不等式,琴生不等式是丹麦数学家琴生(Jensen )于1905~1906年建立的.三角函数如y =sin x ,y =cos x 在(0,2π)是上凸函数;y =tan x ,y =cot x 在(0,2π)是下凸函数. 例5 已知,,x y z R ∈,02x y z π<<<<.求证:2sin cos 2sin cos sin 2sin 2sin 22x y y z x y z π++>++(90年国家集训队测试题)分析 将二倍角均化为单角的正余弦,联想单位圆中的三角函数线,两两正余弦的乘积联想到图形的面积.证明 即证sin cos sin cos sin cos sin cos sin cos 4x y y z x x y y z z π++>++即证明sin (cos cos )sin (cos cos )sin cos 4x x y y y z z z π>-+-+注意到上式右边是如图所示单位圆中三个阴影矩形的面积之和,而4π为此单位圆在第一象限的面积,所以上式成立,综上所述,原不等式成立.例6 已知不等式62(23)cos()2sin 24sin cos a πθθθθ+-+-+x 1 x 2M P Qx 1 x 2M PQ36a <+对于[0,]2πθ∈恒成立.求a 的取值范围.(2004年首届东南地区数学奥赛试题)分析 所给不等式中有两个变量,给出其中一个的范围,求另一个的范围,常采用分离变量的方法.注意到与角θ有关的几个三角函数式,cos()cos )4πθθθ-+,sin22sin cos θθθ=,因此考虑令sin cos x θθ+=进行变量代换,以化简所给不等式,再寻求解题思路.解 设sin cos x θθ+=,则2cos(),sin 214x πθθ-==-,当[0,]2πθ∈时,x ⎡∈⎣.从而原不等式可化为: 26(23)2(1)36a x x a x ++--<+,即26223340x ax x a x ---++>,222()3()0x x a x a x x +--+->,()2(23)0(1)x x a x x ⎛⎫⎡-+->∈ ⎪⎣⎝⎭∴原不等式等价于不等式(1),1,,230x x ⎡∈∴-<⎣ (1)不等式恒成立等价于()2x a x x⎡+-<∈⎣恒成立. 从而只要max 2()()a x x x⎡>+∈⎣.又2()f x x x=+在⎡⎣上递减,max 2()3(1)x x x⎡∴+=∈⎣,所以3a >. 例7 三个数a ,b ,c ∈(0,)2π,且满足cos a a =,sincos b b =,cossin c c =,按从小到大的顺序排列这三个数.(第16届全苏竞赛题)分析 比较a ,b ,c 三数的大小,cos a a =,sincos cos b b b =<,cossin cos c c c =>,等式的两边变量均不相同,直接比较不易进行,故考虑分类讨论,先比较a 与b ,由cos sin cos a ab b ==,对等号两边分别比较,即先假定一边的不等号方向,再验证另一侧的不等号方向是否一致.解 (1)若a b =,则cos sincos a a =,但由cos a (0,)2π∈,故有cos sincos a a>矛盾,即a ≠b .(2)若a b <,则由单调性可知cos cos a b >,又由a b <及题意可得cos sincos a b <,而sincos cos b b <,因此又可得cos cos a b <,从而产生矛盾.综上,a b >.类似地,若c a =,则由题意可得cos cossin a a =,从而可得sin a a =与sin a a >矛盾;若c a <,则sin sin c a a <<,即sin c a <,cossin cos c a ∴>,即c a>矛盾.综上可得:b a c <<.说明 本题的实质是用排除法从两个实数的三种可能的大小关系排除掉两种,从而得第三种,体现了“正难则反”的解题策略.情景再现4.在三角形ABC 中,求证:(1)3sin sin sin 2222A B C ++≤;(2)sin sin sin A B C .5.设12x y z π≥≥≥,且2x y z π++=,求乘积cos sin cos x y z 的最值.(1997年全国高中数学联赛)6.求证:|sin cos tan cot sec csc |1x x x x x x +++++≥(2004年福建省数学竞赛题)C 类例题例8 已知当[0,1]x ∈时,不等式22cos (1)(1)sin 0xx x x θθ--+->恒成立,试求θ的取值范围.(1999年全国高中数学联赛题)分析一 不等式左边按一、三两项配方,求出左边式子的最小值,根据最小值应当为正求出θ的取值范围.解法一 设22()cos (1)(1)sin f x xx x x θθ=--+-, 则由[0,1]x ∈时()0f x >恒成立,有(0)sin 0f θ=>,(1)cos 0f θ=>,22()([(12(12(1f x x x x x x ∴=+----(1)x x --21[(12(1)(02x x x =--->,当x =时,(10x -=,令0x ,则001x <<,0001()2(1)02f x x x =->12>,即1sin 22θ>,且sin 0,cos 0θθ>>,所求范围是:522,1212k k k Z ππθππ+<<+∈,反之,当522,1212k k k Z ππθππ+<<+∈时,有1sin 22θ>,且sin 0,cos 0θθ>>,于是只要[0,1]x ∈必有()0f x >恒成立.分析二 不等式左边视为关于x 的二次函数,求出此二次函数的最小值,令其大于0,从而求出θ的取值范围.解法二 由条件知,cos 0,sin 0θθ>>,若对一切[0,1]x ∈时,恒有()f x =22cos (1)(1)sin 0x x x x θθ--+->,即2()(cos 1sin )(12sin )sin 0f x x x θθθθ=++-++>对[0,1]x ∈时恒成立,则必有cos (1)0,sin (0)0f f θθ=>=>,另一方面对称轴为12sin 2(cos sin 1)x θθθ+=++[0,1]∈,故必有24(cos sin 1)sin (12sin )04(cos sin 1)θθθθθθ++-+>++,即4cos sin 10θθ->,1sin 22θ>,又由于cos 0,sin 0θθ>>故522,1212k k k Z πππθπ+<<+∈.分析三 原不等式看作关于x 与1-x 的二次齐次式,两边同除x (1-x ).解法三 原不等式化为:x 2cos θ+(1-x )2sin θ>x (1-x ),①x =0得sin θ>0,x =1得cos θ>0;②当x ≠0且x ≠1时,上式可化为:1xx -cos θ+1x x -sin θ>1对x ∈(0,1)恒成立,由基本不等式得1x x-cos θ+1x x-sin θ≥,∴1x x-cos θ+1x x-sin θ的最小值为,等号当1x x-cos θ=1x x-sin θ即x =时取到,因此>1.∴1sin 22θ>,又由于cos 0,sin 0θθ>>故522,1212k k k Z πππθπ+<<+∈.例9已知,,,a b A B 都是实数,若对于一切实数x ,都有()1cos sin cos2sin 20f x a x b x A x B x =----≥,求证:222a b +≤,221A B +≤.(1977第十九届IMO )分析 根据函数式的特征及所要证明的式子易知,应首先将不等式化成()1))0f x x x θϕ=++≥,其中x 为任意实数,注意到所要证的结论中不含未知数x ,故考虑用特殊值方法.证明 若220a b +=,220A B +=,则结论显然成立; 故下设220a b +≠,220A B +≠: 令sin θθϕϕ====()1))f x x x θϕ=++,即对于一切实数x ,都有()1))0f x x x θϕ=++≥(1)()1))02f x x x πθϕ+=++≥ (2)(1)+(2)得:2)cos()]0x x θθ+++≥,即sin()cos()x x θθ+++≤对于一切实数x≥222a b +≤.()1))0f x x x πθϕ+=++≥ (3)(1)+(3)得:2)0x ϕ-+≥,即sin(2)x ϕ+1≥,∴ 221A B +≤.例10 设αβγπ++=,求证:对任意满足0x y z ++=的实数,,x y z 有222sin sin sin 0yz zx xy αβγ++≤分析 由0x y z ++=消去一个未知数z ,再整理成关于y 的二次不等式,对x 恒成立,即可得证.证明 由题意,则将()z x y =-+代入不等式左边得, 不等式左边=2222222[sin sin (sin sin sin )]yx xy αβαβγ-+++-(1)当sin 0α=,易证不等式左边0≤成立.; (2)当sin 0α≠,整理成y 的二次方程,证△≤0.左边2222(sin sin sin )[sin ]2sin x y αβγαα+-=-+22222222[(sin sin sin )4sin sin ]4sin x αβγαβα+--+, 由222222(sinsin sin )4sin sin αβγαβ+--2224sin sin [1cos ()]0αβαβ=--+≤,∴22222222[(sin sin sin )4sin sin ]4sin x αβγαβα+--0≤,∴不等式左边0≤成立.情景再现7.证明:对于任意△ABC ,不等式a cos A +b cos B +c cos C ≤p 成立,其中a 、b 、c 为三角形的三边,A 、B 、C 分别为它们的对角,p 为半周长.(第十六届全俄数学竞赛题)8.设,,αβγ是一个锐角三角形的三个内角,求证:sin sin sin tan tan tan 2αβγαβγπ+++++>习题1.求证:对所有实数,x y ,均有22cos cos cos 3xy xy +-<.2.在锐角三角形ABC 中,求证: tan tan tan 1A B C > 3.在锐角三角形ABC 中.求证: sin sin sin 2A B C ++>4.求证:222sin (cos(sin )sin(cos )2sin (44x x ππ≤-≤5.已知,(0,)2παβ∈,能否以sin ,sin ,sin()αβαβ+的值为边长,构成一个三角形?6.已知,αβ为锐角,求证:2222119cos sin sin cos ααββ+≥ 7.已知A +B +C =π,求证:222tantan tan 1222A B C++≥ 8.在三角形ABC 中,角A 、B 、C 的对边为a 、b 、c ,求证:3π≥++++c b a cC bB aA .9.设A 、B 、C 为锐角三角形之内角,n 为自然数,求证:12tan tan tan 3nnnnA B C +++≥.(93年第三届澳门数学奥林匹克赛题)10.已知02πθ<<,,0a b >,求证:223332()sin cos a b a b θθ+≥+11.设P 是三角形ABC 内任一点,求证:∠PAB ,∠PBC ,∠PCA 中至少有一个小于或等于30°.12.解方程coscoscoscos sinsinsinsin x x =(1995年全俄竞赛题) 本节“情景再现”解答:1.证明:锐角三角形可知A+B 2π<,从而A 2π<-B ,从而sin cos A B >,同理sin cos ,sin cos B C C A >>,三式相加得证.2.证明:由已知得tan 3tan tan x y y =>及,(0,)2x y π∈知,x y >,从而(0,)2x y π-∈,要证6x y π-≤,只须证明tan()tan 6x y π-≤=2tan tan 2tan tan()1tan tan 13tan x y yx y x y y--==++,于是问题归结为证22tan 13tan y y +21)0y -≥,而上式显然成立,因此原不等式成立.3.证法一:当x ∈(0,2π)时,∵0<sin x <x <2π,∴sinsin x <sin x ,再比较sin x 与coscos x 的大小,由sin x =cos(2π-x ),即比较(2π-x )与cos x ,而cos x =sin(2π-x ),因此(2π-x )>cos x ,从而cos(2π-x )<coscos x ,即sin x <coscos x ,从而得证. 证法二: sin x +cos x2π≤<,即0<cos x <2π-sin x <2π,所以cos(cos x )>cos(2π-sin x )=sin(sin x ).4.证明:(1)由琴生不等式即得.(2sin sin sin sin 33A B C A B C ++++≤≤=,从而得证.5.解:由条件知,312x y z ππ≥≥≥≥,()222123x y z ππππ=-+≤-⨯=,sin()0y z -≥,于是cos sin cos x y z =1cos [sin()sin()]2x y z y z ++-1cos sin()2x y z ≥+22111cos cos 2238x π=≥=,当,312x y z ππ===时取等号,故最小值为18(y 与z 相等,且x 达到最大时,乘积有最小值).又cos sin cos x y z =1cos [sin()sin()]2z x y x y +--211cos sin()cos22z x y z ≤+=21cos 212π≤,且当5,1224z x y ππ===时等号成立,故cos sin cos x y z 的取大6.证明:设()|sin cos tan cot sec csc |f x x x x x x x =+++++,sin cos t x x =+,则有21sin cos 2t x x -=,2222()||11t f x t t t =++--22|||11|11t t t t =+=-++--当1t >时,2()1111f x t t =-++≥-;当1t <时,2()(1)111f x t t =--+-≥- 因此|sin cos tan cot sec csc |1x x x x x x +++++≥.7.证明:因为cos x (x ∈(0,π))递减,所以a -b 与cos A -cos B 异号,从而(a -b )(cos A -cos B )≤0.即a cos A +b cos B ≤a cos B +b cos A =C (l )当且仅当a =b 时等号成立.同理a cos A +c cos C ≤b (2) b cos B +c cos C ≤a (3),1[(1)(2)(3)]2⨯++即得所要证的不等式. 8.证明:2242tan 2tan 4tan222sin tan 4tan 21tan1tan1tan 222ααααααααα+=+=>+--,0,tan,sin tan 4tan22222πααααααα<<∴>∴+>>,同理得另两个,命题得证.“习题”解答: 1.证明:22cos cos cos 3xy xy +-≤显然成立,下面证明等号不能成立.用反证法.若等号成立,则22cos 1,cos 1,cos 1x y xy ===-,则222,2,,*x k y n k n N ππ==∈,则2224,,*x y nk k n N π=∈,则,,*xy k n N =∈,不可能为奇数,因此cos 1xy ≠-,因此等号不成立.2.证明:锐角三角形可知A+B 2π<,从而A 2π<-B ,从而sin cos A B >,同理sin cos ,sin cos B C C A >>,三式相乘得sin sin sin cos cos cos A B C A B C >.从而可得tan tan tan 1A B C >.3.解:22sin sin ,sin sin A A B B >>,sin sin()sin cos cos sin C A B A B A B =+=+22cos cos cos cos cos cos B B A A B A >+=+,三式相加得证.4.证明:cos(sin )sin(cos )cos(sin )cos(cos )2x x x x π-=--又cos sin 2x x ±≤cos sin 4424x x πππ±≤-≤,又04π>,4π2π<,由正弦函数在[0,]2π上的单调性可知,原不等式成立.5.证法一:sin sin 2sin cos 2sincossin()2222αβαβαβαβαβαβ+-+++=>=+|sin sin |2cos|sin|2cossinsin()2222αβαβαβαβαβαβ+-++-=<=+,因此可以构成三角形.证法二:在直径为1的圆内作内接三角形ABC ,使,A B αβ∠=∠=,()C παβ∴∠=-+则sin ,sin ,sin()BC AC AB αβαβ===+,因此可构成三角形.6.解: 左222222214145tan 4cot 9cos sin sin 2cos sin ααααβαα=+≥+=++≥. 7.证:左tan tan tan tan tan tan 222222A B B C C A ≥++8.分析:注意到π可写成A +B +C ,故即证:3(aA +bB +cC )≥(a +b +c )π,即证3(aA +bB +cC )≥(a +b +c )(A +B +C ),即证(a -b )(A -B )+(b -c )(B -C )+(c -a )(C -A )≥0,由大边对大角得上式成立.9.证明:设tan ,tan ,tan x A y B z C ===,则,,0x y z >,x y z xyz ++=,而x y z ++≥323xyz ≥,故123n nn n xy z +++≥≥.10.证明:要证原不等式,即证222333()()sin cos a b a b θθ+≥+,即2222222sin cos sin cos a b aba b θθθθ++≥++上式中将θ看作变量,,a b 看作常数,考虑从左边向右边转化即证222222sin cos cot tan 2sin cos a b abθθθθθθ+++≥即2222cot tan 2tan 2cot a b ab ab θθθθ+++≥因为2222cot 2tan cot tan tan a ab a ab ab θθθθθ+=++≥,同理可得22tan 2cot b ab θθ+≥11.证明:如图,PA sin 1θ=PB sin θ5,PB sin θ2=PC sin θ6,PC sin θ3=PA sin θ4,三式相乘得sin 1θsin θ2 sin θ3= sin θ4 sin θ5sin θ6,因此有(sin 1θsin θ2 sin θ3)2= sin 1θsin θ2 sin θ3 sin θ4 sin θ5 sin θ6661234561sin ()62θθθθθθ+++++⎛⎫≤= ⎪⎝⎭,从而sin 1θsin θ2 sin θ331()2≤,因此sin 1θ、sin θ2 、sin θ3中至少有一个小于或等于12,不妨设sin 1θ12≤,则1θ≤30°或1θ≥150°,此时三个角中至少有一个角小于30°.12.解:考虑周期性,只要先解决[0,2)x π∈的解的情况,而当[,2)x ππ∈时,左边为正,右边非正,因此方程无解.由于[0,]2x π∈时有coscos sinsin x x >,将x 换成cos cos x 得(换成sinsin x 也可以):coscoscoscos sinsincoscos x x >,又由于sin sin y x =在[0,]2x π∈时为增函数,因此有sinsincoscos sinsinsinsin x x >,综上可得:coscoscoscos sinsinsinsin x x >,因此原方程无解.当(,)2x ππ∈时,令2y x π=-,则(0,)2y π∈,在coscos sinsin x x >,[0,]2x π∈中,将x 换成cossin y 得,coscos(cossin )sinsin(cossin )sinsin(sin cos )y y y >>,将2y x π=-代入得,coscoscoscos sinsinsinsin x x >,原方程也无解.综上所述,对x R ∈,恒有coscoscoscos sinsinsinsin x x >,原方程无解.。
极限及其运算相关知识1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋...近于..某个常数a (即n a a -无限趋近于0),那么就说数列}{n a 以a 为极限,或者说a 是数列}{n a 的极限.记作lim n n a a →∞=,读作“当n 趋向于无穷大时,n a 的极限等于a ” 2.几个重要极限:(1)01lim =∞→nn (2)C C n =∞→lim (C 是常数)(3)无穷等比数列}{n q (1<q )的极限是0,即 )1(0lim<=∞→q q n n 3.函数极限的定义:(1)当自变量x 取正值并且无限增大时,如果函数f (x )无限趋近于一个常数a ,就说当x 趋向于正无穷大时,函数f (x )的极限是a .记作:+∞→x lim f (x )=a ,或者当x →+∞时,f (x )→a .(2)当自变量x 取负值并且绝对值无限增大时,如果函数f (x )无限趋近于一个常数a ,就说当x 趋向于负无穷大时,函数f (x )的极限是a .记作-∞→x lim f (x )=a 或者当x →-∞时,f (x )→a . (3)如果+∞→x lim f (x )=a 且-∞→x lim f (x )=a ,那么就说当x 趋向于无穷大时,函数f (x )的极限是a ,记作:∞→x lim f (x )=a 或者当x →∞时,f (x )→a .4 数列极限的运算法则:与函数极限的运算法则类似, 如果,lim ,lim B b A a n n n n ==∞→∞→那么5 对于函数极限有如下的运算法则:如果B x g A x f oox x x x ==→→)(lim ,)(lim ,那么B A x g x f oxx +=+→)]()([lim ,B A x g x f ox x ⋅=⋅→)]()([lim , )0()()(lim≠=→B BAx g x f ox x 当C 是常数,n 是正整数时:)(lim )]([limx f C x Cf ooxx x x →→=,n x x n x x x f x f oo)](lim [)]([lim →→= 这些法则对于∞→x 的情况仍然适用6 函数在一点连续的定义: 如果函数f (x )在点x =x 0处有定义,lim x x →f (x )存在,且0lim x x →f (x )=f (x 0),那么函数f (x )在点x =x 0处连续.7.函数f (x )在(a ,b )内连续的定义:如果函数f (x )在某一开区间(a ,b )内每一点处连续,就说函数f (x )在开区间(a ,b )内连续,或f (x )是开区间(a ,b )内的连续函数.8 函数f (x )在[a ,b ]上连续的定义:如果f (x )在开区间(a ,b )内连续,在左端点x =a 处有+→a x lim f (x )=f (a ),在右端点x =b 处有-→b x lim f (x )=f (b ),就说函数f (x )在闭区间[a ,b ]上连续,或f (x )是闭区间[a ,b ]上的连续函数. 9 最大值f (x )是闭区间[a ,b ]上的连续函数,如果对于任意x ∈[a ,b ],f (x 1)≥f (x ),那么f (x )在点x 1处有最大值f (x 1).10 最小值f (x )是闭区间[a ,b ]上的连续函数,如果对于任意x ∈[a ,b ],f (x 2)≤f (x ),那么f (x )在点x 2处有最小值f (x 2).11.最大值最小值定理如果f (x )是闭区间[a ,b ]上的连续函数,那么f (x )在闭区间[a ,b ]上有最大值和最小值.A 类例题例1 (1)nn aa )1(lim-∞→等于( ) A.-1 B.0 C.1 D.不能确定分析 因为当|a a -1|<1即a <21时,n n a a )1(lim -∞→=0, 当|aa -1|>1时,nn a a )1(lim-∞→不存在. 当a a -1=1即a =21时,n n a a )1(lim -∞→=1 当aa -1=-1时,nn a a )1(lim-∞→也不存在. 答案 D.例 2 已知|a |>|b |,且n n n n n n n n ab a a b a +<++∞→-∞→11lim lim (n ∈N *),那么a 的取值范围是( )A.a <-1B.-1<a <0C.a >1D.a >1或-1<a <0分析 左边=aa b a a b a n n n n n n 1])(1[lim lim 1=+=+∞→-∞→右边=a ab a a b a nn n n n n =+=+∞→+∞→])([lim lim 1 ∵|a |>|b |,∴|a b|<1. ∴∞→n lim (ab )n=0∴不等式变为a1<a ,解不等式得a >1或-1<a <0. 答案:D.说明 在数列极限中,极限∞→n lim q n=0要注意这里|q |<1.这个极限很重要.例3 (1)24lim 22--→x x x . (2)201213lim 2+--∞→x x x x(1)分析 先因式分解法,然后约分代入即得结果。