2018年高考理科数学二轮专题复习专题检测(18)概率与统计、随机变量及其分布列
- 格式:doc
- 大小:154.00 KB
- 文档页数:10
2018届二轮透析高考数学23题对对碰【二轮精品】 第三篇主题18 随机变量分布列与统计(理)【主题考法】本主题考题类型为解答题,以应用题为背景以茎叶图、频率分布直方图、条形图等统计数表为载体,考查运用排列组合值求古典概型、几何概型、互斥事件和概率公式、相互独立事件积概率、条件概率、n 次独立重复试验、离散型随机变量分布列及其期望与方差、正态分布等数学知识与方法,考查抽样方法、总体估计、回归分析与独立性检验等统计知识和方法,考查运算求解能力、阅读理解能力、应用意识,难度为中档题,分值12分. 【主题考前回扣】 1.抽样方法简单随机抽样、分层抽样、系统抽样.①从容量为N 的总体中抽取容量为n 的样本,则每个个体被抽到的概率都为n N;②分层抽样实际上就是按比例抽样,即按各层个体数占总体的比确定各层应抽取的样本容量. 2.统计中四个数据特征①众数:在样本数据中,出现次数最多的那个数据;②中位数:在样本数据中,将数据按大小排列,位于最中间的数据.如果数据的个数为偶数,就取中间两个数据的平均数作为中位数; ③平均数:样本数据的算术平均数, 即x =1n(x 1+x 2+…x n );④方差与标准差方差:s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2].标准差:s =1nx 1-x2+x 2-x2+…+x n -x2].3.直方图的三个结论 ①小长方形的面积=组距×频率组距=频率; ②各小长方形的面积之和等于1;③小长方形的高=频率组距,所有小长方形高的和为1组距.4.回归分析(1)回归直线y ^=b ^x +a ^经过样本点的中心点(x ,y ),若x 取某一个值代入回归直线方程y ^=b ^x +a ^中,可求出y 的估计值.5.独立性检验对于取值分别是{x 1,x 2}和{y 1,y 2}的分类变量X 和Y ,其样本频数列联表是:y 1 y 2 总计x 1 a b a +b x 2c d c +d 总计a +cb +dn则K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )(其中n =a +b +c +d 为样本容量).利用随机变量K 2来判断“两个分类变量有关系”的方法称为独立性检验.如果K 2的观测值k 越大,说明“两个分类变量有关系”的可能性越大. 6.牢记概念与公式 (1)概率的计算公式 ①古典概型的概率计算公式P (A )=事件A 包含的基本事件数m基本事件总数n;②互斥事件的概率计算公式P (A ∪B )=P (A )+P (B );③对立事件的概率计算公式P (A )=1-P (A );④几何概型的概率计算公式P (A )=构成事件A 的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.7.八组公式①离散型随机变量的分布列的两个性质(ⅰ)p i ≥0(i =1,2,…,n );(ⅱ)p 1+p 2+…+p n =1. ②期望公式E (X )=x 1p 1+x 2p 2+…+x n p n .③期望的性质(ⅰ)E (aX +b )=aE (X )+b ; (ⅱ)若X ~B (n ,p ),则E (X )=np ; (ⅲ)若X 服从两点分布,则E (X )=p . ④方差公式D (X )=[x 1-E (X )]2·p 1+[x 2-E (X )]2·p 2+…+[x n -E (X )]2·p n ,标准差为D X .⑤方差的性质(ⅰ)D (aX +b )=a 2D (X );(ⅱ)若X ~B (n ,p ),则D (X )=np (1-p ); (ⅲ)若X 服从两点分布,则D (X )=p (1-p ). ⑥独立事件同时发生的概率计算公式P (AB )=P (A )P (B ).⑦独立重复试验的概率计算公式P n (k )=C k n p k (1-p )n -k. ⑧条件概率公式P (B |A )=P AB P A.【易错点提醒】1.混淆频率分布条形图和频率分布直方图,误把频率分布直方图纵轴的几何意义当成频率,导致样本数据的频率求错.2.利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者的含义: (1)最高的小长方形底边中点的横坐标即是众数; (2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.3.在独立性检验中,K 2=n (ad -bc )2(a +b )(a +c )(b +d )(c +d )(其中n =a +b +c +d )所给出的检验随机变量K 2的观测值k ,并且k 的值越大,说明“X 与Y 有关系”成立的可能性越大,可以利用数据来确定“X 与Y有关系”的可信程度.4.混淆直线方程y =ax +b 与回归直线y ^=b ^x +a ^系数的含义,导致回归分析中致误.5.应用互斥事件的概率加法公式,一定要注意首先确定各事件是否彼此互斥,然后求出各事件分别发生的概率,再求和.6.正确区别互斥事件与对立事件的关系:对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件. 7.要注意概率P (A |B )与P (AB )的区别(1)在P (A |B )中,事件A ,B 发生有时间上的差异,B 先A 后;在P (AB )中,事件A ,B 同时发生.(2)样本空间不同,在P (A |B )中,事件B 成为样本空间;在P (AB )中,样本空间仍为Ω,因而有P (A |B )≥P (AB ). 8.易忘判定随机变量是否服从二项分布,盲目使用二项分布的期望和方差公式计算致误. 【主题考向】考向一 抽样方法与总体估计【解决法宝】1.分层抽样的本质是按比例确定每层抽取个体的个数。
课时跟踪检测(二十)概率与统计1.(2017·广州二测)某种商品价格与该商品日需求量之间的几组对照数据如下表:价格x (元/kg)1015202530日需求量y (kg)1110865(1)求y 关于x 的线性回归方程;(2)利用(1)中的回归方程,当价格x =40元/kg 时,日需求量y 的预测值为多少?参考公式:线性回归方程y ^=b ^x +a ^,其中b ^=错误!,a ^=y -b ^x .2.(2018届高三·广西五校联考)下图是某市11月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择11月1日至11月12日中的某一天到达该市,并停留3天.(1)求此人到达当日空气重度污染的概率;(2)设X 是此人停留期间空气重度污染的天数,求X 的分布列与数学期望.随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N (μ,σ2).(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P (X ≥1)及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.①试说明上述监控生产过程方法的合理性;②下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得x =116错误!i =9.97,s =错误!=错误!≈0.212,其中x i 为抽取的第i 个零件的尺寸,i =1,2, (16)用样本平均数x 作为μ的估计值μ^,用样本标准差s 作为σ的估计值σ^,利用估计值判断是否需对当天的生产过程进行检查?剔除(μ^-3σ^,μ^+3σ^)之外的数据,用剩下的数据估计μ和σ(精确到0.01).性别有关,现从该市高三理科生中随机抽取50名学生进行调查,得到如下2×2列联表:(单位:人)报考“经济类”不报考“经济类”总计男62430女14620总计203050(1)据此样本,判断能否在犯错误的概率不超过0.001的前提下认为理科生报考“经济类”专业与性别有关?(2)若以样本中各事件的频率作为概率估计全市总体考生的报考情况,现从该市的全体考生(人数众多)中随机抽取3人,设3人中报考“经济类”专业的人数为随机变量X,求随机变量X的概率分布列及数学期望.附:P(K2≥k0)0.10.050.010.001k0 2.706 3.841 6.63510.828K2=n(ad-bc)2,其中n=a+b+c+d.(a+b)(c+d)(a+c)(b+d)天的日营业额y (单位:万元)与该地当日最低气温x (单位:℃)的数据,如下表:x 258911y1.210.80.80.7(1)求y 关于x 的线性回归方程y ^=b ^x +a ^;(2)判断y 与x 之间是正相关还是负相关,若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额;(3)设该地1月份的日最低气温X ~N (μ,σ2),其中μ近似为样本平均数x ,σ2近似为样本方差s 2,求P (3.8<X ≤13.4).附:①回归方程y ^=b ^x +a ^中,b ^=错误!,a ^=y -b ^x .②10≈3.2, 3.2≈1.8.若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ)=0.6827,P (μ-2σ<X ≤μ+2σ)=0.9545.定出台“延迟退休年龄政策”.为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:年龄[15,25)[25,35)[35,45)[45,55)[55,65]支持“延迟退155152817休”的人数(1)由以上统计数据填2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;45岁以下45岁以上总计支持不支持总计(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人.①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.②记抽到45岁以上的人数为X,求随机变量X的分布列及数学期望.参考数据:P(K2≥k0)0.1000.0500.0100.001k0 2.706 3.841 6.63510.828K2=n(ad-bc)2,其中n=a+b+c+d.(a+b)(c+d)(a+c)(b+d)课时跟踪检测(二十)概率与统计1.(2017·广州二测)某种商品价格与该商品日需求量之间的几组对照数据如下表:价格x (元/kg)1015202530日需求量y (kg)1110865(1)求y 关于x 的线性回归方程;(2)利用(1)中的回归方程,当价格x =40元/kg 时,日需求量y 的预测值为多少?参考公式:线性回归方程y ^=b ^x +a ^,其中b ^=错误!,a ^=y -b ^x .解:(1)由所给数据计算得x =15×(10+15+20+25+30)=20,y =15×(11+10+8+6+5)=8,错误!(x i -x )2=(-10)2+(-5)2+02+52+102=250,错误!(x i -x )(y i -y )=(-10)×3+(-5)×2+0×0+5×(-2)+10×(-3)=-80.b ^=错误!=-80250=-0.32.a ^=y -b ^x=8+0.32×20=14.4.所求线性回归方程为y ^=-0.32x +14.4.(2)由(1)知当x =40时,y ^=-0.32×40+14.4=1.6.故当价格x =40(元/kg)时,日需求量y 的预测值为1.6kg.2.(2018届高三·广西五校联考)下图是某市11月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择11月1日至11月12日中的某一天到达该市,并停留3天.(1)求此人到达当日空气重度污染的概率;(2)设X 是此人停留期间空气重度污染的天数,求X 的分布列与数学期望.解:设A i 表示事件“此人于11月i 日到达该市”(i =1,2,…,12).依题意知,P (A i )=112,且A i ∩A j =∅(i ≠j ).(1)设B 为事件“此人到达当日空气重度污染”,则B =A 1∪A 2∪A 3∪A 7∪A 12,所以P (B )=P (A 1∪A 2∪A 3∪A 7∪A 12)=P (A 1)+P (A 2)+P (A 3)+P (A 7)+P (A 12)=512.即此人到达当日空气重度污染的概率为512.(2)由题意可知,X 的所有可能取值为0,1,2,3,P (X =0)=P (A 4∪A 8∪A 9)=P (A 4)+P (A 8)+P (A 9)=312=14,P (X =2)=P (A 2∪A 11)=P (A 2)+P (A 11)=212=16,P (X =3)=P (A 1∪A 12)=P (A 1)+P (A 12)=212=16,P (X =1)=1-P (X =0)-P (X =2)-P (X =3)=1-14-16-16=512,或P (X =1)=P (A 3∪A 5∪A 6∪A 7∪A 10)=P (A 3)+P (A 5)+P (A 6)+P (A 7)+P (A 10)=512所以X 的分布列为:X 0123P145121616故X 的数学期望E (X )=0×14+1×512+2×16+3×16=54.3.(2017·全国卷Ⅰ)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N (μ,σ2).之外的零件数,求P (X ≥1)及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.①试说明上述监控生产过程方法的合理性;②下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得x =116错误!i =9.97,s =错误!=错误!≈0.212,其中x i 为抽取的第i 个零件的尺寸,i =1,2, (16)用样本平均数x 作为μ的估计值μ^,用样本标准差s 作为σ的估计值σ^,利用估计值判断是否需对当天的生产过程进行检查?剔除(μ^-3σ^,μ^+3σ^)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布N (μ,σ2),则P (μ-3σ<Z <μ+3σ)=0.9974.0.997416≈0.9592,0.008≈0.09.解:(1)抽取的一个零件的尺寸在(μ-3σ,μ+3σ)之内的概率为0.9974,从而零件的尺寸在(μ-3σ,μ+3σ)之外的概率为0.0026,故X ~B (16,0.0026).因此P (X ≥1)=1-P (X =0)=1-0.997416≈0.0408.X 的数学期望为EX =16×0.0026=0.0416.(2)①如果生产状态正常,一个零件尺寸在(μ-3σ,μ+3σ)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(μ-3σ,μ+3σ)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.②由x =9.97,s ≈0.212,得μ的估计值为u ^=9.97,σ的估计值为σ^=0.212,由样本数据可以看出有一个零件的尺寸在(μ^-3σ^,μ^+3σ^)之外,因此需对当天的生产过程进行检查.剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的平均数为115(16×9.97-9.22)=10.02,因此μ的估计值为10.02.错误!2i =16×0.2122+16×9.972≈1591.134,剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的样本方差为115(1591.134-9.222-2因此σ的估计值为0.008≈0.09.4.(2017·沈阳模拟)为了探究某市高中理科生在高考志愿中报考“经济类”专业是否与性别有关,现从该市高三理科生中随机抽取50名学生进行调查,得到如下2×2列联表:(单位:人)报考“经济类”不报考“经济类”总计男62430女14620总计203050(1)据此样本,判断能否在犯错误的概率不超过0.001的前提下认为理科生报考“经济类”专业与性别有关?(2)若以样本中各事件的频率作为概率估计全市总体考生的报考情况,现从该市的全体考生(人数众多)中随机抽取3人,设3人中报考“经济类”专业的人数为随机变量X ,求随机变量X 的概率分布列及数学期望.附:P (K 2≥k 0)0.10.050.010.001k 02.7063.8416.63510.828K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .解:(1)由表中数据得,K 2的观测值k =50×(6×6-24×14)230×20×20×30=50×300230×20×20×30=12.5>10.828,∴能在犯错误的概率不超过0.001的前提下认为理科生报考“经济类”专业与性别有关.(2)估计该市的全体考生中任一人报考“经济类”专业的概率为P =2050=25,X 的可能取值为0,1,2,3,由题意,得X ~P (X =k )=C -k(k =0,1,2,3),∴P (X =0)=27125,P (X =2)=C 23×35=36125,P (X =3)=8125,故随机变量X 分布列为:X 0123P2712554125361258125∴随机变量X 的数学期望E (X )=3×25=65.5.(2017·昆明模拟)某火锅店为了了解气温对营业额的影响,随机记录了该店1月份其中5天的日营业额y (单位:万元)与该地当日最低气温x (单位:℃)的数据,如下表:x 258911y1.210.80.80.7(1)求y 关于x 的线性回归方程y ^=b ^x +a ^;(2)判断y 与x 之间是正相关还是负相关,若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额;(3)设该地1月份的日最低气温X ~N (μ,σ2),其中μ近似为样本平均数x ,σ2近似为样本方差s 2,求P (3.8<X ≤13.4).附:①回归方程y ^=b ^x +a ^中,b ^=错误!,a ^=y -b ^x .②10≈3.2, 3.2≈1.8.若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ)=0.6827,P (μ-2σ<X ≤μ+2σ)=0.9545.解:(1)x =15×(2+5+8+9+11)=7,y =15×(1.2+1+0.8+0.8+0.7)=0.9.错误!2i =4+25+64+81+121=295,错误!i y i =2.4+5+6.4+7.2+7.7=28.7,∴b ^=错误!=28.7-5×7×0.9295-5×72=-2.850=-0.056,a ^=y -b ^x=0.9-(-0.056)×7=1.292.∴线性回归方程为y ^=-0.056x +1.292.(2)∵b ^=-0.056<0,∴y 与x 之间是负相关.当x =6时,y ^=-0.056×6+1.292=0.956.∴该店当日的营业额约为9560元.(3)样本方差s 2=15×(25+4+1+4+16)=10,∴最低气温X ~N (7,3.22),∴P (3.8<X ≤10.2)=0.6827,P (0.6<X ≤13.4)=0.9545,∴P (10.2<X ≤13.4)=12×(0.9545-0.6827)=0.1359.∴P (3.8<X ≤13.4)=P (3.8<X ≤10.2)+P (10.2<X ≤13.4)=0.6827+0.1359=0.8186.6.(2018届高三·张掖摸底)中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:年龄[15,25)[25,35)[35,45)[45,55)[55,65]支持“延迟退休”的人数155152817(1)由以上统计数据填2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;45岁以下45岁以上总计支持不支持(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人.①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.②记抽到45岁以上的人数为X,求随机变量X的分布列及数学期望.参考数据:P(K2≥k0)0.1000.0500.0100.001k0 2.706 3.841 6.63510.828K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.解:(1)由频率分布直方图知45岁以下与45岁以上各50人,故填充2×2列联表如下:45岁以下45岁以上总计支持354580不支持15520总计5050100因为K2的观测值k=100×(35×5-45×15)250×50×80×20=6.25>3.841,所以在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异.(2)①抽到1人是45岁以下的概率为68=3 4,抽到1人是45岁以下且另一人是45岁以上的概率为C16C12C28=37,故所求概率P=3734=47.②从不支持“延迟退休”的人中抽取8人,则45岁以下的应抽6人,45岁以上的应抽2人.所以X的可能取值为0,1,2.P(X=0)=C26C28=15 28,P(X=1)=C16C12C28=1228=37,P(X=2)=C2C28=1 28 .故随机变量X的分布列为:X012P152837128所以E(X)=1×37+2×128=12.。
概率与统计热点一 常见概率模型的概率几何概型、古典概型、相互独立事件与互斥事件的概率、条件概率是高考的热点,几何概型主要以客观题考查,求解的关键在于找准测度(面积,体积或长度);相互独立事件,互斥事件常作为解答题的一问考查,也是进一步求分布列,期望与方差的基础,求解该类问题要正确理解题意,准确判定概率模型,恰当选择概率公式.【例1】现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列.解 依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23. 设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4). 则P (A i )=C i 4⎝⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i . (1)这4个人中恰有2人去参加甲游戏的概率 P (A 2)=C 24⎝⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3+A 4,且A 3与A 4互斥,∴P (B )=P (A 3+A 4)=P (A 3)+P (A 4)=C 34⎝ ⎛⎭⎪⎫133×23+C 44⎝ ⎛⎭⎪⎫134=19.(3)依题设,ξ的所有可能取值为0,2,4. 且A 1与A 3互斥,A 0与A 4互斥. 则P (ξ=0)=P (A 2)=827,P (ξ=2)=P (A 1+A 3)=P (A 1)+P (A 3) =C 14⎝⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫233+C 34⎝ ⎛⎭⎪⎫133×23=4081,P (ξ=4)=P (A 0+A 4)=P (A 0)+P (A 4) =C 04⎝⎛⎭⎪⎫234+C 44⎝ ⎛⎭⎪⎫134=1781.所以ξ的分布列是ξ 0 2 4 P82740811781【类题通法】(1)本题44人中恰有i 人参加甲游戏的概率P =C i 4⎝⎛⎭⎪⎫13i ⎝ ⎛⎭⎪⎫234-i ,这是本题求解的关键. (2)解题中常见的错误是不能分清事件间的关系,选错概率模型,特别是在第(3)问中,不能把ξ=0,2,4的事件转化为相应的互斥事件A i 的概率和.【对点训练】甲、乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错或不答都得0分,已知甲队3人每人答对的概率分别为34,23,12,乙队每人答对的概率都是23,设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分. (1)求ξ=2的概率;(2)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率. 解 (1)ξ=2,则甲队有两人答对,一人答错,故P (ξ=2)=34×23×⎝ ⎛⎭⎪⎫1-12+34×⎝ ⎛⎭⎪⎫1-23×12+⎝ ⎛⎭⎪⎫1-34×23×12=1124;(2)设甲队和乙队得分之和为4为事件A ,甲队比乙队得分高为事件B .设乙队得分为η,则η~B ⎝ ⎛⎭⎪⎫3,23.P (ξ=1)=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-23×12=14,P (ξ=3)=34×23×12=14,P (η=1)=C 13·23·⎝⎛⎭⎪⎫132=29,P (η=2)=C 23·⎝ ⎛⎭⎪⎫232·13=49,P (η=3)=C 33⎝⎛⎭⎪⎫233=827,∴P (A )=P (ξ=1)P (η=3)+P (ξ=2)P (η=2)+P (ξ=3)·P (η=1) =14×827+1124×49+14×29=13, P (AB )=P (ξ=3)·P (η=1)=14×29=118, ∴所求概率为P (B|A )=P (AB )P (A )=11813=16.热点二 离散型随机变量的分布列、均值与方差离散型随机变量及其分布列、均值与方差及应用是数学高考的一大热点,每年均有解答题的考查,属于中档题.复习中应强化应用题目的理解与掌握,弄清随机变量的所有取值是正确列随机变量分布列和求均值与方差的关键,对概率模型的确定与转化是解题的基础,准确计算是解题的核心,在备考中强化解答题的规范性训练.【例2】甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).解 用A 表示“甲在4局以内(含4局)赢得比赛”,A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”,则P (A k )=23,P (B k )=13,k =1,2,3,4,5. (1)P (A )=P (A 1A 2)+P (B 1A 2A 3)+P (A 1B 2A 3A 4) =P (A 1)P (A 2)+P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)· P (A 3)P (A 4)=⎝ ⎛⎭⎪⎫232+13×⎝ ⎛⎭⎪⎫232+23×13×⎝ ⎛⎭⎪⎫232=5681.(2)X 的可能取值为2,3,4,5.P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)·P (B 2)=59, P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P (B 1)P (A 2)P (A 3)+P (A 1)P (B 2)P (B 3)=29, P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)P (B 4)=1081, P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881. 故X 的分布列为X 2 3 4 5 P59291081881E (X )=2×59+3×29+4×1081+5×881=22481.【类题通法】求离散型随机变量的均值和方差问题的一般步骤 第一步:确定随机变量的所有可能值; 第二步:求每一个可能值所对应的概率; 第三步:列出离散型随机变量的分布列; 第四步:求均值和方差;第五步:反思回顾.查看关键点、易错点和答题规范.【对点训练】为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元.求: ①顾客所获的奖励额为60元的概率; ②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.解(1)设顾客所获的奖励额为X.①依题意,得P(X=60)=C11C13C24=12,即顾客所获的奖励额为60元的概率为1 2.②依题意,得X的所有可能取值为20,60.P(X=60)=12,P(X=20)=C23C24=12,即X的分布列为X 20 60P 1212所以顾客所获的奖励额的数学期望为E(X)=20×12+60×12=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理,可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X1,则X1的分布列为X120 60 100P 162316X1的数学期望为E(X1)=20×16+60×23+100×16=60(元),X1的方差为D(X1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为X240 60 80P 162316X2的数学期望为E(X2)=40×16+60×23+80×16=60(元),X2的方差为D(X2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的数学期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.热点三概率与统计的综合应用概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点.主要依托点是统计图表,正确认识和使用这些图表是解决问题的关键.复习时要在这些图表上下工夫,把这些统计图表的含义弄清楚,在此基础上掌握好样本特征数的计数方法、各类概率的计算方法及数学均值与方差的运算.【例3】2018年6月14日至7月15日,第21届世界杯足球赛将于俄罗斯举行,某大学为世界杯组委会招收志愿者,被招收的志愿者需参加笔试和面试,把参加笔试的40名大学生的成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示:(1)分别求出成绩在第3,4,5组的人数;(2)现决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6人进行面试.①已知甲和乙的成绩均在第3组,求甲或乙进入面试的概率;②若从这6名学生中随机抽取2名学生接受考官D的面试,设第4组中有X名学生被考官D面试,求X的分布列和数学期望.解(1)由频率分布直方图知:第3组的人数为5×0.06×40=12.第4组的人数为5×0.04×40=8.第5组的人数为5×0.02×40=4.(2)利用分层抽样,在第3组,第4组,第5组中分别抽取3人,2人,1人.①设“甲或乙进入第二轮面试”为事件A,则P(A)=1-C310C312=511,所以甲或乙进入第二轮面试的概率为5 11.②X的所有可能取值为0,1,2,P(X=0)=C24C26=25,P(X=1)=C12C14C26=815,P(X=2)=C22C26=115.所以X的分布列为X 012P 25815115E(X)=0×25+1×815+2×115=1015=23.【类题通法】本题将传统的频率分布直方图与分布列、数学期望相结合,立意新颖、构思巧妙.求解离散型随机变量的期望与频率分布直方图交汇题的“两步曲”:一是看图说话,即看懂频率分布直方图中每一个小矩形面积表示这一组的频率;二是活用公式,本题中X 服从超几何分布.【对点训练】某公司为了解用户对某产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:6273819295857464537678869566977888827689B地区:7383625191465373648293486581745654766579(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意记事件C:“A评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.解(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散.(2)记C A1表示事件:“A地区用户的满意度等级为满意或非常满意”;C A2表示事件:“A地区用户的满意度等级为非常满意”;C B1表示事件:“B地区用户的满意度等级为不满意”;C B2表示事件:“B地区用户的满意度等级为满意”,则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,C=C B1C A1∪C B2C A2.P(C)=P(C B1C A1∪C B2C A2)=P(C B1C A1)+P(C B2C A2)=P (C B 1)P (C A 1)+P (C B 2)P (C A 2).由所给数据得C A 1,C A 2,C B 1,C B 2发生的频率分别为1620,420,1020,820,即P (C A 1)=1620,P (C A 2)=420,P (C B 1)=1020,P (C B 2)=820,故P (C )=1020×1620+820×420=0.48. 热点四 统计与统计案例能根据给出的线性回归方程系数公式求线性回归方程,了解独立性检验的基本思想、方法,在选择或填空题中常涉及频率分布直方图、茎叶图及样本的数字特征(如平均数、方差)的考查,解答题中也有所考查.【例4】从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑10i =1x i =80,∑10i =1y i =20,∑10i =1x i y i =184,∑10i =1x 2i =720. (1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 附:线性回归方程y ^=b ^x +a ^中,b ^=,a ^=y -b ^ x ,其中x ,y 为样本平均值.解 (1)由题意知n =10,x =1n ∑n i =1x i =8010=8, y =1n ∑n i =1y i=2010=2,又l xx =∑ni =1x 2i -n x 2=720-10×82=80, l xy =∑ni =1x i y i -n x y =184-10×8×2=24, 由此得b^=l xy l xx=2480=0.3, a^=y -b ^x =2-0.3×8=-0.4,故所求线性回归方程为y ^=0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b^=0.3>0),故x 与y 之间是正相关.(3)将x =7代入回归方程可以预测该家庭的月储蓄为y ^=0.3×7-0.4=1.7(千元).【类题通法】(1)分析两个变量的线性相关性,可通过计算相关系数r 来确定,r 的绝对值越接近于1,表明两个变量的线性相关性越强,r 的绝对值越接近于0,表明两变量线性相关性越弱.(2)求线性回归方程的关键是正确运用b^,a ^的公式进行准确的计算.【对点训练】4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查.下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图.若将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.(1)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?非读书迷 读书迷总计 男 15 女 45 总计(2)将频率视为概率.1人,共抽取3次,记被抽取的3人中的“读书迷”的人数为X .若每次抽取的结果是相互独立的,求X 的分布列、期望E (X )和方差D (X ). 解 (1)完成2×2列联表如下:非读书迷 读书迷 总计 男 40 15 55 女 20 25 45 总计6040100K 2=100×(40×25-15×20)60×40×55×45≈8.249>6.635,故有99%的把握认为“读书迷”与性别有关. (2)将频率视为概率.则从该校学生中任意抽取1名学生恰为读书迷的概率P =25.由题意可知X ~B ⎝ ⎛⎭⎪⎫3,25,P (X =i )=C i 3⎝ ⎛⎭⎪⎫25i ⎝ ⎛⎭⎪⎫353-i (i =0,1,2,3).X 的分布列为 X0 1 2 3 P27125 54125 36125 8125均值E (X )=np =3×25=65,方差D (X )=np (1-p )=3×25×⎝ ⎛⎭⎪⎫1-25=1825.。
6.随机变量及其概率分布1.(2017·江苏南通中学调研)设10件同类型的零件中有2件不合格品,从所有零件中依次不放回地取出3件,以X 表示取出的3件中不合格品的件数. (1)求“第一次取得正品且第二次取得次品”的概率; (2)求X 的概率分布和数学期望E (X ).解 (1)“第一次取得正品且第二次取得次品”的概率为8×210×9=845.(2)X 的取值为0,1,2.P (X =0)=8×7×610×9×8=715,P (X =1)=8×7×2×310×9×8=715,P (X =2)=8×2×1×310×9×8=115.故X 的概率分布为数学期望E (X )=0×715+1×715+2×115=35.2.(2017·江苏赣榆中学质检)袋中装有大小相同的黑球和白球共9个,从中任取2个都是白球的概率为512.现甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取,…,每次摸取1个球,取出的球不放回,直到其中有一人取到白球时终止.用X 表示取球终止时取球的总次数. (1)求袋中原有白球的个数;(2)求随机变量X 的概率分布及数学期望E (X ).解 (1)设袋中原有n 个白球,则从9个球中任取2个球都是白球的概率为C 2n C 29,由题意知C 2nC 29=512,化简得n 2-n -30=0,解得n =6或n =-5(舍去),故袋中原有白球的个数为6. (2)由题意,X 的可能取值为1,2,3,4. P (X =1)=69=23,P (X =2)=3×69×8=14,P (X =3)=3×2×69×8×7=114,P (X =4)=3×2×1×69×8×7×6=184.所以取球次数X 的概率分布为所求数学期望E (X )=1×23+2×14+3×114+4×184=107.3.(2017·江苏如皋中学模拟)某射击小组有甲、乙两名射手,甲的命中率为P 1=23,乙的命中率为P 2,在射击比武活动中每人射击两发子弹则完成一次检测.在一次检测中,若两人命中次数相等且都不少于一发,则称该射击小组为“先进和谐组”. (1)若P 2=12,求该小组在一次检测中荣获“先进和谐组”的概率;(2)计划在2018年每月进行1次检测,设这12次检测中该小组获得“先进和谐组”的次数为ξ,如果E (ξ)≥5,求P 2的取值范围.解 (1)易得P =⎝⎛⎭⎫C 12·23·13⎝⎛⎭⎫C 12·12·12+⎝⎛⎭⎫23·23⎝⎛⎭⎫12·12=13. (2)该小组在一次检测中荣获“先进和谐组”的概率为 P =⎝⎛⎭⎫C 12·23·13[C 12·P 2·(1-P 2)]+⎝⎛⎭⎫23·23P 22=89P 2-49P 22. 而ξ~B (12,P ),所以E (ξ)=12P , 由E (ξ)≥5知,⎝⎛⎭⎫89P 2-49P 22·12≥5, 解得34≤P 2≤54.又0≤P 2≤1,∴34≤P 2≤1.4.(2017·江苏平潮高级中学质检)某银行的一个营业窗口可办理四类业务,假设顾客办理业务所需的时间互相独立,且都是整数分钟.经统计以往100位顾客办理业务所需的时间t 结果如下:注:银行工作人员在办理两项业务时的间隔时间忽略不计,并将频率视为概率. (1)求银行工作人员恰好在第6分钟开始办理第三位顾客的业务的概率;。
第十章 计数原理,概率,随机变量及其分布测试卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【2018届广西贺州市桂梧高中高三上学期第四次联考】()713x -的展开式的第4项的系数为( )A. 3727C -B. 4781C -C. 3727CD. 4781C【答案】A【解析】由题意可得()713x -的展开式的第4项为()33733331771327T C x C x -+=⨯⨯-=-,选A.2.同时抛掷三枚质地均匀的硬币,出现一枚正面、二枚反面的概率等于 ( ) A.14 B. 13 C. 23 D. 12【答案】C3.【2017广西玉林一模】有两张卡片,一张的正反面分别画着老鼠和小鸡,另一张的正反面分别画着老鹰和蛇,现在有两个小孩随机地将两张卡片排在一起放在桌面上,不考虑顺序,则向上的图案是老鹰和小鸡的概率是( ) A.12 B. 13 C. 14 D. 16【答案】C【解析】将两张卡片排在一起,向上的一面组成的图案共4种,分别为:(老鼠,老鹰),(老鼠,蛇),(小鸡,老鹰),(小鸡,蛇),所以由古典概型概率公式可得组成的图案是老鹰和小鸡的概率14P =。
选C 。
4.在1,3,4,5,8路公共汽车都要停靠的一个站(假定这个站一次只能停靠一辆汽车),有一位乘客等候4路或8路汽车.假定当时各路汽车首先到站的可能性相等,则首先到站正好是这位乘客所需乘的汽车的概率等于( ) A.12 B. 23 C. 35 D. 25【答案】D【解析】由题意知,在该问题中基本事件总数为5,这位乘客等候的汽车首先到站这个事件包含的基本事件个数为2,故所求概率为25。
选D 。
5.某产品共有三个等级,分别为一等品、二等品和不合格品.从一箱产品中随机抽取1件进行检测,设“抽到一等品”的概率为0.65,“抽到二等品”的概率为0.3,则“抽到不合格品”的概率为( ) A. 0.95 B. 0.7 C. 0.35 D. 0.05 【答案】D【解析】“抽到一等品”与“抽到二等品”是互斥事件,所以“抽到一等品或二等品”的概率为0.65+0.3=0.95,“抽到不合格品”与“抽到一等品或二等品”是对立事件,故其概率为1-0.95=0.05. 故答案为D.6.有2个人从一座10层大楼的底层进入电梯,设他们中的每一个人自第二层开始在每一层离开是等可能的,则2个人在不同层离开的概率为( ) A.19 B. 29 C. 49 D. 89【答案】D7.【2018届浙江省嘉兴市第一中学上学期高三期中】某校的A 、B 、C 、D 四位同学准备从三门选修课中各选一门,若要求每门选修课至少有一人选修,且A,B 不选修同一门课,则不同的选法有( ) A. 36种 B. 72种 C. 30种 D. 66种 【答案】C【解析】先从4人中选出2人作为1个整体有246C =种选法,减去A B 、在同一组还有5种选法,再选3门课程有33A 种选法,利用分步计数原理有33530A =种不同选法.选C.8.从5名男生中挑选3人,4名女生中挑选2人,组成一个小组,不同的挑选方法共有( )A. 3254C C 种B. 3254C C 55A 种C. 3254A A 种D. 3254A A 55A 种 【答案】A【解析】男生组合数为35C 种,女生的组合数为24C ,故不同的选取方法共有3254C C 种,故选A.9.【2018届云南省昆明市高新技术开发区高考适应性月考】()522131x x ⎛⎫+- ⎪⎝⎭的展开式的常数项是( )A. -3B. -2C. 2D. 3 【答案】C10.已知随机变量X 的分布列为()13P X k ==, 1,2,3k =,则()35D X +等于( ) A. 6 B. 9 C. 3 D. 4 【答案】A【解析】由题意, ()()112323E X =++⨯=, ()()()()2221212223233D X ⎡⎤∴=-+-+-⨯=⎣⎦,()()2359963D X D X ∴+==⨯=,故选A. 11.生产过程中有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两名工人中安排一人,第四道工序只能从甲、丙两名工人中安排一人,则不同的安排方案共有 ( ) A. 24种 B. 36种 C. 48种 D. 72种 【答案】B【解析】第一道工序安排甲则第四道工序安排丙,从剩下4选两人照看剩下两道工序有24A 方案 第一道工序安排乙则第四道工序有两种方案,再从剩下4选两人照看剩下两道工序有24A 方案,因此共有2244236A A +=,选B.12.若离散型随机变量ξ的取值分别为,m n ,且()P m n ξ==, ()P n m ξ==, 38E ξ=,则22m n +的值为( ) A.14 B. 516 C. 58 D. 1316【答案】C【解析】因为31,28m n E nm mn mn ξ+==+==,所以()222352188m n m n mn +=+-=-=, 应选答案C.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【2018届浙江省嘉兴市第一中学上学期高三期中】二项式()512x +中,所有的二项式系数之和为___________;系数最大的项为_________. 【答案】 32 3480,80x x【解析】所有的二项式系数之和为0155555......232C C C +++==,展开式为234512*********x x x x x +++++,系数最大的项为380x 和480x .14.一个家庭中有两个小孩,若生男还是生女是等可能的,则此家庭中两小孩均为女孩的概率为_____. 【答案】14【解析】由题意得一个家庭中两个小孩的性别的所有的基本事件有:(男,男),(男,女),(女,男),(女,女),共4种,其中均为女孩的基本事件只有1个,故此家庭中两个均为女孩的概率为14. 15.【2017届浙江省ZDB 联盟高三一模】教育装备中心新到7台同型号的电脑,共有5所学校提出申请,鉴于甲、乙两校原来电脑较少,决定给这两校每家至少2台,其余学校协商确定,允许有的学校1台都没有,则不同的分配方案有__________种(用数字作答). 【答案】3516.【2018届浙江省“七彩阳光”联盟高三上学期期初】某人喜欢玩有三个关卡的通关游戏,根据他的游戏经验,每次开启一个新的游戏,这三个关卡他能够通关的概率分别为111,,234(这个游戏的游戏规则是:如果玩者没有通过上一个关卡,他照样可以玩下一个关卡,但玩该游戏的得分会有影响),则此人在开启一个这种新的游戏时,他能够通过两个关卡的概率为__________,设X 表示他能够通过此游戏的关卡的个数,则随机变量X 的数学期望为__________. 【答案】14 1312.所以,随机变量X的分布列为随机变量X的数学期望()1111113 012342442412E X=⨯+⨯+⨯+⨯=.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【2017届重庆市第一中学高三上学期一诊】已知的展开式中各项的二项式系数和为,第二项的系数为.(1)求,(2)求数列的前项和.【答案】(1);(2).【解析】试题分析:(1)利用二项式系数的定义可得根据二项式定理可得第二项为,从而可得系数为;(2)由(1)可知知根据错位相减法可得结果.试题解析:(1);(2)由(1)知所以 ①,②②-①可得,可得.18.【2018届河南省郑州市第一中学高三上学期期中】某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为23.现有10件产品,其中6件是一等品,4件是二等品.(1)随机选取1件产品,求能够通过检测的概率;(2)随机选取3件产品,其中一等品的件数记为X ,求X 的分布列及数学期望.. 【答案】(1)1315;(2)见解析.试题解析:(1)设随机选取一件产品,能够通过检测的事件为A 事件A 等于事件“选取一等品都通过检测或者是选取二等品通过检测”()642131010315p A =+⨯= (2)由题可知X 可能取值为0,1,2,3.()30463101030C C P X C ===, ()21463103110C C P X C ===, ()1246310122C C P X C ===, ()0346310136C C P X C ===.分布列:∴311912310265EX =⨯+⨯+⨯= 19.【2018届江苏省南京市高三上期初】袋中有形状和大小完全相同的四种不同颜色的小球,每种颜色的小球各有4个,分别编号为1,2,3,4.现从袋中随机取两个球.(Ⅰ)若两个球颜色不同,求不同取法的种数;(Ⅱ)在(1)的条件下,记两球编号的差的绝对值为随机变量X,求随机变量X的概率分布与数学期望.【答案】(1)96(2)E(X)=5 4试题解析:解:(1)两个球颜色不同的情况共有24C 42=96(种). (2)随机变量X所有可能的值为0,1,2,3.P(X=0)=2441964C==,P(X=1)=114333 968 C C=,P(X=2)=114321 964C C=,P(X=3)=11431 968 C C=所以随机变量X的概率分布列为:所以E(X)=014⨯+1⨯38+2⨯14+3⨯18=54.20.【2017届广西柳州市、钦州市高三一模】某市公租房的房源位于四个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,在该市的甲、乙、丙三位申请人中:(1)求恰有1人申请片区房源的概率;(2)用表示选择片区的人数,求的分布列和数学期望.【答案】(1);(2)详见解析.【解析】试题分析:(1)基本事件总数为种,区有人,方法数有种,剩余人从剩下个中任选,方法数有,根据分步计数原理,符合题意的方法数有种,故概率为.(2)选的人数可能有个,个人,每个人选到的概率为,故为二项分布,利用二项分布的公式可求得期望和方差. 试题解析:(1)本题是一个等可能事件的概率,实验发生包含的事件是3位申请人中,每一个有四种选择,共有种结果.满足条件的事件恰有1人申请片区房源有,根据等可能事件的概率.(2)的所有可能结果为0,1,2,3,依题意,,,,,∴的分布列为:∴的数学期望:.法2:每个片区被申请的概率均为,没被选中的概率均为,的所有可能结果为0,1,2,3,且,,,,,∴的分布列为:∴的数学期望:.21.【2017届江西师范大学附属中学高三3月月考】已知由甲、乙两位男生和丙、丁两位女生组成的四人冲关小组,参加由安徽卫视推出的大型户外竞技类活动《男生女生向前冲》.活动共有四关,若四关都闯过,则闯关成功,否则落水失败.设男生闯过一至四关的概率依次是5432,,,6543,女生闯过一至四关的概率依次是4321,,,5432. (Ⅰ)求男生甲闯关失败的概率;(Ⅱ)设X 表示四人冲关小组闯关成功的人数,求随机变量X 的分布列和期望. 【答案】(Ⅰ)23;(Ⅱ)见解析.∴()()543212111654333P A P A =-=-⨯⨯⨯=-=. (Ⅱ)记“一位女生闯关成功”为事件B ,则()4321154325P B =⨯⨯⨯=, 随机变量X 的所有可能取值为0,1,2,3,4.()222464035225P ⎛⎫⎛⎫X ==⨯=⎪ ⎪⎝⎭⎝⎭, ()221122124142961335553225P C C ⎛⎫⎛⎫X ==⋅⋅⋅+⋅⋅⋅= ⎪ ⎪⎝⎭⎝⎭, ()221122121141123335553225P C C ⎛⎫⎛⎫X ==⋅⋅⋅+⋅⋅⋅=⎪ ⎪⎝⎭⎝⎭,()22111435225P ⎛⎫⎛⎫X ==⨯=⎪ ⎪⎝⎭⎝⎭, ()64961215221225225P +++X ==-=. ∴X 的分布列为:∴()6496521211601234.22522522522522515E X =⨯+⨯+⨯+⨯+⨯= 22.【2017届河南省洛阳市高三3月统考】某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修,每台机器出现故障需要维修的概率为13. (1)若出现故障的机器台数为X ,求X 的分布列;(2) 该厂至少有多少名工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不少于90%?(3)已知一名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资,每台机器不出现故障或出现故障能及时维修,就使该厂产生5万元的利润,否则将不产生利润,若该厂现有2名工人,求该厂每月获利的均值. 【答案】(1) 3;(2)140881.件A 的概率为13,该厂有4台机器就相当于4次独立重复试验,因出现故障的机器台数为X ,故1~4,3X B ⎛⎫ ⎪⎝⎭,()4042160381P X C ⎛⎫=== ⎪⎝⎭, ()30412*******P X C ⎛⎫==⋅⋅= ⎪⎝⎭,11 ()2204122423381P X C ⎛⎫⎛⎫==⋅= ⎪ ⎪⎝⎭⎝⎭, ()30412833381P X C ⎛⎫==⋅⋅= ⎪⎝⎭ 即X 的分布列为:(2)设该厂有n 名工人,则“每台机器在任何时刻同时出现故障及时进行维修”为x n ≤,即0x =, 1x =, ⋅⋅⋅, x n =,这1n +个互斥事件的和事件,则729081≤ %8081≤, ∴至少要3名工人,才能保证每台机器在任何时刻同时出现故障能及时进行维修的概率不少于90%.(3)设该厂获利为Y 万元,则Y 的所有可能取值为: 18,13,8()()()()721801281P Y P X P X P X ===+=+==, ()()813381P Y P X ====, ()()18481P Y P X ====, 即Y 的分布列为:则()728114081813881818181E Y =⨯+⨯+⨯=, 故该厂获利的均值为140881.。
《计数原理与概率》高考复习指导一、考试说明:1.考试内容(1)分类计数原理与分步计数原理,排列与组合.(2)等可能性事件的概率,互斥事件有一个发生的概率,相互独立事件同时发生的概率.2.考试要求(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.(2)理解排列与组合的意义,掌握排列数与组合数的计算公式,掌握组合数的两个性质,并能用它们解决一些简单的应用问题.(3)了解等可能性事件的概率的意义,会用排列组合公式计算一些等可能性事件的概率.(4)了解互斥事件的意义,会用互斥事件的概率加法公式计算一些事件的概率.(5)了解相互独立事件的意义,会用相互独立事件的概率乘法公式计算一些事件的概率,会计算事件在n次独立重复试验中恰好发生k次的概率.二、高考试题分析排列与组合、概率与统计是高中数学的重要内容.一方面,这部分内容占用教学时数多达36课时,另一方面,这部分内容是进一步学习高等数学的基础知识,因此,它是高考数学命题的重要内容.从近三年全国高考数学(新材)试题来看,主要是考查排列与组合、概率与统计的基本概念、公式及基本技能、方法,以及分析问题和解决问题的能力.试题特点是基础和全面.题目类型有选择题、填空题、解答题,一般是两小(9分~10分)一大(12分),解答题通常是概率问题.试题难度多为低中档.为了支持高中数学课程的改革,高考数学命题对这部分将进一步重视,但题目数量、难度、题型将会保持稳定.例1.(1999年全国)在一块并排10垄的田地中,选择2垄分别种植A、B两种作物,每种作物种植一垄,为有利于作物生长,要求A、B两种作物间的间隔不小于6垄,则不同的选垄方法共有_______种(用数字作答).[解析]A种植在左边第一垄时,B有3种不同的种植方法;A种植在左边第二垄时,B有两种不同的种植方法;A种植在左边第三垄时,B只有一种种植方法.B在左边种植的情形与上述情形相同.故共有2(3+2+1)=12种不同的选垄方法.∴应填12.例2.(2018年新教材)将3种作物种植在如图所示的5块试验田里,每一块种植一种作物且相邻的试验田不能种植同一作物,不同的种植方法共有______种(以数字作答).[解析]将5块试验田从左到右依次看作甲、乙、丙、丁、戊,3种作物依次看作A、B、C,则3种作物都可以种植在甲试验田里,由于相邻的试验田不能种植同一种作物,从而可知在乙试验田里只能有两种作物.同理,在丙、丁、戊试验田里也只能有两种作物可以种植.由分步计数原理,不同的种植方法共有3×2×2×2=48种.∴应填:48例3.(2018年全国高考题)某城市中心广场建造一个花圃,花圃分为6个部分(如图),现要栽种4种不同颜色的花,每部分栽种1种且相邻部分不能栽种同样颜色的花,不同的栽法有_______种.[解析]由于第1、2、3块两两相邻,我们先安排这三块,给第1、2、3块种花时分别有4、3、2种种法,所以共有4×3×2=24种不同种法.下面给第4块种花,若第4块与第6块同色,只有一种种植方法,则第5块只有2种种法,若第4块与第2块同色时,共有2×1=2种种法.若第4块与第6块不同色,但第4块与第2块同色,则第6块有2种种植的方案,而第5块只有1种种法,共有2种不同的种植方法.若第4块与第6块不同色,但第4块与第2块不同色,则第6块有1种种法,则第5块也有一种不同种法,所以第4块与第6块不同色时,有1种种法.综上共有24×(2+2+1)=120种不同的种植方法.例4.(2018年春季考试题)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个节目插入原节目单中,那么不同的插法的种数为A 、42B 、30C 、20D 、12[解析]将两个新节目插入5个固定顺序节目单有两种情况:(1)两个新节目相邻的插法种数为226A ;(2)两个节目不相邻的插法种数为26A ;由分类计数原理共有2226642A A +=种方法,选A.例5.(2018重庆)(本小题满分12分)设甲、已、丙三人每次射击命中目标的概率分别为0.7、0.6和0.5。
概率、随机变量及其分布列【考点梳理】1.概率模型公式及相关结论(1)古典概型的概率公式.P(A)=mn=事件A中所含的基本事件数试验的基本事件总数.(2)几何概型的概率公式.P(A)=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).(3)条件概率.在A发生的条件下B发生的概率:P(B|A)=P(AB)P(A).(4)相互独立事件同时发生的概率:若A,B相互独立,则P(AB)=P(A)·P(B).(5)若事件A,B互斥,则P(A∪B)=P(A)+P(B),P=1-P(A).2.独立重复试验与二项分布如果事件A在一次试验中发生的概率是p,那么它在n次独立重复试验中恰好发生k次的概率为P n(k)=C k n p k(1-p)n-k,k=0,1,2,…,n.用X表示事件A在n 次独立重复试验中发生的次数,则X服从二项分布,即X~B(n,p)且P(X=k)=C k n p k(1-p)n-k.3.超几何分布在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N ∈N *,此时称随机变量X 服从超几何分布.超几何分布的模型是不放回抽样,超几何分布中的参数是M ,N ,n . 4.离散型随机变量的均值、方差 (1)离散型随机变量ξ的分布列为离散型随机变量i ②p 1+p 2+…+p i +…+p n =1(i =1,2,3,…,n ).(2)E (ξ)=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量ξ的数学期望或均值. D (ξ)=(x 1-E (ξ))2·p 1+(x 2-E (ξ))2·p 2+…+(x i -E (ξ))2·p i +…+(x n -E (ξ))2·p n 叫做随机变量ξ的方差. (3)数学期望、方差的性质.①E (aξ+b )=aE (ξ)+b ,D (aξ+b )=a 2D (ξ). ②X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p ). ③X 服从两点分布,则E (X )=p ,D (X )=p (1-p ). 【题型突破】题型一、古典概型与几何概型【例1】(1)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( ) A.15B.25C.825D.925(2)在[-1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y 2=9相交”发生的概率为________.4【解析】(1)把5名同学依次编号为甲乙丙丁戊,基本事件空间Ω={甲乙,甲丙,甲丁,甲戊,乙丙,乙丁,乙戊,丙丁,丙戊,丁戊},包含基本事件总数n =10.设A 表示事件“甲被选中”,则A ={甲乙,甲丙,甲丁,甲戊},包含基本事件数m =4.所以概率为P =410=25.(2)若直线y =kx 与圆(x -5)2+y 2=9相交,则有圆心到直线的距离d =|5k |k 2+1<3,解之得-34<k <34,所以所求概率P =34-⎝ ⎛⎭⎪⎫-341-(-1)=34.【类题通法】1.求古典概型的概率,关键是正确求出基本事件总数和所求事件包含的基本事件总数.常常用到排列、组合的有关知识,计数时要正确分类,做到不重不漏.2.计算几何概型的概率,构成试验的全部结果的区域和事件发生的区域的寻找是关键,有时需要设出变量,在坐标系中表示所需要的区域. 【对点训练】(1)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A.13B.12C.23D.56(2)记函数f (x )=6+x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是________.9【解析】(1)将4种颜色的花任选2种种在花坛中,余下的2种花种在另一个花坛中,有6种种法,其中红色和紫色的花不在同一花坛的种数有4种,故概率为23.(2)由6+x-x2≥0得-2≤x≤3,则D为[-2,3].故所求概率P=3-(-2)5-(-4)=59.题型二、互斥事件、相互独立事件的概率【例2】某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率.【解析】(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A 发生当且仅当一年内出险次数大于1,故P(A)=0.20+0.20+0.10+0.05=0.55.(2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.10+0.05=0.15.又P(AB)=P(B),故P (B |A )=P (AB )P (A )=P (B )P (A )=0.150.55=311.因此所求概率为311.【例3】某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .(1)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;(2)求系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率.【解析】(1)设“至少有一个系统不发生故障”为事件C ,那么1-P =1-110·p =4950,解得p =15.(2)设“系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数”为事件D .“系统A 在3次相互独立的检测中发生k 次故障”为事件D k . 则D =D 0+D 1,且D 0,D 1互斥.依题意,得P (D 0)=C 03⎝⎛⎭⎪⎫1-1103,P (D 1)=C 13110⎝ ⎛⎭⎪⎫1-1102, 所以P (D )=P (D 0)+P (D 1)=7291 000+2431 000=243250.所以系统A 在3次相互独立的检测中不发生故障的次数大于发生故障的次数的概率为243250. 【类题通法】1.求复杂事件的概率,要正确分析复杂事件的构成,看复杂事件是能转化为几个彼此互斥的事件的和事件还是能转化为几个相互独立事件同时发生的积事件,然后用概率公式求解.2.(1)注意辨别独立重复试验的基本特征:①在每次试验中,试验结果只有发生与不发生两种情况;②在每次试验中,事件发生的概率相同.(2)牢记公式P n (k )=C k n p k (1-p )n -k ,k =0,1,2,…,n ,并深刻理解其含义. 【对点训练】2017年4月1日,国家在河北省白洋淀以北的雄县、容城、安新3县设立雄安新区,这是继深圳经济特区和上海浦东新区之后又一具有全国意义的新区,是千年大计、国家大事。
专题检测(十八) 概率与统计、随机变量及其分布列A 卷——夯基保分专练一、选择题1.已知某一随机变量ξ的分布列如下表所示,若E (ξ)=6.3,则a 的值为( )A .4B .5C .6D .7解析:选A 根据随机变量ξ的分布列可知b +0.1+0.4=1,所以b =0.5.又E (ξ)=0.5×a +7×0.1+9×0.4=6.3,所以a =4.2.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312解析:选A 3次投篮投中2次的概率为P (k =2)=C 23×0.62×(1-0.6),投中3次的概率为P (k =3)=0.63,所以通过测试的概率为P (k =2)+P (k =3)=C 23×0.62×(1-0.6)+0.63=0.648.3.(2017·武汉调研)小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A =“4个人去的景点不相同”,事件B =“小赵独自去一个景点”,则P (A |B )=( )A.29 B.13 C.49D.59解析:选A 小赵独自去一个景点共有4×3×3×3=108种可能性,4个人去的景点不同的可能性有A 44=4×3×2×1=24种,∴P (A |B )=24108=29.4.(2017·惠州三调)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中各随机选一匹进行一场比赛,则田忌获胜的概率为( )A.13 B.14 C.15D.16解析:选A 设田忌的上、中、下三个等次的马分别为A ,B ,C ,齐王的上、中、下三个等次的马分别为a ,b ,c ,从双方的马匹中各随机选一匹进行一场比赛的所有可能结果有Aa ,Ab ,Ac ,Ba ,Bb ,Bc ,Ca ,Cb ,Cc ,共9种,田忌获胜有Ab ,Ac ,Bc ,共3种,所以田忌获胜的概率为13.5.(2017·西安八校联考)在平面区域{(x ,y )|0≤x ≤2,0≤y ≤4}内随机投入一点P ,则点P 的坐标(x ,y )满足y ≤x 2的概率为( )A.12 B.13 C.23D.34解析:选 B 不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤4表示的平面区域的面积为2×4=8,不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤4,y ≤x 2表示的平面区域的面积为⎠⎛02x 2d x =13⎪⎪⎪20=83,因此所求的概率P =838=13.6.甲、乙两人进行围棋比赛,约定先连胜2局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.记X 为比赛决出胜负时的总局数,则X 的数学期望是( )A.20183 B.21483 C.22481D.23981解析:选C 用A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”, 则P (A k )=23,P (B k )=13,k =1,2,3,4,5.X 的所有可能取值为2,3,4,5,且P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)P (B 2)=59, P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P (B 1)P (A 2)·P (A 3)+P (A 1)P (B 2)P (B 3)=29,P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)·P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)P (B 4)=1081, P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881.故X 的分布列为:E (X )=2×59+3×29+4×1081+5×881=22481.二、填空题7.(2017·江苏高考)记函数f (x )=6+x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是________.解析:由6+x -x 2≥0,解得-2≤x ≤3,则D =[-2,3],则所求概率P =3- -2 5- -4 =59. 答案:598.某车间共有6名工人,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数,日加工零件个数大于样本均值的工人为优秀工人.从该车间6名工人中,任取2人,则至少有1名优秀工人的概率为________.解析:由茎叶图可知6名工人加工零件数分别为17,19,20,21,25,30,平均值为16×(17+19+20+21+25+30)=22,则优秀工人有2名,从该车间6名工人中,任取2人共有C 26=15种取法,其中至少有1名优秀工人的共有C 14C 12+C 22=9种取法,由概率公式可得P =915=35.答案:359.某商场在儿童节举行回馈顾客活动,凡在商场消费满100元者即可参加射击赢玩具活动,具体规则如下:每人最多可射击3次,一旦击中,则可获奖且不再继续射击,否则一直射满3次为止.设甲每次击中的概率为p (p ≠0),射击次数为η,若η的均值E (η)>74,则p 的取值范围是________.解析:由已知得P (η=1)=p ,P (η=2)=(1-p )p ,P (η=3)=(1-p )2, 则E (η)=p +2(1-p )p +3(1-p )2=p 2-3p +3>74,解得p >52或p <12,又p ∈(0,1),所以p ∈⎝ ⎛⎭⎪⎫0,12. 答案:⎝ ⎛⎭⎪⎫0,12 三、解答题10.某市教育局为了解高三学生体育达标情况,对全市高三学生进行了体能测试,经分析,全市高三学生的体能测试成绩X 服从正态分布N (80,σ2)(满分为100分).已知P (X ≤75)=0.3,P (X ≥95)=0.1,现从该市高三学生中随机抽取3位同学.(1)求抽到的3位同学在该次体能测试中的成绩在区间[80,85),[85,95),[95,100]内各有1位的概率;(2)记抽到的3位同学在该次体能测试中的成绩在区间(75,85)内的人数为ξ,求随机变量ξ的分布列和数学期望E (ξ).解:(1)由题意知,P (80≤X <85)=0.5-P (X ≤75)=0.2,P (85≤X <95)=0.3-0.1=0.2, 所以所求概率P =A 33×0.2×0.2×0.1=0.024. (2)P (75<X <85)=1-2P (X ≤75)=0.4, 所以ξ服从二项分布B (3,0.4),P (ξ=0)=0.63=0.216,P (ξ=1)=C 13×0.4×0.62=0.432, P (ξ=2)=C 23×0.42×0.6=0.288,P (ξ=3)=0.43=0.064,所以随机变量ξ的分布列为:数学期望E (ξ)11.(2018届高三·云南11校跨区调研)为了解一种植物果实的情况,随机抽取一批该植物果实样本测量重量(单位:克),按照[27.5,32.5),[32.5,37.5),[37.5,42.5),[42.5,47.5),[47.5,52.5]分为5组,其频率分布直方图如图所示.(1)求图中a 的值;(2)估计这种植物果实重量的平均数x 和方差s 2(同一组中的数据用该组区间的中点值作代表);(3)已知这种植物果实重量不低于32.5克的即为优质果实,用样本估计总体.若从这种植物果实中随机抽取3个,其中优质果实的个数为X,求X的分布列和数学期望E(X).解:(1)组距d=5,由5×(0.02+0.04+0.075+a+0.015)=1,得a=0.05.(2)各组中点值和相应的频率依次为x=30×0.1+35×0.2+40×0.375+45×0.25+50×0.075=40,s2=(-10)2×0.1+(-5)2×0.2+02×0.375+52×0.25+102×0.075=28.75.(3)由已知,这种植物果实的优质率p=0.9,且X服从二项分布B(3,0.9),P(X=0)=0.13=0.001,P(X=1)=C13×0.9×0.12=0.027,P(X=2)=C23×0.92×0.1=0.243,P(X=3)=0.93=0.729,所以X的分布列为:故数学期望E(X)=np=2.7.12.班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)(2)如果随机抽取的7名同学的数学、物理成绩(单位:分)对应如下表:①若规定记3名同学中数学和物理成绩均为优秀的人数为ξ,求ξ的分布列和数学期望;②根据上表数据,求物理成绩y关于数学成绩x的线性回归方程(系数精确到0.01),若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?附:线性回归方程y ^=b ^x +a ^,其中b ^=∑i =1nx i -xy i -y∑i =1nx i -x 2,a ^=y -b ^x .解:(1)依据分层抽样的方法,24名女同学中应抽取的人数为742×24=4,18名男同学中应抽取的人数为742×18=3,故不同的样本的个数为C 424C 318.(2)①∵7名同学中数学和物理成绩均为优秀的人数为3, ∴ξ的取值为0,1,2,3.∴P (ξ=0)=C 34C 37=435,P (ξ=1)=C 24C 13C 37=1835,P (ξ=2)=C 14C 23C 37=1235,P (ξ=3)=C 33C 37=135.∴ξ的分布列为:∴E (ξ)=0×435+1×1835+2×1235+3×135=97.②∵b ^=526812≈0.65,a ^=y -b ^x =83-0.65×76=33.60.∴线性回归方程为y ^=0.65x +33.60. 当x =96时,y ^=0.65×96+33.60=96. ∴可预测该同学的物理成绩为96分.B 卷——大题增分专练1.(2018届高三·湖南十校联考)为响应国家“精准扶贫,产业扶贫”的战略,进一步优化能源消费结构,某市决定在地处山区的A 县推进光伏发电项目.在该县山区居民中随机抽取50户,统计其年用电量得到以下统计表.以样本的频率作为概率.的数学期望;(2)已知该县某山区自然村有居民300户.若计划在该村安装总装机容量为300千瓦的光伏发电机组,该机组所发电量除保证该村正常用电外,剩余电量国家电网以0.8元/度的价格进行收购.经测算每千瓦装机容量的发电机组年平均发电1 000度,试估计该机组每年所发电量除保证正常用电外还能为该村创造直接收益多少元?解:(1)记在抽取的50户居民中随机抽取1户,其年用电量不超过600度为事件A ,则P (A )=35.由已知可得从该县山区居民中随机抽取10户,记其中年用电量不超过600度的户数为X ,X 服从二项分布,即X ~B ⎝⎛⎭⎪⎫10,35,故E (X )=10×35=6.(2)设该县山区居民户年均用电量为E (Y ),由抽样可得E (Y )=100×550+300×1550+500×1050+700×1550+900×550=500(度).则该自然村年均用电量约150 000度.又该村所装发电机组年预计发电量为300 000度,故该机组每年所发电量除保证正常用电外还能剩余电量约150 000度,能为该村创造直接收益150 000×0.8=120 000 元.2.《最强大脑》是江苏卫视借鉴德国节目《Super Brain 》推出的大型科学竞技类真人秀节目,是专注于传播脑科学知识和脑力竞技的节目.某机构为了了解大学生喜欢《最强大脑》是否与性别有关,对某校的100名大学生进行了问卷调查,得到如下列联表:已知在这100人中随机抽取1人抽到不喜欢《最强大脑》的大学生的概率为0.4. (1)请将上述列联表补充完整;(2)判断在犯错误的概率不超过0.001的前提下能否认为喜欢《最强大脑》与性别有关,并说明你的理由;(3)已知在被调查的大学生中有5名是大一学生,其中3名喜欢《最强大脑》,现从这5名大一学生中随机抽取2人,抽到喜欢《最强大脑》的人数为X ,求X 的分布列与数学期望.下面的临界值表仅供参考:⎝⎛ 参考公式:K 2=n ad -bc 2a +bc +d a +c b +d ,其中n =)a +b +c +d解:(1)因为在100人中随机抽取1人抽到不喜欢《最强大脑》的大学生的概率为0.4,所以不喜欢《最强大脑》的大学生人数为100×0.4=40,其中男生有10人,则女生有30人,列联表补充如下:(2)由表中数据得K 2=100× 40×30-20×10 260×40×50×50≈16.667>10.828,所以在犯错误的概率不超过0.001的前提下能认为喜欢《最强大脑》与性别有关.(3)X 的所有可能取值为0,1,2. 依题意知,X 服从超几何分布,所以P (X =0)=C 03C 22C 25=110,P (X =1)=C 13C 12C 25=610=35,P (X =2)=C 23C 02C 25=310.所以X 的分布列为故数学期望E (X )=0×110+1×35+2×310=65.3.甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望E (X ). 解:(1)记事件A :“甲第一轮猜对”, 记事件B :“乙第一轮猜对”, 记事件C :“甲第二轮猜对”, 记事件D :“乙第二轮猜对”,记事件E :“‘星队’至少猜对3个成语”.由题意,E =ABCD +A BCD +A B CD +AB C D +ABC D ,由事件的独立性与互斥性, 得P (E )=P (ABCD )+P (A BCD )+P (A B CD )+P (AB C D )+P (ABC D )=P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )·P (B )P (C )P (D )+P (A )P (B )P (C )P (D )=34×23×34×23+2×⎝ ⎛⎭⎪⎫14×23×34×23+34×13×34×23=23, 所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6.由事件的独立性与互斥性,得P (X =0)=14×13×14×13=1144,P (X =1)=2×⎝ ⎛⎭⎪⎫34×13×14×13+14×23×14×13=10144=572,P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P (X =3)=34×23×14×13+14×13×34×23=12144=112,P (X =4)=2×⎝ ⎛⎭⎪⎫34×23×34×13+34×23×14×23=60144=512,P (X =6)=34×23×34×23=36144=14.可得随机变量X 的分布列为所以数学期望E (X )=0×144+1×72+2×144+3×12+4×12+6×4=236. 4.(2017·昆明模拟)某火锅店为了了解气温对营业额的影响,随机记录了该店1月份其中5天的日营业额y (单位:万元)与该地当日最低气温x (单位:℃)的数据,如下表:(1)求y 关于x 的线性回归方程y ^=b ^x +a ^;(2)判断y 与x 之间是正相关还是负相关,若该地1月份某天的最低气温为6 ℃,用所求回归方程预测该店当日的营业额;(3)设该地1月份的日最低气温X ~N (μ,σ2),其中μ近似为样本平均数x ,σ2近似为样本方差s 2,求P (3.8<X ≤13.4).附:①回归方程y ^=b ^x +a ^中,b ^=∑i =1nx i y i -n xy∑i =1nx 2i -n x 2,a ^=y -b ^x .②10≈3.2, 3.2≈1.8.若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ)=0.682 7,P (μ-2σ<X ≤μ+2σ)=0.954 5.解:(1)x =15×(2+5+8+9+11)=7,y =15×(1.2+1+0.8+0.8+0.7)=0.9.∑i =15x 2i =4+25+64+81+121=295, ∑i =15x i y i =2.4+5+6.4+7.2+7.7=28.7,∴b ^=∑i =15x i y i -5xy∑i =15x 2i -5x 2=28.7-5×7×0.9295-5×72=-2.850=-0.056, a ^=y -b ^x =0.9-(-0.056)×7=1.292.∴线性回归方程为y ^=-0.056x +1.292. (2)∵b ^=-0.056<0,∴y 与x 之间是负相关.11 当x =6时,y ^=-0.056×6+1.292=0.956.∴该店当日的营业额约为9 560元.(3)样本方差s 2=15×(25+4+1+4+16)=10, ∴最低气温X ~N (7,3.22),∴P (3.8<X ≤10.2)=0.682 7, P (0.6<X ≤13.4)=0.954 5,∴P (10.2<X ≤13.4)=12×(0.954 5-0.682 7)=0.135 9. ∴P (3.8<X ≤13.4)=P (3.8<X ≤10.2)+P (10.2<X ≤13.4)=0.682 7+0.135 9=0.818 6.。
专题检测(十八) 概率与统计、随机变量及其分布列A 卷——夯基保分专练一、选择题1.已知某一随机变量ξ的分布列如下表所示,若E (ξ)=6.3,则a 的值为( )A .4B .5C .6D .7解析:选A 根据随机变量ξ的分布列可知b +0.1+0.4=1,所以b =0.5.又E (ξ)=0.5×a +7×0.1+9×0.4=6.3,所以a =4.2.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312解析:选A 3次投篮投中2次的概率为P (k =2)=C 23×0.62×(1-0.6),投中3次的概率为P (k =3)=0.63,所以通过测试的概率为P (k =2)+P (k =3)=C 23×0.62×(1-0.6)+0.63=0.648.3.(2017·武汉调研)小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A =“4个人去的景点不相同”,事件B =“小赵独自去一个景点”,则P (A |B )=( )A.29 B.13 C.49D.59解析:选A 小赵独自去一个景点共有4×3×3×3=108种可能性,4个人去的景点不同的可能性有A 44=4×3×2×1=24种,∴P (A |B )=24108=29. 4.(2017·惠州三调)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中各随机选一匹进行一场比赛,则田忌获胜的概率为( )A.13B.14C.15D.16解析:选A 设田忌的上、中、下三个等次的马分别为A ,B ,C ,齐王的上、中、下三个等次的马分别为a ,b ,c ,从双方的马匹中各随机选一匹进行一场比赛的所有可能结果有Aa ,Ab ,Ac ,Ba ,Bb ,Bc ,Ca ,Cb ,Cc ,共9种,田忌获胜有Ab ,Ac ,Bc ,共3种,所以田忌获胜的概率为13.5.(2017·西安八校联考)在平面区域{(x ,y )|0≤x ≤2,0≤y ≤4}内随机投入一点P ,则点P 的坐标(x ,y )满足y ≤x 2的概率为( )A.12B.13C.23D.34解析:选B 不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤4表示的平面区域的面积为2×4=8,不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤4,y ≤x 2表示的平面区域的面积为⎠⎛02x 2d x =13⎪⎪20=83,因此所求的概率P =838=13.6.甲、乙两人进行围棋比赛,约定先连胜2局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.记X 为比赛决出胜负时的总局数,则X 的数学期望是( )A.20183 B.21483 C.22481D.23981解析:选C 用A k 表示“第k 局甲获胜”,B k 表示“第k 局乙获胜”, 则P (A k )=23,P (B k )=13,k =1,2,3,4,5.X 的所有可能取值为2,3,4,5,且P (X =2)=P (A 1A 2)+P (B 1B 2)=P (A 1)P (A 2)+P (B 1)P (B 2)=59, P (X =3)=P (B 1A 2A 3)+P (A 1B 2B 3)=P (B 1)P (A 2)·P (A 3)+P (A 1)P (B 2)P (B 3)=29,P (X =4)=P (A 1B 2A 3A 4)+P (B 1A 2B 3B 4)=P (A 1)·P (B 2)P (A 3)P (A 4)+P (B 1)P (A 2)P (B 3)P (B 4)=1081, P (X =5)=1-P (X =2)-P (X =3)-P (X =4)=881. 故X 的分布列为:E (X )=2×59+3×29+4×1081+5×881=22481.二、填空题7.(2017·江苏高考)记函数f (x )=6+x -x 2的定义域为D .在区间[-4,5]上随机取一个数x ,则x ∈D 的概率是________.解析:由6+x -x 2≥0,解得-2≤x ≤3,则D =[-2,3],则所求概率P =3-(-2)5-(-4)=59.答案:598.某车间共有6名工人,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数,日加工零件个数大于样本均值的工人为优秀工人.从该车间6名工人中,任取2人,则至少有1名优秀工人的概率为________.解析:由茎叶图可知6名工人加工零件数分别为17,19,20,21,25,30,平均值为16×(17+19+20+21+25+30)=22,则优秀工人有2名,从该车间6名工人中,任取2人共有C 26=15种取法,其中至少有1名优秀工人的共有C 14C 12+C 22=9种取法,由概率公式可得P =915=35. 答案:359.某商场在儿童节举行回馈顾客活动,凡在商场消费满100元者即可参加射击赢玩具活动,具体规则如下:每人最多可射击3次,一旦击中,则可获奖且不再继续射击,否则一直射满3次为止.设甲每次击中的概率为p (p ≠0),射击次数为η,若η的均值E (η)>74,则p 的取值范围是________.解析:由已知得P (η=1)=p ,P (η=2)=(1-p )p ,P (η=3)=(1-p )2, 则E (η)=p +2(1-p )p +3(1-p )2=p 2-3p +3>74,解得p >52或p <12,又p ∈(0,1),所以p ∈⎝⎛⎭⎫0,12. 答案:⎝⎛⎭⎫0,12 三、解答题10.某市教育局为了解高三学生体育达标情况,对全市高三学生进行了体能测试,经分析,全市高三学生的体能测试成绩X 服从正态分布N (80,σ2)(满分为100分).已知P (X ≤75)=0.3,P(X≥95)=0.1,现从该市高三学生中随机抽取3位同学.(1)求抽到的3位同学在该次体能测试中的成绩在区间[80,85),[85,95),[95,100]内各有1位的概率;(2)记抽到的3位同学在该次体能测试中的成绩在区间(75,85)内的人数为ξ,求随机变量ξ的分布列和数学期望E(ξ).解:(1)由题意知,P(80≤X<85)=0.5-P(X≤75)=0.2,P(85≤X<95)=0.3-0.1=0.2,所以所求概率P=A33×0.2×0.2×0.1=0.024.(2)P(75<X<85)=1-2P(X≤75)=0.4,所以ξ服从二项分布B(3,0.4),P(ξ=0)=0.63=0.216,P(ξ=1)=C13×0.4×0.62=0.432,P(ξ=2)=C23×0.42×0.6=0.288,P(ξ=3)=0.43=0.064,所以随机变量ξ的分布列为:数学期望E(ξ)=311.(2018届高三·云南11校跨区调研)为了解一种植物果实的情况,随机抽取一批该植物果实样本测量重量(单位:克),按照[27.5,32.5),[32.5,37.5),[37.5,42.5),[42.5,47.5),[47.5,52.5]分为5组,其频率分布直方图如图所示.(1)求图中a的值;(2)估计这种植物果实重量的平均数x和方差s2(同一组中的数据用该组区间的中点值作代表);(3)已知这种植物果实重量不低于32.5克的即为优质果实,用样本估计总体.若从这种植物果实中随机抽取3个,其中优质果实的个数为X,求X的分布列和数学期望E(X).解:(1)组距d=5,由5×(0.02+0.04+0.075+a+0.015)=1,得a=0.05.(2)各组中点值和相应的频率依次为x =30×0.1+35×0.2+40×0.375+45×0.25+50×0.075=40, s 2=(-10)2×0.1+(-5)2×0.2+02×0.375+52×0.25+102×0.075=28.75. (3)由已知,这种植物果实的优质率p =0.9,且X 服从二项分布B (3,0.9), P (X =0)=0.13=0.001,P (X =1)=C 13×0.9×0.12=0.027, P (X =2)=C 23×0.92×0.1=0.243,P(X =3)=0.93=0.729, 所以X 的分布列为:故数学期望E (X )=np =2.7.12.班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)(2)如果随机抽取的7名同学的数学、物理成绩(单位:分)对应如下表:记3名同学中数学和物理成绩均为优秀的人数为ξ,求ξ的分布列和数学期望;②根据上表数据,求物理成绩y 关于数学成绩x 的线性回归方程(系数精确到0.01),若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?附:线性回归方程y ^=b ^x +a ^,其中b ^=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2,a ^=y -b ^x .解:(1)依据分层抽样的方法,24名女同学中应抽取的人数为742×24=4,18名男同学中应抽取的人数为742×18=3,故不同的样本的个数为C 424C 318.(2)①∵7名同学中数学和物理成绩均为优秀的人数为3, ∴ξ的取值为0,1,2,3.∴P (ξ=0)=C 34C 37=435,P (ξ=1)=C 24C 13C 37=1835,P (ξ=2)=C 14C 23C 37=1235,P (ξ=3)=C 33C 37=135.∴ξ的分布列为:∴E (ξ)=0×435+1×1835+2×1235+3×135=97. ②∵b ^=526812≈0.65,a ^=y -b ^x =83-0.65×76=33.60.∴线性回归方程为y ^=0.65x +33.60. 当x =96时,y ^=0.65×96+33.60=96. ∴可预测该同学的物理成绩为96分.B 卷——大题增分专练1.(2018届高三·湖南十校联考)为响应国家“精准扶贫,产业扶贫”的战略,进一步优化能源消费结构,某市决定在地处山区的A 县推进光伏发电项目.在该县山区居民中随机抽取50户,统计其年用电量得到以下统计表.以样本的频率作为概率.的数学期望;(2)已知该县某山区自然村有居民300户.若计划在该村安装总装机容量为300千瓦的光伏发电机组,该机组所发电量除保证该村正常用电外,剩余电量国家电网以0.8元/度的价格进行收购.经测算每千瓦装机容量的发电机组年平均发电1 000度,试估计该机组每年所发电量除保证正常用电外还能为该村创造直接收益多少元?解:(1)记在抽取的50户居民中随机抽取1户,其年用电量不超过600度为事件A ,则P (A )=35.由已知可得从该县山区居民中随机抽取10户,记其中年用电量不超过600度的户数为X ,X 服从二项分布,即X ~B ⎝⎛⎭⎫10,35,故E (X )=10×35=6. (2)设该县山区居民户年均用电量为E (Y ),由抽样可得E (Y )=100×550+300×1550+500×1050+700×1550+900×550=500(度).则该自然村年均用电量约150 000度.又该村所装发电机组年预计发电量为300 000度,故该机组每年所发电量除保证正常用电外还能剩余电量约150 000度,能为该村创造直接收益150 000×0.8=120 000 元.2.《最强大脑》是江苏卫视借鉴德国节目《Super Brain 》推出的大型科学竞技类真人秀节目,是专注于传播脑科学知识和脑力竞技的节目.某机构为了了解大学生喜欢《最强大脑》是否与性别有关,对某校的100名大学生进行了问卷调查,得到如下列联表:已知在这100人中随机抽取1人抽到不喜欢《最强大脑》的大学生的概率为0.4. (1)请将上述列联表补充完整;(2)判断在犯错误的概率不超过0.001的前提下能否认为喜欢《最强大脑》与性别有关,并说明你的理由;(3)已知在被调查的大学生中有5名是大一学生,其中3名喜欢《最强大脑》,现从这5名大一学生中随机抽取2人,抽到喜欢《最强大脑》的人数为X ,求X 的分布列与数学期望.下面的临界值表仅供参考:⎝⎛ 参考公式:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =)a +b +c +d解:(1)因为在100人中随机抽取1人抽到不喜欢《最强大脑》的大学生的概率为0.4,所以不喜欢《最强大脑》的大学生人数为100×0.4=40,其中男生有10人,则女生有30人,列联表补充如下:(2)由表中数据得K 2=100×(40×30-20×10)260×40×50×50≈16.667>10.828,所以在犯错误的概率不超过0.001的前提下能认为喜欢《最强大脑》与性别有关.(3)X 的所有可能取值为0,1,2. 依题意知,X 服从超几何分布,所以P (X =0)=C 03C 22C 25=110,P (X =1)=C 13C 12C 25=610=35,P (X =2)=C 23C 02C 25=310.所以X 的分布列为故数学期望E (X )=0×110+1×35+2×310=65. 3.甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望E (X ). 解:(1)记事件A :“甲第一轮猜对”, 记事件B :“乙第一轮猜对”, 记事件C :“甲第二轮猜对”, 记事件D :“乙第二轮猜对”,记事件E :“‘星队’至少猜对3个成语”.由题意,E =ABCD +A BCD +A B CD +AB C D +ABC D ,由事件的独立性与互斥性,得P (E )=P (ABCD )+P (A BCD )+P (A B CD )+P (AB C D )+P (ABC D )=P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )·P (B )P (C )P (D )+P (A )P (B )P (C )P (D )=34×23×34×23+2×⎝⎛⎭⎫14×23×34×23+34×13×34×23=23, 所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6.由事件的独立性与互斥性,得 P (X =0)=14×13×14×13=1144,P (X =1)=2×⎝⎛⎭⎫34×13×14×13+14×23×14×13=10144=572,P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P (X =3)=34×23×14×13+14×13×34×23=12144=112,P (X =4)=2×⎝⎛⎭⎫34×23×34×13+34×23×14×23=60144=512, P (X =6)=34×23×34×23=36144=14.可得随机变量X 的分布列为所以数学期望E (X )=0×1144+1×572+2×25144+3×112+4×512+6×14=236. 4.(2017·昆明模拟)某火锅店为了了解气温对营业额的影响,随机记录了该店1月份其中5天的日营业额y (单位:万元)与该地当日最低气温x (单位:℃)的数据,如下表:(1)求y 关于x 的线性回归方程y ^=b ^x +a ^;(2)判断y 与x 之间是正相关还是负相关,若该地1月份某天的最低气温为6 ℃,用所求回归方程预测该店当日的营业额;(3)设该地1月份的日最低气温X ~N (μ,σ2),其中μ近似为样本平均数x ,σ2近似为样本方差s 2,求P (3.8<X ≤13.4).附:①回归方程y ^=b ^x +a ^中,b ^=∑i =1nx i y i -n x y ∑i =1nx 2i -n x2,a ^=y -b ^x .②10≈3.2,3.2≈1.8.若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ)=0.682 7,P (μ-2σ<X ≤μ+2σ)=0.954 5.解:(1)x =15×(2+5+8+9+11)=7,y =15×(1.2+1+0.8+0.8+0.7)=0.9.∑i =15x 2i =4+25+64+81+121=295,∑i =15x i y i =2.4+5+6.4+7.2+7.7=28.7,∴b ^=∑i =15x i y i -5x y∑i =15x 2i -5x2=28.7-5×7×0.9295-5×72=-2.850=-0.056,a ^=y -b ^x =0.9-(-0.056)×7=1.292. ∴线性回归方程为y ^=-0.056x +1.292. (2)∵b ^=-0.056<0,∴y 与x 之间是负相关. 当x =6时,y ^=-0.056×6+1.292=0.956. ∴该店当日的营业额约为9 560元.(3)样本方差s 2=15×(25+4+1+4+16)=10,∴最低气温X ~N (7,3.22), ∴P (3.8<X ≤10.2)=0.682 7, P (0.6<X ≤13.4)=0.954 5,∴P (10.2<X ≤13.4)=12×(0.954 5-0.682 7)=0.135 9.∴P (3.8<X ≤13.4)=P (3.8<X ≤10.2)+P (10.2<X ≤13.4)=0.682 7+0.135 9=0.818 6.。