2015届高考数学总复习(人教A版,理科)配套题库: 立体几何中的向量方法(一)(含答案解析)]
- 格式:doc
- 大小:209.50 KB
- 文档页数:7
考点34 立体几何中的向量方法一、填空题1.(2015·四川高考理科·T14)如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E,F 分别为AB,BC 的中点.设异面直线EM 与AF 所成的角为θ,则cos θ的最大值为.【解析】如图,建立空间坐标系,设正方形的边长为2,则A(0,0,0),F(2,1,0),E(1,0,0),设M(0,m,2)(0≤m ≤2), 则AF =(2,1,0),ME =(1,-m,-2), cos θ=2552mm +⨯-令t=2-m(0≤t ≤2), cos θ=52)3223(95151523951512=-+⨯≤⎪⎭⎫ ⎝⎛-+⨯t答案:52二、解答题3.(2015·安徽高考理科·T19)如图所示,在多面体111A B D DCBA,四边形11AA B B,11,ADD A ABCD均为正方形,E 为11B D 的中点,过1,,A D E的平面交1CD 于F(1)证明:1//EF B C(2)求二面角11E A D B --余弦值.【解题指南】()利用线面平行的判定和性质定理; (2)建立空间直角坐标系,利用法向量求解。
【解析】(1)因为111//,A D B C A D ⊂平面1A DE ,1B C ⊄平面1A DE,所以1//B C 平面1A DE,又1B C ⊂平面11B CD ,平面1A DE ⋂平面11B CD =EF ,所以EF//1B C.(2)以A 为原点,分别以1,,AB AD AA 为x 轴,y 轴,z 轴单位正向量建立空间直角坐标系,则A(0,0,0),B(1,0,0),D(0,1,0),111(0,0,1),(1,0,1),(0,1,1),A B D 而E 是11B D 的中点,所以点E 的坐标为(0.5,0.5,1).设平面1A DE的法向量1111(,,)n r s t =,又11(0.5,0.5,0),(0,1,1)A E A D ==-,由11n A E ⊥,11n A D ⊥得: 11110.50.500r s s t +=⎧⎨-=⎩,令111s t ==,则1(1,1,1)n =-,设平面11A B CD的法向量2222(,,)n r s t =,又111(1,0,0),(0,1,1)A B A D ==-,由同理可得:2(0,1,1)n =,所以结合图形可得二面角11E A D B --的余弦值为1212|.|||.||3n n n n ==。
§8.3直线、平面平行的判定与性质1.直线与平面平行的判定与性质判定性质定义定理图形条件a∩α=∅a⊂α,b⊄α,a∥b a∥αa∥α,a⊂β,α∩β=b结论a∥αb∥αa∩α=∅a∥b 2.面面平行的判定与性质判定性质定义定理图形条件α∩β=∅a⊂β,b⊂β,a∩b=P,a∥α,b∥αα∥β,α∩γ=a,β∩γ=bα∥β,a⊂β结论α∥βα∥βa∥b a∥α1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行. (×)(2)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面. (√)(3)若直线a与平面α内无数条直线平行,则a∥α. (×)(4)空间四边形ABCD中,E、F分别是AB,AD的中点,则EF∥平面BCD. (√)(5)若α∥β,直线a∥α,则a∥β. (×)2.若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交答案 B解析由题意知,直线l与平面α相交,则直线l与平面α内的直线只有相交和异面两种位置关系,因而只有选项B是正确的.3.下列命题中,错误的是()A.平面内一个三角形各边所在的直线都与另一个平面平行,则这两个平面平行B.平行于同一个平面的两个平面平行C.若两个平面平行,则位于这两个平面内的直线也互相平行D.若两个平面平行,则其中一个平面内的直线平行于另一个平面答案 C解析由面面平行的判定定理和性质知A、B、D正确.对于C,位于两个平行平面内的直线也可能异面.4.如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度等于________.答案 2解析因为直线EF∥平面AB1C,EF⊂平面ABCD,且平面AB1C∩平面ABCD=AC,所以EF∥AC,又E是DA的中点,所以F是DC的中点,由中位线定理可得EF=12AC,又在正方体ABCD-A1B1C1D1中,AB=2,所以AC=22,所以EF= 2.5.已知平面α∥平面β,直线a⊂α,有下列命题:①a与β内的所有直线平行;②a与β内无数条直线平行;③a与β内的任意一条直线都不垂直.其中真命题的序号是________.答案②解析因为α∥β,a⊂α,所以a∥β,在平面β内存在无数条直线与直线a平行,但不是所有直线都与直线a平行,故命题②为真命题,命题①为假命题.在平面β内存在无数条直线与直线a垂直,故命题③为假命题.题型一直线与平面平行的判定与性质例1(2012·山东)如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.思维启迪(1)利用等腰△EDB底边中线和高重合的性质证明;(2)根据线面平行的判定或两个平面平行的性质证明线面平行.证明(1)如图,取BD的中点O,连接CO,EO.由于CB=CD,所以CO⊥BD.又EC⊥BD,EC∩CO=C,CO,EC⊂平面EOC,所以BD⊥平面EOC,因此BD⊥EO.又O为BD的中点,所以BE=DE.(2)方法一如图,取AB的中点N,连接DM,DN,MN.因为M是AE的中点,所以MN∥BE.又MN⊄平面BEC,BE⊂平面BEC,所以MN∥平面BEC.又因为△ABD为正三角形,所以∠BDN=30°.又CB=CD,∠BCD=120°,因此∠CBD=30°.所以DN∥BC.又DN⊄平面BEC,BC⊂平面BEC,所以DN∥平面BEC.又MN∩DN=N,所以平面DMN∥平面BEC.又DM⊂平面DMN,所以DM∥平面BEC.方法二如图,延长AD,BC交于点F,连接EF.因为CB=CD,∠BCD=120°,所以∠CBD=30°.因为△ABD为正三角形,所以∠BAD=60°,∠ABC=90°,因为∠AFB=30°,所以AB=12AF.又AB=AD,所以D为线段AF的中点.连接DM,由于点M是线段AE的中点,因此DM∥EF.又DM⊄平面BEC,EF⊂平面BEC,所以DM∥平面BEC.思维升华判断或证明线面平行的常用方法:(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α);(3)利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);(4)利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).如图,在长方体ABCD-A1B1C1D1中,E,H分别为棱A1B1,D1C1上的点,且EH∥A1D1,过EH的平面与棱BB1,CC1相交,交点分别为F,G,求证:FG∥平面ADD1A1.证明因为EH∥A1D1,A1D1∥B1C1,EH⊄平面BCC1B1,B1C1⊂平面BCC1B1,所以EH∥平面BCC1B1.又平面FGHE∩平面BCC1B1=FG,所以EH∥FG,即FG∥A1D1.又FG⊄平面ADD1A1,A1D1⊂平面ADD1A1,所以FG∥平面ADD1A1.题型二平面与平面平行的判定与性质例2如图,在三棱柱ABC—A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.思维启迪要证四点共面,只需证GH∥BC;要证面面平行,可证一个平面内的两条相交直线和另一个平面平行.证明(1)∵GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E、F分别为AB、AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG.∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EF A1∥平面BCHG.思维升华证明面面平行的方法:(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.如图,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、DC、SC的中点,求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.证明(1)如图,连接SB,∵E、G分别是BC、SC的中点,∴EG∥SB.又∵SB⊂平面BDD1B1,EG⊄平面BDD1B1,∴直线EG∥平面BDD1B1.(2)连接SD,∵F、G分别是DC、SC的中点,∴FG∥SD. 又∵SD⊂平面BDD1B1,FG⊄平面BDD1B1,∴FG∥平面BDD1B1,且EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,∴平面EFG∥平面BDD1B1.题型三 平行关系的综合应用例3 如图所示,在四面体ABCD 中,截面EFGH 平行于对棱AB 和 CD ,试问截面在什么位置时其截面面积最大?思维启迪 利用线面平行的性质可以得到线线平行,可以先确定截面 形状,再建立目标函数求最值. 解 ∵AB ∥平面EFGH ,平面EFGH 与平面ABC 和平面ABD 分别交于FG 、EH . ∴AB ∥FG ,AB ∥EH ,∴FG ∥EH ,同理可证EF ∥GH , ∴截面EFGH 是平行四边形.设AB =a ,CD =b ,∠FGH =α (α即为异面直线AB 和CD 所成的角或其补角).又设FG =x ,GH =y ,则由平面几何知识可得x a =CG BC ,y b =BG BC ,两式相加得x a +yb =1,即y=ba(a -x ), ∴S ▱EFGH =FG ·GH ·sin α=x ·b a ·(a -x )·sin α=b sin αa x (a -x ).∵x >0,a -x >0且x +(a -x )=a 为定值,∴当且仅当x =a -x 时,b sin αa x (a -x )=ab sin α4,此时x =a 2,y =b 2.即当截面EFGH 的顶点E 、F 、G 、H 为棱AD 、AC 、BC 、BD 的中点时截面面积最大. 思维升华 利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.如图所示,四棱锥P -ABCD 的底面是边长为a 的正方形,侧棱P A ⊥底面ABCD ,在侧面PBC 内,有BE ⊥PC 于E ,且BE =63a ,试在AB 上找一点F ,使EF ∥平面P AD . 解 在平面PCD 内,过E 作EG ∥CD 交PD 于G , 连接AG ,在AB 上取点F ,使AF =EG ,∵EG ∥CD ∥AF ,EG =AF , ∴四边形FEGA 为平行四边形, ∴FE ∥AG .又AG ⊂平面P AD ,FE ⊄平面P AD , ∴EF ∥平面P AD . ∴F 即为所求的点.又P A ⊥面ABCD ,∴P A ⊥BC , 又BC ⊥AB ,∴BC ⊥面P AB . ∴PB ⊥BC .∴PC 2=BC 2+PB 2=BC 2+AB 2+P A 2. 设P A =x 则PC =2a 2+x 2,由PB ·BC =BE ·PC 得: a 2+x 2·a =2a 2+x 2·63a ,∴x =a ,即P A =a ,∴PC =3a . 又CE =a 2-(63a )2=33a , ∴PE PC =23,∴GE CD =PE PC =23, 即GE =23CD =23a ,∴AF =23a .立体几何中的探索性问题典例:(12分)如图,在四面体P ABC 中,PC ⊥AB ,P A ⊥BC ,点D ,E ,F ,G 分别是棱AP , AC ,BC ,PB 的中点. (1)求证:DE ∥平面BCP ; (2)求证:四边形DEFG 为矩形;(3)是否存在点Q ,到四面体P ABC 六条棱的中点的距离相等?说明理由. 思维启迪 (1)利用DE ∥PC 证明线面平行;(2)利用平行关系和已知PC⊥AB证明DE⊥DG;(3)Q应为EG中点.规范解答(1)证明因为D,E分别是AP,AC的中点,所以DE∥PC.又因为DE⊄平面BCP,所以DE∥平面BCP. [3分] (2)证明因为D,E,F,G分别为AP,AC,BC,PB的中点,所以DE∥PC∥FG,DG∥AB∥EF.所以四边形DEFG为平行四边形.又因为PC⊥AB,所以DE⊥DG.所以四边形DEFG为矩形. [7分] (3)解存在点Q满足条件,理由如下:[8分]连接DF,EG,设Q为EG的中点,由(2)知,DF∩EG=Q,且QD=QE=QF=QG=12EG.分别取PC,AB的中点M,N,连接ME,EN,NG,MG,MN.与(2)同理,可证四边形MENG为矩形,其对角线交点为EG的中点Q,且QM=QN=12EG,所以Q为满足条件的点.[12分]解决立体几何中的探索性问题的步骤:第一步:写出探求的最后结论.第二步:证明探求结论的正确性.第三步:给出明确答案.第四步:反思回顾,查看关键点、易错点和答题规范.温馨提醒(1)立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究,解决这类问题一般根据探索性问题的设问,假设其存在并探索出结论,然后在这个假设下进行推理论证,若得到合乎情理的结论就肯定假设,若得到矛盾就否定假设.(2)这类问题也可以按类似于分析法的格式书写步骤:从结论出发“要使……成立”,“只需使……成立”.方法与技巧1.平行问题的转化关系线∥线判定性质线∥面判定性质面∥性质判定面2.直线与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)面与面平行的性质.3.平面与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)推论;(4)a⊥α,a⊥β⇒α∥β.失误与防范1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.3.解题中注意符号语言的规范应用.A组专项基础训练(时间:40分钟)一、选择题1.若直线a平行于平面α,则下列结论错误的是()A.a平行于α内的所有直线B.α内有无数条直线与a平行C.直线a上的点到平面α的距离相等D.α内存在无数条直线与a成90°角答案 A解析若直线a平行于平面α,则α内既存在无数条直线与a平行,也存在无数条直线与a异面且垂直,所以A不正确,B、D正确.又夹在相互平行的线与平面间的平行线段相等,所以C正确.2.若直线m⊂平面α,则条件甲:“直线l∥α”是条件乙:“l∥m”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 D3.已知a,b是两条不重合的直线,α,β是两个不重合的平面,则下列命题中正确的是()A.a∥b,b⊂α,则a∥αB.a,b⊂α,a∥β,b∥β,则α∥βC.a⊥α,b∥α,则a⊥bD.当a⊂α,且b⊄α时,若b∥α,则a∥b答案 C解析A选项是易错项,由a∥b,b⊂α,也可能推出a⊂α;B中的直线a,b不一定相交,平面α,β也可能相交;C正确;D中的直线a,b也可能异面.4.在空间四边形ABCD中,E,F分别为AB,AD上的点,且AE∶EB=AF∶FD=1∶4,又H,G分别为BC,CD的中点,则()A.BD∥平面EFG,且四边形EFGH是平行四边形B.EF∥平面BCD,且四边形EFGH是梯形C.HG∥平面ABD,且四边形EFGH是平行四边形D.EH∥平面ADC,且四边形EFGH是梯形答案 B解析 如图,由题意得,EF ∥BD , 且EF =15BD .HG ∥BD ,且HG =12BD .∴EF ∥HG ,且EF ≠HG . ∴四边形EFGH 是梯形.又EF ∥平面BCD ,而EH 与平面ADC 不平行. 故选B.5.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB ∥平面MNP 的图形的序号是( )A.①③B.①④C.②③D.②④答案 B解析 ①中易知NP ∥AA ′,MN ∥A ′B ,∴平面MNP ∥平面AA ′B 可得出AB ∥平面MNP (如图). ④中,NP ∥AB ,能得出AB ∥平面MNP .二、填空题6.过三棱柱ABC —A 1B 1C 1任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线有________条. 答案 6解析 如图,E 、F 、G 、H 分别是A 1C 1、B 1C 1、BC 、AC 的中点,则 与平面ABB 1A 1平行的直线有EF ,GH ,FG ,EH ,EG ,FH 共6条.7.如图所示,ABCD —A 1B 1C 1D 1是棱长为a 的正方体,M 、N 分别是下底面的棱A 1B 1、B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a3,过P 、M 、N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________. 答案223a 解析 ∵平面ABCD ∥平面A 1B 1C 1D 1,∴MN ∥PQ .∵M 、N 分别是A 1B 1、B 1C 1的中点,AP =a3,∴CQ =a 3,从而DP =DQ =2a 3,∴PQ =223a .8.在四面体ABCD 中,截面PQMN 是正方形,则在下列结论中,错误的 为________. ①AC ⊥BD ; ②AC ∥截面PQMN ; ③AC =BD ;④异面直线PM 与BD 所成的角为45°. 答案 ③解析 ∵PQMN 是正方形, ∴MN ∥QP ,则MN ∥平面ABC ,由线面平行的性质知MN ∥AC ,则AC ∥截面PQMN , 同理可得MQ ∥BD ,又MN ⊥QM ,则AC ⊥BD ,故①②正确.又∵BD ∥MQ ,∴异面直线PM 与BD 所成的角即为∠PMQ =45°,故④正确. 三、解答题9.如图,在直三棱柱ABC -A 1B 1C 1中,AB =AC =5,BB 1=BC =6,D ,E 分别是AA 1和B 1C 的中点.(1)求证:DE ∥平面ABC ; (2)求三棱锥E -BCD 的体积.(1)证明 取BC 中点G ,连接AG ,EG .因为E 是B 1C 的中点,所以EG ∥BB 1,且EG =12BB 1.由直棱柱知,AA 1綊BB 1,而D 是AA 1的中点,所以EG 綊AD , 所以四边形EGAD 是平行四边形.所以ED ∥AG . 又DE ⊄平面ABC ,AG ⊂平面ABC , 所以DE ∥平面ABC .(2)解 因为AD ∥BB 1,所以AD ∥平面BCE , 所以V E -BCD =V D -BEC =V A -BCE =V E -ABC , 由(1)知,DE ∥平面ABC .所以V E -ABC =V D -ABC =13AD ·12BC ·AG=16×3×6×4=12. 10.如图E 、F 、G 、H 分别是正方体ABCD -A 1B 1C 1D 1的棱BC 、CC 1、 C 1D 1、AA 1的中点.求证: (1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H .证明 (1)取B 1D 1的中点O ,连接GO ,OB , 易证四边形BEGO 为平行四边形,故OB ∥GE , 由线面平行的判定定理即可证EG ∥平面BB 1D 1D . (2)由题意可知BD ∥B 1D 1. 如图,连接HB 、D 1F ,易证四边形HBFD 1是平行四边形, 故HD 1∥BF .又B 1D 1∩HD 1=D 1,BD ∩BF =B , 所以平面BDF ∥平面B 1D 1H .B 组 专项能力提升 (时间:30分钟)1.设m ,n 是平面α内的两条不同直线;l 1,l 2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( )A.m ∥β且l 1∥αB.m ∥l 1且n ∥l 2C.m ∥β且n ∥βD.m ∥β且n ∥l 2答案 B解析 对于选项A ,不合题意;对于选项B ,由于l 1与l 2是相交直线,而且由l 1∥m 可得l 1∥α,同理可得l 2∥α,故可得α∥β,充分性成立,而由α∥β不一定能得到l 1∥m ,它们也可以异面,故必要性不成立,故选B ;对于选项C ,由于m ,n 不一定相交,故是必要非充分条件;对于选项D ,由于n ∥l 2可转化为n ∥β,同选项C ,故不符合题意.综上选B. 2.已知平面α∥平面β,P 是α、β外一点,过点P 的直线m 与α、β分别交于A 、C ,过点P 的直线n 与α、β分别交于B 、D 且P A =6,AC =9,PD =8,则BD 的长为________. 答案 24或245解析 根据题意可得到以下如图两种情况:可求出BD 的长分别为245或24.3.空间四边形ABCD 的两条对棱AC 、BD 的长分别为5和4,则平行 于两条对棱的截面四边形EFGH 在平移过程中,周长的取值范围是 ________. 答案 (8,10)解析 设DH DA =GHAC =k ,∴AH DA =EHBD=1-k ,∴GH=5k,EH=4(1-k),∴周长=8+2k.又∵0<k<1,∴周长的范围为(8,10).4.平面α内有△ABC ,AB =5,BC =8,AC =7,梯形BCDE 的底DE =2, 过EB 的中点B 1的平面β∥α,若β分别交EA 、DC 于A 1、C 1,求△A 1B 1C 1 的面积. 解 ∵α∥β,∴A 1B 1∥AB ,B 1C 1∥BC , 又因∠A 1B 1C 1与∠ABC 同向. ∴∠A 1B 1C 1=∠ABC .又∵cos ∠ABC =52+82-722×5×8=12,∴∠ABC =60°=∠A 1B 1C 1.又∵B 1为EB 的中点,∴B 1A 1是△EAB 的中位线, ∴B 1A 1=12AB =52,同理知B 1C 1为梯形BCDE 的中位线, ∴B 1C 1=12(BC +DE )=5.则S △A 1B 1C 1=12A 1B 1·B 1C 1·sin 60°=12·52·5·32=258 3. 故△A 1B 1C 1的面积为2583.5.如图,四棱锥P —ABCD 中,PD ⊥平面ABCD ,底面ABCD 为矩形, PD =DC =4,AD =2,E 为PC 的中点. (1)求三棱锥A —PDE 的体积;(2)AC 边上是否存在一点M ,使得P A ∥平面EDM ?若存在,求出 AM 的长;若不存在,请说明理由.解 (1)因为PD ⊥平面ABCD ,所以PD ⊥AD . 又因ABCD 是矩形,所以AD ⊥CD . 因PD ∩CD =D ,所以AD ⊥平面PCD , 所以AD 是三棱锥A —PDE 的高. 因为E 为PC 的中点,且PD =DC =4,所以S△PDE=12S△PDC=12×⎝⎛⎭⎫12×4×4=4.又AD=2,所以V A—PDE=13AD·S△PDE=13×2×4=83.(2)取AC中点M,连接EM,DM,因为E为PC的中点,M是AC的中点,所以EM∥P A.又因为EM⊂平面EDM,P A⊄平面EDM,所以P A∥平面EDM.所以AM=12AC= 5.即在AC边上存在一点M,使得P A∥平面EDM,AM的长为 5.。
第七节 立体几何中的向量方法(理)时间:45分钟 分值:75分一、选择题(本大题共6小题,每小题5分,共30分)1.如果平面的一条斜线与它在这个平面上的射影的方向向量分别是a =(1,0,1),b =(0,1,1),那么这条斜线与平面所成的角是( )A .90°B .60°C .45°D .30°解析 ∵|a |=2,|b |=2,∴cos 〈a ,b 〉=a ·b |a ||b |=12.又〈a ,b 〉∈(0°,90°),∴〈a ,b 〉=60°. 答案 B2.(2014·珠海模拟)已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为( )A.337,-157,4 B.407,-157,4 C.407,-2,4D .4,407,-15 解析 ∵AB →⊥BC →,∴AB →·BC →=0,即3+5-2z =0,得z =4,又BP ⊥平面ABC ,∴BP ⊥AB ,BP ⊥BC ,BC →=(3,1,4),则⎩⎪⎨⎪⎧(x -1)+5y +6=0,3(x -1)+y -12=0,解得⎩⎪⎨⎪⎧x =407,y =-157.答案 B3.长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )A.1010B.3010C.21510D.31010解析 建立空间直角坐标系如图. 则A (1,0,0),E (0,2,1),B (1,2,0),C 1(0,2,2). BC 1→=(-1,0,2),AE →=(-1,2,1), cos 〈BC 1→,AE →〉=BC 1→·AE →|BC 1→|·|AE →|=3010.所以异面直线BC 1与AE 所成角的余弦值为3010. 答案 B4.在90°的二面角的棱上有A ,B 两点,AC 、BD 分别在这个二面角的两个面内,且都垂直于棱AB ,已知AB =5,AC =3,CD =52,则BD =( )A .4B .5C .6D .7解析 由条件知AC ⊥AB ,BD ⊥AB ,AC ⊥BD , 又CD →=CA →+AB →+BD →, ∴CD →2=(CA →+AB →+BD →)2 =|CA →|2+|AB →|2+|BD →|2 =32+52+|BD →|2=(52)2, ∴|BD →|2=16,∴BD =4. 答案 A5.已知长方体ABCD -A 1B 1C 1D 1中,AB =BC =4,CC 1=2,则直线BC 1和平面DBB 1D 1所成角的正弦值为( )A.32 B.52 C.105D.1010解析 如图建立空间直角坐标系, 则B (4,0,0),C (4,4,0),C 1(4,4,2), 显然AC ⊥平面BB 1D 1D ,∴AC →=(4,4,0)为平面BB 1D 1D 的一个法向量. 又BC 1→=(0,4,2),∴cos 〈BC 1→,AC →〉=BC 1→·AC→|BC 1→||AC →|=1616+4·16+161=105.即BC 1与平面BB 1D 1D 所成角的正弦值为105. 答案 C6.(2014·德州调研)二面角的棱上有A ,B 两点,直线AC 、BD 分别在这个二面角的两个平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为( )A .150°B .45°C .60°D .120°解析 由题意知AC →与BD →所成角即为该二面角的平面角. ∵CD →=CA →+AB →+BD →,∴CD →2=CA →2+AB →2+BD →2+2CA →·AB →+2AB →·BD →+2CA →·BD →. ∴(217)2=62+42+82+2|CA →||BD →|cos 〈CA →,BD →〉=116+2×6×8cos 〈CA →,BD →〉.∴cos 〈CA →,BD →〉=-12,∴〈CA →,BD →〉=120°. ∴〈AC →,BD →〉=60°,∴该二面角的大小为60°. 答案 C二、填空题(本大题共3小题,每小题5分,共15分) 7.(2014·潍坊考试)如图,平行六面体ABCD -A 1B 1C 1D 1,若ABCD 是边长为2的正方形,AA 1=1,∠A 1AD =∠A 1AB =60°,则BD 1的长为__________.解析 ∵BD 1→=BA →+BC →+BB 1→,∴|BD 1→|2=(BA →+BC →+BB 1→)2=9,故BD 1=3. 答案 38.(2013·怀化模拟)如图,在直三棱柱中,∠ACB =90°,AC =BC =1,侧棱AA 1=2,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为________.解析 以C 1为原点,C 1A 1,C 1B 1,C 1C 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则平面AA 1C 1C 的法向量为n =(0,1,0),AM →=⎝ ⎛⎭⎪⎫12,12,0-(1,0,2)=⎝ ⎛⎭⎪⎫-12,12,-2,则直线AM 与平面AA 1C 1C 所成角θ的正弦值为sin θ=|cos 〈AM →,n 〉|=|AM →·n ||AM →||n |=110,∴tan θ=13.答案 139.如图,直三棱柱ABC —A 1B 1C 1中,AB =AC =1,AA 1=2,∠B 1A 1C 1=90°,D 为BB 1的中点,则异面直线C 1D 与A 1C 所成角的余弦值为________.解析 以A 为原点建立空间直角坐标系,如图,A 1(0,0,2),C (0,1,0),D (1,0,1),C 1(0,1,2),则C 1D →=(1,-1,-1),A 1C →=(0,1,-2),|C 1D →|=3,|A 1C →|=5,C 1D →·A 1C →=1,cos 〈C 1D →,A 1C →〉=C 1D →·A 1C →|C 1D →||A 1C →|=1515,故异面直线C 1D 与A 1C 所成角的余弦值为1515. 答案 1515三、解答题(本大题共3小题,每小题10分,共30分)10.(2013·江苏卷)如图,在直三棱柱A 1B 1C 1—ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值; (2)求平面ADC 1与平面ABA 1所成二面角的正弦值.解 (1)以A 为坐标原点,建立如图所示的空间直角坐标系A —xyz ,则A (0,0,0),B (2,0,0),C (0,2,0),D (1,1,0),A 1(0,0,4),C 1(0,2,4),所以A 1B →=(2,0,-4),C 1D →=(1,-1,-4).因为cos 〈A 1B →,C 1D →〉=A 1B →·C 1D →|A 1B →||C 1D →|=1820×18=31010, 所以异面直线A 1B 与C 1D 所成角的余弦值为31010.(2)设平面ADC 1的法向量为n 1=(x ,y ,z ),因为AD →=(1,1,0),AC 1→=(0,2,4),所以n 1·AD →=0,n 1·AC 1→=0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以,n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面ABA 1的一个法向量为n 2=(0,1,0),设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=|n 1·n 2||n 1||n 2|=29×1=23,得sin θ=53.因此,平面ADC 1与平面ABA 1所成二面角的正弦值为53.11.(2013·福建卷)如图,在四棱柱ABCD —A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).(1)求证: CD ⊥平面ADD 1A 1;(2)若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值. 解 (1)证明:取CD 的中点E ,连接BE . ∵AB ∥DE ,AB =DE =3k , ∴四边形ABED 为平行四边形, ∴BE ∥AD 且BE =AD =4k .在△BCE 中,∵BE =4k ,CE =3k ,BC =5k , ∴BE 2+CE 2=BC 2.∴∠BEC =90°,即BE ⊥CD . 又BE ∥AD ,∴CD ⊥AD .∵AA 1⊥平面ABCD ,CD ⊂平面ABCD ,∴AA 1⊥CD .又AA 1∩AD =A ,∴CD ⊥平面ADD 1A 1.(2)以D 为原点,DA →,DC →,DD 1→的方向为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系,则A (4k,0,0),C (0,6k,0),B 1(4k ,3k,1),A 1(4k,0,1),所以AC →=(-4k,6k,0),AB 1→=(0,3k,1),AA 1→=(0,0,1).设平面AB 1C 的法向量n =(x ,y ,z ),则由⎩⎪⎨⎪⎧ AC →·n =0,AB 1→·n =0,得⎩⎪⎨⎪⎧-4kx +6ky =0,3ky +z =0. 取y =2,得n =(3,2,-6k ).设AA 1与平面AB 1C 所成角为θ,则sin θ=|cos 〈AA 1→,n 〉|=|AA 1→·n ||AA 1→||n |=6k 36k 2+13=67, 解得k =1,故所求k 的值为1.12.(2014·石家庄质检)如图,已知三棱柱ABC—A1B1C1,侧面BCC1B1⊥底面ABC.(1)若M,N分别是AB,A1C的中点,求证:MN∥平面BCC1B1;(2)若三棱柱ABC—A1B1C1的各棱长均为2,侧棱BB1与底面ABC 所成的角为60°,问在线段A1C1上是否存在一点P,使得平面B1CP ⊥平面ACC1A1?若存在,求C1P与P A1的比值,若不存在,说明理由.解(1)证明:连接AC1,BC1,则AN=NC1,因为AM=MB,所以MN∥BC1.又BC1⊂平面BCC1B1,MN⊄平面BCC1B1,所以MN∥平面BCC1B1.(2)作B1O⊥BC于O点,连接AO,因为平面BCC1B1⊥底面ABC,所以B1O⊥平面ABC.以O 为原点,建立如图所示的空间直角坐标系,则A (0,3,0),B (-1,0,0),C (1,0,0),B 1(0,0,3).由AA 1→=CC 1→=BB 1→,可求出A 1(1,3,3),C 1(2,0,3), 假设在线段A 1C 1上存在一点P ,使得平面B 1CP ⊥平面ACC 1A 1,设A 1C 1→=λA 1P →(λ≠0且λ≠1),则可以求得P (1λ+1,3-3λ,3),CP →=(1λ,3-3λ,3),CB 1→=(-1,0,3).设平面B 1CP 的法向量为n 1=(x ,y ,z ),由⎩⎪⎨⎪⎧ n 1·CP →=0,n 1·CB 1→=0,得⎩⎨⎧ 1λx +(3-3λ)y +3z =0,-x +3z =0,令z =1,解得n 1=(3,1+λ1-λ,1). 同理可求出平面ACC 1A 1的一个法向量n 2=(3,1,-1).由平面B 1CP ⊥平面ACC 1A 1,得n 1·n 2=0,即3+1+λ1-λ-1=0, 解得λ=3,所以A 1C 1=3A 1P ,从而C 1P P A 1=2. 所以存在满足题意的点P ,且C 1P P A 1=2.。
立体几何中的向量方法二同步练习题(带解析2015高考数学一轮)立体几何中的向量方法二同步练习题(带解析2015高考数学一轮)A组基础演练1.(2012•陕西)如图,在空间直角坐标系中有直三棱柱ABC-A1B1C1,CA=CC1=2CB,则直线BC1与直线AB1夹角的余弦值为()A.55B.53C.255D.35解析:不妨设CB=1,则B(0,0,1),A(2,0,0),C1(0,2,0),B1(0,2,1).∴BC1→=(0,2,-1),AB1→=(-2,2,1).cos〈BC1→,AB1→〉=BC1→•AB1→|BC1→|•|AB1→|=0+4-15×3=55,故选A.答案:A2.在正方体ABCD-A1B1C1D1中,点E为BB1的中点,则平面A1ED与平面ABCD所成的锐二面角的余弦值为()A.12B.23C.33D.22解析:以A为原点建立如图所示的空间直角坐标系A-xyz,设棱长为1,则A1(0,0,1),E1,0,12,D(0,1,0),∴A1D→=(0,1,-1),A1E→=1,0,-12.设平面A1ED的一个法向量为n1=(1,y,z),则y-z=0,1-12z=0,∴y=2,z=2.∴n1=(1,2,2).∵平面ABCD的一个法向量为n2=(0,0,1),∴cos〈n1,n2〉=23×1=23.即所成的锐二面角的余弦值为23.答案:B3.在正三棱柱ABC-A1B1C1中,AB=AA1,则AC1与平面BB1C1C所成角的正弦值为()A.22B.155C.64D.63解析:建立如图所示的空间直角坐标系,设AB=2,则C1(3,1,0)、A(0,0,2),AC1→=(3,1,-2),平面BB1C1C的一个法向量为n=(1,0,0),所以AC1与平面BB1C1C所成角的正弦值为|AC1→•n||AC1→||n|=38=64,故选C.答案:C4.设正方体ABCD-A1B1C1D1的棱长为2,则点D1到平面A1BD的距离是________.解析:如图建立空间直角坐标系,则D1(0,0,2),A1(2,0,2),D(0,0,0),B(2,2,0),∴D1A1→=(2,0,0),DA1→=(2,0,2),DB→=(2,2,0),设平面A1BD的一个法向量n=(x,y,z),则n•DA1→=2x+2z=0n•DB→=2x+2y=0.令x=1,则n=(1,-1,-1),∴点D1到平面A1BD的距离d=|D1A1→•n||n|=23=233.答案:2335.(2013•湖南)如图,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD =90°,AC⊥BD,BC=1,AD=AA1=3.(1)证明:AC⊥B1D;(2)求直线B1C1与平面ACD1所成角的正弦值.解:法一:(1)如图1,因为BB1⊥平面ABCD,AC⊂平面ABCD,所以AC⊥BB1. 又AC⊥BD,所以AC⊥平面BB1D,而B1D⊂平面BB1D,所以AC⊥B1D.(2)因为B1C1∥AD,所以直线B1C1与平面ACD1所成的角等于直线AD 与平面ACD1所成的角(记为θ).如图1,连结A1D.因为棱柱ABCD-A1B1C1D1是直棱柱,且∠B1A1D1=∠BAD=90°,所以A1B1⊥平面ADD1A1,从而A1B1⊥AD1.又AD=AA1=3,所以四边形ADD1A1是正方形,于是A1D⊥AD1.故AD1⊥平面A1B1D,于是AD1⊥B1D.由(1)知,AC⊥B1D,所以B1D⊥平面ACD1,故∠ADB1=90°-θ.在直角梯形ABCD中,因为AC⊥BD,所以∠BAC=∠ADB.从而Rt△ABC∽Rt△DAB,故ABDA=BCAB,即AB=DA•BC=3.连结AB1.易知△AB1D是直角三角形,且B1D2=BB21+BD2=BB21+AB2+AD2=21,即B1D=21.在Rt△AB1D中,cos∠ADB1=ADB1D=321=217,即cos(90°-θ)=217.从而sinθ=217.即直线B1C1与平面ACD1所成角的正弦值为217.法二:(1)易知,AB,AD,AA1两两垂直.如图2,以A为坐标原点,AB,AD,AA1所在直线分别为x轴、y轴、z轴建立空间直角坐标系.设AB=t,则相关各点的坐标为A(0,0,0),B(t,0,0),B1(t,0,3),C(t,1,0),C1(t,1,3),D(0,3,0),D1(0,3,3).从而B1D→=(-t,3,-3),AC→=(t,1,0),BD→=(-t,3,0).因为AC⊥BD,所以AC→•BD→=-t2+3+0=0,解得t=3或t=-3(舍去).于是B1D→=(-3,3,-3),AC→=(3,1,0).因为AC→•B1D→=-3+3+0=0,所以AC→⊥B1D→,即AC⊥B1D.(2)由(1)知,AD1→=(0,3,3),AC→=(3,1,0),B1C1→=(0,1,0).设n=(x,y,z)是平面ACD1的一个法向量,则n•AC→=0,n•AD1→=0,即3x+y=0,3y+3z=0,令x=1,则n=(1,-3,3).设直线B1C1与平面ACD1所成角为θ,则sinθ=|cos〈n,B1C1→〉|=n•B1C1→|n|•|B1C1→|=37=217.即直线B1C1与平面ACD1所成角的正弦值为217.6.(2013•江苏)如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC =2,A1A=4,点D是BC的中点.(1)求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与平面ABA1所成二面角的正弦值.解:(1)以A为坐标原点,建立如图所示的空间直角坐标系A-xyz,则A(0,0,0),B(2,0,0),C(0,2,0),D(1,1,0),A1(0,0,4),C1(0,2,4),所以A1B→=(2,0,-4),C1D→=(1,-1,-4).因为cos=A1B→•C1D→|A1B→||C1D→|=1820×18=31010,所以异面直线A1B与C1D所成角的余弦值为31010.(2)设平面ADC1的法向量为n1=(x,y,z),因为AD→=(1,1,0),AC1→=(0,2,4),所以n1•AD→=0,n1•AC1→=0,即x+y=0且y+2z=0,取z=1,得x=2,y=-2,所以,n1=(2,-2,1)是平面ADC1的一个法向量.取平面AA1B的一个法向量为n2=(0,1,0),设平面ADC1与平面ABA1所成二面角的大小为θ.由|cosθ|=n1•n2|n1|•|n2|=29×1=23,得sinθ=53.因此,平面ADC1与平面ABA1所成二面角的正弦值为53.B组能力突破1.(教材改编)在如图所示的正方体A1B1C1D1-ABCD中,E是C1D1的中点,则异面直线DE与AC夹角的余弦值为()A.-1010B.-120C.120D.1010解析:以D为原点,DA为x轴,DC为y轴,DD1为z轴建系,设A(2,0,0)、C(0,2,0),D1(0,0,2),E(0,1,2),AC→=(-2,0,0)DE→=(0,1,0),cos〈AC→,DE→〉=1010.答案:D2.在长方体ABCD-A1B1C1D1中,AA1=5,AB=12,那么直线B1C1和平面A1BCD1的距离是________.答案:60133.如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=2,AD=2.则二面角C-AS-D的余弦值为________.答案:1054.(2013•天津)如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明B1C1⊥CE;(2)求二面角B1-CE-C1的正弦值;(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为26,求线段AM的长.解:法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),B(0,0,2),C(1,0,1),B1(0,2,2),C1(1,2,1),E(0,1,0).(1)证明:易得B1C1→=(1,0,-1),CE→=(-1,1,-1),于是B1C1→•CE→=0,所以B1C1⊥CE.(2)B1C→=(1,-2,-1).设平面B1CE的法向量m=(x,y,z),则m•B1C→=0,m•CE→=0,即x-2y-z=0,-x+y-z=0,消去x,得y+2z=0,不妨令z=1,可得一个法向量为m=(-3,-2,1).由(1),B1C1⊥CE,又CC1⊥B1C1,可得B1C1⊥平面CEC1,故B1C1→=(1,0,-1)为平面CEC1的一个法向量.于是cos〈m,B1C1→〉=m•B1C1→|m|•|B1C1→|=-414×2=-277,从而sin〈m,B1C1→〉=217.所以二面角B1-CE-C1的正弦值为217.(3)AE→=(0,1,0),EC1→=(1,1,1).设EM→=λEC1→=(λ,λ,λ),0≤λ≤1,有AM→=AE→+EM→=(λ,λ+1,λ).可取AB→=(0,0,2)为平面ADD1A1的一个法向量.设θ为直线AM与平面ADD1A1所成的角,则sinθ=|cos〈AM→,AB→〉|=|AM→•AB→||AM→|•|AB→|=2λλ2+ λ+1 2+λ2×2=λ3λ2+2λ+1.于是λ3λ2+2λ+1=26,解得λ=13,所以AM=2.法二:(1)证明:因为侧棱CC1⊥底面A1B1C1D1,B1C1⊂平面A1B1C1D1,所以CC1⊥B1C1.经计算可得B1E=5,B1C1=2,EC1=3,从而B1E2=B1C21+EC21,所以在△B1EC1中,B1C1⊥C1E,又CC1,C1E⊂平面CC1E,CC1∩C1E=C1,所以B1C1⊥平面CC1E,又CE⊂平面CC1E,故B1C1⊥CE.(2)过B1作B1G⊥CE于点G,连结C1G.由(1),B1C1⊥CE,故CE⊥平面B1C1G,得CE⊥C1G,所以∠B1GC1为二面角B1-CE-C1的平面角.在△CC1E 中,由CE=C1E=3,CC1=2,可得C1G=263.在Rt△B1C1G中,B1G =423,所以sin∠B1GC1=217,即二面角B1-CE-C1的正弦值为217.(3)连结D1E,过点M作MH⊥ED1于点H,可得MH⊥平面ADD1A1,连结AH,AM,则∠MAH为直线AM与平面ADD1A1所成的角.设AM=x,从而在Rt△AHM中,有MH=26x,AH=346x.在Rt△C1D1E中,C1D1=1,ED1=2,得EH=2MH=13x.在△AEH中,∠AEH=135°,AE=1,由AH2=AE2+EH2-2AE•EH•cos135°,得1718x2=1+19x2+23x,整理得5x2-22x-6=0,解得x=2.所以线段AM的长为2.。
2009~2013年高考真题备选题库第七章 立体几何第七节 立体几何中的空间向量方法考点 利用空间向量求空间角1.(2013新课标全国Ⅰ,12分)如图,三棱柱ABC -A 1B 1C 1中,CA=CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.解:本题主要考查空间几何体中的线线垂直的证明和线面角的计算,意在考查考生的空间想象能力、推理判断能力和计算能力.(1)证明:取AB 的中点O ,连接OC ,OA 1,A 1B . 因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB . 因为OC ∩OA 1=O ,所以AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)由(1)知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB ,所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,|OA |为单位长,建立如图所示的空间直角坐标系O -xyz .由题设知A (1,0,0),A 1(0,3,0),C (0,0,3),B (-1,0,0).则BC =(1,0,3),1BB =1AA =(-1,3,0),1AC =(0,-3,3). 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则⎩⎪⎨⎪⎧ n ·BC =0,n ·1BB =0.即⎩⎪⎨⎪⎧x +3z =0,-x +3y =0.可取n =(3,1,-1).故n ,1AC =n ·1AC |n ||1AC |=-105.所以A 1C 与平面BB 1C 1C 所成角的正弦值为105.2.(2013新课标全国Ⅱ,12分)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB . (1)证明:BC 1//平面A 1CD ; (2)求二面角D -A 1C -E 的正弦值.解:本题以直三棱柱为载体,考查直线与平面平行以及二面角的求解等知识,意在考查考生的空间想象能力以及化归转化能力、基本运算能力等.(1)证明:连接AC 1交A 1C 于点F ,则F 为AC 1中点. 又D 是AB 中点,连接DF ,则BC 1∥DF .因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD .(2)由AC =CB =22AB 得, AC ⊥BC .以C 为坐标原点,CA 的方向为x 轴正方向,建立如图所示的空间直角坐标系C -xyz .设CA =2,则D (1,1,0),E (0,2,1),A 1(2,0,2),CD =(1,1,0),CE =(0,2,1),1CA =(2,0,2).设n =(x 1,y 1,z 1)是平面A 1CD 的法向量,则⎩⎪⎨⎪⎧n ·CD =0,n ·1CA =0.即⎩⎪⎨⎪⎧x 1+y 1=0,2x 1+2z 1=0.可取n =(1,-1,-1).同理,设m 是平面A 1CE 的法向量,则⎩⎪⎨⎪⎧m ·CE =0,m ·1CA =0.可取m =(2,1,-2).从而cos 〈n ,m 〉=n ·m |n ||m |=33,故sin 〈n ,m 〉=63.即二面角D-A1C-E的正弦值为6 3.3.(2013山东,12分)如图所示,在三棱锥P-ABQ中,PB⊥平面ABQ,BA=BP=BQ,D,C,E,F分别是AQ,BQ,AP,BP的中点,AQ=2BD,PD与EQ交于点G,PC与FQ交于点H,连接GH.(1)求证:AB∥GH;(2)求二面角D-GH-E的余弦值.解:本题考查空间线面平行的判定定理、性质定理,二面角的求解,空间向量在立体几何中的应用等基础知识与方法,考查转化与化归思想等数学思想方法,考查考生的空间想象能力、逻辑推理能力、运算求解能力.(1)因为D,C,E,F分别是AQ,BQ,AP,BP的中点,所以EF∥AB,DC∥AB.所以EF∥DC.又EF⊄平面PCD,DC⊂平面PCD,所以EF∥平面PCD.又EF⊂平面EFQ,平面EFQ∩平面PCD=GH,所以EF∥GH.又EF∥AB,所以AB∥GH.(2)法一:在△ABQ中,AQ=2BD,AD=DQ,所以∠ABQ=90°,即AB⊥BQ,因为PB⊥平面ABQ,所以AB⊥PB.又BP∩BQ=B,所以AB⊥平面PBQ.由(1)知AB∥GH,所以GH⊥平面PBQ.又FH⊂平面PBQ,所以GH⊥FH.同理可得GH⊥HC,所以∠FHC为二面角D-GH-E的平面角.设BA=BQ=BP=2,连接FC,在Rt△FBC中,由勾股定理得FC=2,在Rt△PBC中,由勾股定理得PC= 5.又H为△PBQ的重心,所以HC =13PC =53.同理FH =53. 在△FHC 中,由余弦定理得cos ∠FHC =59+59-22×59=-45.即二面角D -GH -E 的余弦值为-45.法二:在△ABQ 中,AQ =2BD ,AD =DQ , 所以∠ABQ =90°. 又PB ⊥平面ABQ ,所以BA ,BQ ,BP 两两垂直.以B 为坐标原点,分别以BA ,BQ ,BP 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系.设BA =BQ =BP =2,则E (1,0,1),F (0,0,1),Q (0,2,0),D (1,1,0),C (0,1,0),P (0,0,2).所以EQ =(-1,2,-1),FQ =(0,2,-1),DP =(-1,-1,2), CP =(0,-1,2). 设平面EFQ 的一个法向量为m =(x 1,y 1,z 1),由m ·EQ =0,m ·FQ =0,得⎩⎪⎨⎪⎧-x 1+2y 1-z 1=0,2y 1-z 1=0,取y 1=1,得m =(0,1,2).设平面PDC 的一个法向量为n =(x 2,y 2,z 2),由n ·DP =0,n ·CP =0,得⎩⎪⎨⎪⎧-x 2-y 2+2z 2=0,-y 2+2z 2=0, 取z 2=1,得n =(0,2,1), 所以cos 〈m ,n 〉=m·n |m ||n |=45.因为二面角D -GH -E 为钝角,所以二面角D -GH -E 的余弦值为-45.4.(2013广东,14分)如图1,在等腰直角三角形ABC 中,∠A =90°,BC =6,D ,E 分别是AC ,AB 上的点,CD =BE =2,O 为BC 的中点.将△ADE 沿DE 折起,得到如图2所示的四棱锥A ′-BCDE ,其中A ′O = 3.图1 图2 (1)证明:A ′O ⊥平面BCDE ;(2)求二面角A ′-CD -B 的平面角的余弦值.解:本题考查线面垂直的判定定理、二面角等基础知识,考查空间向量在立体几何中的应用,考查化归与转化思想,考查空间想象能力、推理论证能力、运算求解能力.(1)证明:由题意,易得OC =3,AC =32,AD =2 2. 连接OD ,OE .在△OCD 中,由余弦定理可得 OD =OC 2+CD 2-2OC ·CD cos 45°= 5.由翻折不变性可知A ′D =2 2,所以A ′O 2+OD 2=A ′D 2,所以A ′O ⊥OD .同理可证A ′O ⊥OE ,又OD ∩OE =O ,所以A ′O ⊥平面BCDE . (2)(传统法)过O 作OH ⊥CD 交CD 的延长线于H ,连接A ′H ,如图所示.因为A ′O ⊥平面BCDE ,所以A ′H ⊥CD , 所以∠A ′HO 为二面角A ′-CD -B 的平面角.结合OC =3,∠BCD =45°,得OH =3 22,从而A ′H =OH 2+OA ′2=302. 所以cos ∠A ′HO =OH A ′H = 155,所以二面角A ′-CD -B 的平面角的余弦值为155.(向量法)以O 点为原点,建立空间直角坐标系O -xyz 如图所示, 则A ′(0,0,3),C (0,-3,0),D (1,-2,0),所以CA =(0,3,3),DA '=(-1,2,3).设n =(x ,y ,z )为平面A ′CD 的法向量,则⎩⎪⎨⎪⎧ n ·CA '=0,n ·DA '=0,即⎩⎪⎨⎪⎧ 3y +3z =0,-x +2y +3z =0,解得⎩⎪⎨⎪⎧y =-x ,z =3x ,令x =1,得n =(1,-1,3),即n =(1,-1,3)为平面A ′CD 的一个法向量.由(1)知,OA '=(0,0,3)为平面CDB 的一个法向量,所以cos 〈n ,OA '〉=n ·OA '|n ||OA '|=33×5=155,即二面角A ′-CD -B 的平面角的余弦值为155.5.(2013辽宁,12分)如图,AB 是圆的直径,P A 垂直圆所在的平面,C 是圆上的点.(1)求证:平面P AC ⊥平面PBC ;(2)若AB =2,AC =1,P A =1,求:二面角C -PB -A 的余弦值.解:本题考查面面关系的证明及二面角的求解问题,也考查了应用空间向量求解立体几何问题,试题同时考查了考生的空间想象能力和推理归纳能力.(1)证明:由AB 是圆的直径,得AC ⊥BC , 由P A ⊥平面ABC ,BC ⊂平面ABC ,得P A ⊥BC . 又P A ∩AC =A ,P A ⊂平面P AC ,AC ⊂平面P AC , 所以BC ⊥平面P AC . 因为BC ⊂平面PBC , 所以平面PBC ⊥平面P AC .(2)法一:过C 作CM ∥AP ,则CM ⊥平面ABC .如图,以点C 为坐标原点,分别以直线CB ,CA ,CM 为x 轴,y 轴,z 轴建立空间直角坐标系.因为AB =2,AC =1,所以BC = 3.因为P A =1,所以A (0,1,0),B (3,0,0),P (0,1,1).故CB =(3,0,0),CP =(0,1,1). 设平面BCP 的法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧ CB ·n 1=0, CP ·n 1=0,所以⎩⎪⎨⎪⎧3x =0,y +z =0,不妨令y =1,则n 1=(0,1,-1). 因为AP =(0,0,1),AB =(3,-1,0), 设平面ABP 的法向量为n 2=(x ,y ,z ),则⎩⎪⎨⎪⎧ AP ·n 2=0,AB ·n 2=0,所以⎩⎪⎨⎪⎧z =0,3x -y =0,不妨令x =1,则n 2=(1,3,0). 于是cos 〈n 1,n 2〉=322=64,所以由题意可知二面角C -PB -A 的余弦值为64. 法二:过C 作CM ⊥AB 于M , 因为P A ⊥平面ABC ,CM ⊂平面ABC , 所以P A ⊥CM , 故CM ⊥平面P AB .又因为P A ∩AB =A ,且P A ⊂平面P AB ,AB ⊂平面P AB , 过M 作MN ⊥PB 于N ,连接NC , 由三垂线定理得CN ⊥PB ,所以∠CNM 为二面角C -PB -A 的平面角.在Rt △ABC 中,由AB =2,AC =1,得BC =3,CM =32,BM =32. 在Rt △P AB 中,由AB =2,P A =1,得PB = 5. 因为Rt △BNM ∽Rt △BAP ,所以MN 1=325,故MN =3510.又在Rt △CNM 中,CN =305,故cos ∠CNM =64. 所以二面角C -PB -A 的余弦值为64.6.(2012陕西,5分)如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( )A.55B.53C.255D.35解析:设CA =2,则C (0,0,0),A (2,0,0),B (0,0,1), C 1(0,2,0),B 1=(0,2,1),可得向量1AB =(-2,2,1),1BC =(0,2,-1),由向量的夹角公式得cos 〈1AB ,1BC 〉=-2×0+2×2+1×(-1)0+4+1·4+4+1=15=55. 答案:A7.(2012新课标全国,12分)如图,直三棱柱ABC -A 1B 1C 1中,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD .(1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.解:(1)证明:由题设知,三棱柱的侧面为矩形.由于D 为AA 1的中点,故DC =DC 1.又AC =12AA 1,可得DC 21+DC 2=CC 21,所以DC 1⊥DC . 而DC 1⊥BD ,DC ∩BD =D ,所以DC 1⊥平面BCD . BC ⊂平面BCD ,故DC 1⊥BC .1A D (2)由(1)知BC ⊥DC 1,且BC ⊥CC 1,则BC ⊥平面ACC 1,所以CA ,CB ,CC 1两两相互垂直.以C 为坐标原点,CA 的方向为x 轴的正方向,|CA |为单位长,建立如图所示的空间直角坐标系C -xyz .由题意知A 1(1,0,2),B (0,1,0),D (1,0,1),C 1(0,0,2). 则1A D =(0,0,-1),BD =(1,-1,1), 1DC =(-1,0,1). 设n =(x ,y ,z )是平面A 1B 1BD 的法向量,则⎩⎪⎨⎪⎧n ·BD =0,n ·1A D =0,即⎩⎪⎨⎪⎧x -y +z =0,z =0,可取n =(1,1,0).同理,设m 是平面C 1BD 的法向量,则⎩⎪⎨⎪⎧m ·BD =0,m ·1DC =0,可取m =(1,2,1).从而n ,m =n·m|n|·|m|=32.故二面角A 1-BD -C 1的大小为30°.7.(2012浙江,15分)如图,在四棱锥P -ABCD 中,底面是边长为23的菱形,∠BAD =120°,且P A ⊥平面ABCD ,P A =26,M ,N 分别为PB ,PD 的中点.(1)证明:MN ∥平面ABCD ;(2)过点A 作AQ ⊥PC ,垂足为点Q ,求二面角A -MN -Q 的平面角的余弦值.解:(1)因为M ,N 分别是PB ,PD 的中点,所以MN 是△PBD 的中位线,所以MN ∥BD . 又因为MN ⊄平面ABCD ,所以MN ∥平面ABCD .(2)法一:连结AC 交BD 于O .以O 为原点,OC ,OD 所在直线为x ,y 轴,建立空间直角坐标系O -xyz ,如图所示.在菱形ABCD 中,∠BAD =120°,得 AC =AB =23,BD =3AB =6. 又因为P A ⊥平面ABCD ,所以P A ⊥AC . 在直角三角形P AC 中,AC =23,P A =26, AQ ⊥PC ,得QC =2,PQ =4. 由此知各点坐标如下,A (-3,0,0),B (0,-3,0),C (3,0,0),D (0,3,0),P (-3,0,26),M (-32,-32,6),N (-32,32,6),Q (33,0,263). 设m =(x ,y ,z )为平面AMN 的法向量. 由AM =(32,-32,6),AN =(32,32,6)知 ⎩⎨⎧32x -32y +6z =0,32x +32y +6z =0.取z =-1,得m =(22,0,-1). 设n =(x ,y ,z )为平面QMN 的法向量.由QM =(-536,-32,63),QN =(-536,32,63)知⎩⎨⎧-536x -32y +63z =0,-536x +32y +63z =0.取z =5,得n =(22,0,5). 于是cos 〈m ,n 〉=m ·n |m |·|n |=3333.所以二面角A -MN -Q 的平面角的余弦值为3333.法二:在菱形ABCD 中,∠BAD =120°,得 AC =AB =BC =CD =DA ,BD =3AB . 又因为P A ⊥平面ABCD ,所以 P A ⊥AB ,P A ⊥AC ,P A ⊥AD . 所以PB =PC =PD . 所以△PBC ≌△PDC .而M ,N 分别是PB ,PD 的中点,所以MQ =NQ ,且AM =12PB =12PD =AN .取线段MN 的中点E ,连结AE ,EQ ,则AE ⊥MN ,QE ⊥MN ,所以∠AEQ 为二面角A -MN -Q 的平面角.由AB =23,P A =26,故在△AMN 中,AM =AN =3,MN =12BD =3,得 AE =332. 在直角三角形P AC 中,AQ ⊥PC ,得AQ =22,QC =2,PQ =4.在△PBC 中,cos ∠BPC =PB 2+PC 2-BC 22PB ·PC =56,得 MQ = PM 2+PQ 2-2PM ·PQ cos ∠BPC = 5.在等腰三角形MQN 中,MQ =NQ =5,MN =3,得QE = MQ 2-ME 2=112. 在△AEQ 中,AE =332,QE =112,AQ =22,得 cos ∠AEQ =AE 2+QE 2-AQ 22AE ·QE =3333. 所以二面角A -MN -Q 的平面角的余弦值为3333. 8.(2010广东,14分)如图,AEC 是半径为a 的半圆,AC 为直径,点E 为AC 的中点,点B 和点C 为线段AD 的三等分点.平面AEC 外一点F 满足FB =FD =5a ,FE =6a .(1)证明:EB ⊥FD ;(2)已知点Q ,R 分别为线段FE ,FB 上的点,使得FQ =23FE ,FR =23FB ,求平面BED 与平面RQD 所成二面角的正弦值.解:(1)证明:∵E 为AC 中点,AB =BC ,AC 为直径,∴EB ⊥AD .∵EF 2=6a 2=(5a )2+a 2=BF 2+BE 2,∴EB ⊥FB .又∵BF ∩BD =B ,∴EB ⊥平面BDF .∵FD ⊂平面BDF ,∴EB ⊥FD .法一:(2)过D 作HD ∥QR ,连接FC .∵FQ =23FE ,FR =23FB , ∴QR ∥EB ,∴HD ∥EB .又∵D ∈平面BED ∩平面RQD ,∴HD 为平面BED 与平面PQD 的交线,∵BD ,RD ⊂平面BDF ,EB ⊥平面BDF ,∴HD ⊥BD ,HD ⊥RD .∴∠RDB 为平面BED 与平面RQD 所成二面角的平面角,∵FB =FD ,BC =CD ,∴FC ⊥BD ,∴cos ∠FBC =BC BF =a 5a =55. ∴sin ∠FBC =255. ∴RD =BD 2+BR 2-2·BD ·BR ·cos ∠FBC =4a 2+59a 2-2·2a ·53a ·15=293a . ∴sin ∠RDB =RB RD·sin ∠FBC =53a 293a ·25=22929. 法二:(2)如图,以B 为原点,BE 为x 轴正方向,BD 为y 轴正方向,过B 作平面BEC 的垂线,建立空间直角坐标系,连接FC ,由此得B (0,0,0),C (0,a,0),D (0,2a,0),E (a,0,0).∵FD =FB ,BC =CD ,∴FC ⊥BD .∴FC =2a ,∵FQ =23FE ,FR =23FB ,∴R (0,13a ,23a ), RQ =23BE =(23a,0,0).∴RD =(0,53a ,-23a ).设平面RQD 的法向量为n 1=(x ,y ,z ),则n 1·RD =0,n 1·RQ =0,∴n 1=(0,2,5).∵平面BED 的法向量为n 2=(0,0,1),∴cos 〈n 1,n 2〉=52929.∴sin 〈n 1,n 2〉=22929.∴平面BED 与平面RQD 所成二面角的正弦值为22929.9.(2009·山东,12分)如图,在直四棱柱ABCD —A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB =4,BC =CD =2,AA 1=2,E ,E 1,F 分别是棱AD ,AA 1,AB 的中点.(1)证明:直线EE 1∥平面FCC 1;(2)求二面角B —FC 1—C 的余弦值.解:(1)证明:法一:取A 1B 1的中点F 1,连结FF 1、C 1F 1,由于FF 1∥BB 1∥CC 1,所以F 1∈平面FCC 1,因此平面FCC 1即为平面C 1CFF 1,连结A 1D 、F 1C ,由于A 1F 1綊D 1C 1綊CD ,所以四边形A 1DCF 1为平行四边形,因此A 1D ∥F 1C .又EE 1∥A 1D ,得EE 1∥F 1C ,而EE 1⊄平面FCC 1,F 1C ⊂平面FCC 1,故EE 1∥平面FCC 1.法二:因为F 为AB 的中点,CD =2,AB =4,AB ∥CD ,所以CD 綊AF ,因此四边形AFCD 为平行四边形,所以AD ∥FC .又CC 1∥DD 1,FC ∩CC 1=C ,FC ⊂平面FCC 1,CC 1⊂平面FCC 1,所以平面ADD 1A 1∥平面FCC 1,又EE 1⊂平面ADD 1A 1,所以EE 1∥平面FCC 1.(2)法一:取FC 的中点H ,由于FC =BC =FB ,所以BH ⊥FC .又BH ⊥CC 1,所以BH ⊥平面FCC 1.过H 作HG ⊥C 1F 于G ,连结BG .由于HG ⊥C 1F ,BH ⊥平面FCC 1,所以C 1F ⊥平面BHG ,因此BG ⊥C 1F ,所以∠BGH 为所求二面角的平面角.在Rt △BHG 中,BH =3,又FH =1,且△FCC 1为等腰直角三角形,所以HG =22,BG = 3+12=142, 因此cos ∠BGH =GH BG =22142=77, 即所求二面角的余弦值为77. 法二:过D 作DR ⊥CD交AB 于R ,以D 为坐标原点建立如图所示的空间直角坐标系,则F (3,1,0),B (3,3,0),C (0,2,0),C 1(0,2,2),所以FB =(0,2,0),1BC =(-3,-1,2), DB =(3,3,0),由FB =CB =CD =DF ,所以DB ⊥FC .又CC 1⊥平面ABCD ,所以DB 为平面FCC 1的一个法向量.设平面BFC 1的一个法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧ n ⊥FB ,n ⊥1BC得⎩⎪⎨⎪⎧ (x ,y ,z )·(0,2,0)=0,(x ,y ,z )·(-3,-1,2)=0, 即⎩⎪⎨⎪⎧ 2y =0,-3x -y +2z =0,取x =1,得⎩⎪⎨⎪⎧ y =0,z =32.因此n =(1,0,32), 所以cos 〈DB ,n 〉=DB ·n | DB |×|n |=33+9× 1+34=17=77. 故所求二面角的余弦值为77. 考点二 利用向量解决立体几何中的探索问题1.(2013福建,13分)如图,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD=4k ,BC =5k ,DC =6k (k >0).(1)求证:CD ⊥平面ADD 1A 1;(2)若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值; (3)现将与四棱柱ABCD -A 1B 1C 1D 1形状和大小完全相同的两个四棱柱拼接成一个新的四棱柱.规定:若拼接成的新四棱柱形状和大小完全相同,则视为同一种拼接方案.问:共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为f (k ),写出f (k )的解析式.(直接写出答案,不必说明理由)解:本小题主要考查直线与直线、直线与平面的位置关系、柱体的概念及表面积等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查数形结合思想、分类与整合思想、化归与转化思想.(1)证明:取CD 的中点E ,连接BE .∵AB ∥DE ,AB =DE =3k ,∴四边形ABED 为平行四边形,∴BE ∥AD 且BE =AD =4k .在△BCE 中,∵BE =4k ,CE =3k ,BC =5k ,∴BE 2+CE 2=BC 2,∴∠BEC =90°,即BE ⊥CD .又BE ∥AD ,∴CD ⊥AD .∵AA 1⊥平面ABCD ,CD ⊂平面ABCD ,∴AA 1⊥CD .又AA 1∩AD =A ,∴CD ⊥平面ADD 1A 1.(2)以D 为原点,DA ,DC ,1DD 的方向为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系,则A (4k,0,0),C (0,6k,0),B 1(4k,3k,1),A 1(4k,0,1),所以AC =(-4k,6k,0),1AB =(0,3k,1),1AA =(0,0,1).设平面AB 1C 的法向量n =(x ,y ,z ),则由⎩⎪⎨⎪⎧ AC ·n =0, 1AB ·n =0,得⎩⎪⎨⎪⎧-4kx +6ky =0,3ky +z =0. 取y =2,得n =(3,2,-6k ).设AA 1与平面AB 1C 所成角为θ,则 sin θ=|cos 〈1AA ,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪1AA ·n | 1AA |·|n |=6k 36k 2+13=67,解得k =1, 故所求k 的值为1.(3)共有4种不同的方案.f (k )=⎩⎨⎧ 72k 2+26k ,0<k ≤518,36k 2+36k ,k >518.2.(2013四川,12分)如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,AB =AC =2AA 1,∠BAC =120°,D ,D 1分别是线段BC ,B 1C 1的中点,P 是线段AD 的中点.(1)在平面ABC 内,试作出过点P 与平面A 1BC 平行的直线l ,说明理由,并证明直线l ⊥平面ADD 1A 1;(2)设(1)中的直线l 交AB 于点M ,交AC 于点N ,求二面角A -A 1M -N 的余弦值.解:本题主要考查基本作图、线面的平行与垂直、二面角等基础知识,考查推理论证能力、运算求解能力、空间想象能力,并考查应用向量知识解决立体几何问题的能力.(1)如图,在平面ABC 内,过点P 作直线l ∥BC ,因为l 在平面A 1BC 外,BC 在平面A 1BC 内,由直线与平面平行的判定定理可知,l ∥平面A 1BC .由已知,AB =AC ,D 是BC 的中点,所以BC ⊥AD ,则直线l ⊥AD .因为AA 1⊥平面ABC ,所以AA 1⊥直线l .又AD ,AA 1在平面ADD 1A 1内,且AD 与AA 1相交,所以直线l ⊥平面ADD 1A 1.(2)法一:连接A 1P ,过A 作AE ⊥A 1P 于E ,过E 作EF ⊥A 1M 于F ,连接AF .由(1)知,MN ⊥平面AEA 1,所以平面AEA 1⊥平面A 1MN .所以AE ⊥平面A 1MN ,则A 1M ⊥AE .所以A 1M ⊥平面AEF ,则A 1M ⊥AF .故∠AFE 为二面角A -A 1M -N 的平面角(设为θ).设AA 1=1,则由AB =AC =2AA 1,∠BAC =120°,有∠BAD =60°,AB =2,AD =1.又P 为AD 的中点,所以M 为AB 的中点,且AP =12,AM =1, 所以在Rt △AA 1P 中,A 1P =52;在Rt △A 1AM 中,A 1M = 2. 从而AE =AA 1·AP A 1P =15,AF =AA 1·AM A 1M =12, 所以sin θ=AE AF =25. 所以cos θ=1-sin 2θ=1-⎝ ⎛⎭⎪⎫252=155. 故二面角A -A 1M -N 的余弦值为155.法二:设A 1A =1.如图,过A 1作A 1E 平行于B 1C 1,以A 1为坐标原点,分别以1A E ,11A D ,1A A 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz (点O 与点A 1重合).则A 1(0,0,0),A (0,0,1).因为P 为AD 的中点,所以M ,N 分别为AB ,AC 的中点,故M ⎝⎛⎭⎫32,12,1,N ⎝⎛⎭⎫-32,12,1, 所以1AM =⎝⎛⎭⎫32,12,1,1A A =(0,0,1),NM =(3,0,0). 设平面AA 1M 的法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧ n 1⊥1AM ,n 1⊥1A A ,即⎩⎪⎨⎪⎧ n 1·1AM =0,n 1·1A A =0,故有 ⎩⎪⎨⎪⎧(x 1,y 1,z 1)·(32,12,1)=0,(x 1,y 1,z 1)·(0,0,1)=0, 从而⎩⎪⎨⎪⎧ 32x 1+12y 1+z 1=0,z 1=0.取x 1=1,则y 1=-3,所以n 1=(1,-3,0).设平面A 1MN 的法向量为n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧ n 2⊥1AM ,n 2⊥NM ,即⎩⎪⎨⎪⎧ n 2·1A M =0,n 2·NM =0,故有⎩⎪⎨⎪⎧ (x 2,y 2,z 2)·⎝⎛⎭⎫32,12,1=0,(x 2,y 2,z 2)·(3,0,0)=0,从而⎩⎪⎨⎪⎧ 32x 2+12y 2+z 2=0,3x 2=0.取y 2=2,则z 2=-1,所以n 2=(0,2,-1).设二面角A -A 1M -N 的平面角为θ,又θ为锐角,则cos θ=⎪⎪⎪⎪n 1·n 2|n 1|·|n 2|=⎪⎪⎪⎪⎪⎪(1,-3,0)·(0,2,-1)2×5 =155. 故二面角A -A 1M -N 的余弦值为155. 3.(2012北京,14分)如图1,在Rt △ABC 中,∠C =90°,BC =3,AC =6,D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2.将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图2.(1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小;(3)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由.解:(1)证明:因为AC ⊥BC ,DE ∥BC ,所以DE ⊥AC .所以ED ⊥A 1D ,DE ⊥CD ,所以DE ⊥平面A 1DC .所以DE ⊥A 1C .又因为A 1C ⊥CD .所以A 1C ⊥平面BCDE .(2)如图,以C 为坐标原点,建立空间直角坐标系C -xyz ,则A 1(0,0,23),D (0,2,0),M (0,1, 3),B (3,0,0),E (2,2,0).设平面A 1BE 的法向量为n =(x ,y ,z ),则n ·A 1B =0,n ·BE =0.又A 1B =(3,0,-23),BE =(-1,2,0),所以⎩⎪⎨⎪⎧3x -23z =0,-x +2y =0.令y =1,则x =2,z = 3.所以n =(2,1,3).设CM 与平面A 1BE 所成的角为θ. 因为CM (0,1,3),所以sin θ=|cos 〈n ,CM 〉|=|n ·CM |n ||CM ||=48×4=22. 所以CM 与平面A 1BE 所成角的大小为π4. (3)线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直,理由如下:假设这样的点P 存在,设其坐标为(p,0,0),其中p ∈[0,3].设平面A 1DP 的法向量为m =(x ,y ,z ),则m ·1A D =0,m ·DP =0.又1A D =(0,2,-23),DP =(p ,-2,0),所以⎩⎪⎨⎪⎧ 2y -2 3z =0,px -2y =0.令x =2,则y =p ,z =p 3. 所以m =(2,p ,p 3). 平面A 1DP ⊥平面A 1BE ,当且仅当m ·n =0,即4+p +p =0.解得p =-2,与p ∈[0,3]矛盾.所以线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直.4.(2009·宁夏、海南高考)(本小题满分12分)如图,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍.P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面P AC ,求二面角P -AC -D 的大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面P AC .若存在,求SE ∶EC 的值;若不存在,试说明理由.解:法一:(1)连结BD ,设AC 交BD 于O .由题意SO ⊥AC .在正方形ABCD 中,AC ⊥BD ,∵BD ∩SO =O ,所以AC ⊥平面SBD ,得AC ⊥SD .(2)设正方形边长为a ,则SD =2a .又OD =22a ,所以∠SDO =60°. 连结OP ,由(1)知AC ⊥平面SBD ,所以AC ⊥OP ,且AC ⊥OD ,所以∠POD 是二面角P —AC —D 的平面角.由SD ⊥平面P AC ,知SD ⊥OP ,所以∠POD =30° ,即二面角P -AC -D 的大小为30°.(3)在棱SC 上存在一点E ,使BE ∥平面P AC .由(2)可得PD =24a , 故可在SP 上取一点N ,使PN =PD .过N 作PC 的平行线与SC 的交点即为E ,连结BN .在△BDN 中,知BN ∥PO .又由于NE ∥PC ,故平面BEN ∥平面P AC ,得BE ∥平面P AC .由于SN ∶NP =2∶1,故SE ∶EC =2∶1.法二:(1)连结BD .设AC 交BD 于O ,由题意知SO ⊥平面ABCD .以O 为坐标原点,OB 、OC 、OS 分别为x 轴、y 轴、z 轴正方向,建立坐标系O -xyz ,如图.设底面边长为a ,则高SO =62a .于是S (0,0,62a ),D (-22a,0,0),C (0,22a,0),OC =(0,22a,0),SD =(-22a,0,-62a ), OC ·SD =0,故OC ⊥SD .从而AC ⊥SD .(2)由题设知,平面P AC 的一个法向量DS =(22a,0,62a ),平面DAC 的一个法向量OS =(0,0,62a ).设所求二面角为θ,则cos θ=OS ·DS|OS ||DS |=32,所求二面角的大小为30°.(3)在棱SC 上存在一点E 使BE ∥平面P AC .由(2)知DS 是平面P AC 的一个法向量,且DS =(22a,0,62a ),CS =(0,-22a ,62a ).设CE =t CS ,则BE =BC +CE =BC +t CS=(-22a ,22a (1-t ),62at ).而BE ·DS =0⇔t =13.即当SE ∶EC =2∶1时,BE ⊥DS .而BE不在平面P AC内,故BE∥平面P AC.。
§8.5 空间向量及其运算1.空间向量的有关概念名称 概念 表示 零向量 模为0的向量 0 单位向量 长度(模)为1的向量 相等向量 方向相同且模相等的向量 a =b相反向量 方向相反且模相等的向量 a 的相反向量为-a共线向量 表示空间向量的有向线段所在的直线互相平行或重合的向量a ∥b 共面向量平行于同一个平面的向量2.(1)共线向量定理对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . 推论 如图所示,点P 在l 上的充要条件是 OP →=OA →+t a①其中a 叫直线l 的方向向量,t ∈R ,在l 上取AB →=a ,则①可化为OP →= OA →+tAB →或OP →=(1-t )OA →+tOB →.(2)共面向量定理的向量表达式:p =x a +y b ,其中x ,y ∈R ,a ,b 为不共线向量,推论的表达式为MP →=xMA →+yMB →或对空间任意一点O ,有OP →=OM →+xMA →+yMB →或OP →=xOM →+yOA →+zOB →,其中x +y +z =__1__. (3)空间向量基本定理如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,把{a ,b ,c }叫做空间的一个基底.3.空间向量的数量积及运算律 (1)数量积及相关概念 ①两向量的夹角已知两个非零向量a ,b ,在空间任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉,其范围是0≤〈a ,b 〉≤π,若〈a ,b 〉=π2,则称a 与b 互相垂直,记作a ⊥b . ②两向量的数量积已知空间两个非零向量a ,b ,则|a||b |cos 〈a ,b 〉叫做向量a ,b 的数量积,记作a·b ,即a·b =|a||b |cos 〈a ,b 〉. (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4.空间向量的坐标表示及应用 (1)数量积的坐标运算设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3 (λ∈R ), a ⊥b ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). (3)模、夹角和距离公式设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则|a |=a·a =a 21+a 22+a 23,cos 〈a ,b 〉=a·b |a||b|=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23 . 设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则d AB =|AB →|=(a 2-a 1)2+(b 2-b 1)2+(c 2-c 1)2.1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)空间中任意两非零向量a ,b 共面.( √ ) (2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).( × )(3)对于非零向量b ,由a ·b =b ·c ,则a =c . ( × ) (4)两向量夹角的范围与两异面直线所成角的范围相同.( × ) (5)若A 、B 、C 、D 是空间任意四点,则有AB →+BC →+CD →+DA →=0. ( √ ) (6)|a |-|b |=|a +b |是a 、b 共线的充要条件.( × )2.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的 交点.若AB →=a ,AD →=b ,AA 1→=c ,则下列向量中与BM →相等的向量是( )A.-12a +12b +cB.12a +12b +c C.-12a -12b +cD.12a -12b +c 答案 A解析 BM →=BB 1→+B 1M →=AA 1→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.已知正方体ABCD -A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若AE →=AA 1→+xAB →+yAD →,则x ,y 的值分别为( )A.x =1,y =1B.x =1,y =12C.x =12,y =12D.x =12,y =1答案 C解析 如图,AE →=AA 1→+A 1E →=AA 1→+12A 1C 1→=AA 1→+12(AB →+AD →).4.同时垂直于a =(2,2,1)和b =(4,5,3)的单位向量是_______________________. 答案 ⎝⎛⎭⎫13,-23,23或⎝⎛⎭⎫-13,23,-23 解析 设与a =(2,2,1)和b =(4,5,3)同时垂直的单位向量是c =(p ,q ,r ),则⎩⎪⎨⎪⎧p 2+q 2+r 2=1,2p +2q +r =0,4p +5q +3r =0,解得⎩⎪⎨⎪⎧ p =13,q =-23,r =23,或⎩⎪⎨⎪⎧p =-13,q =23,r =-23,即同时垂直于a ,b 的单位向量为⎝⎛⎭⎫13,-23,23或⎝⎛⎭⎫-13,23,-23.5.如图,在四面体O -ABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点, E 为AD 的中点,则OE →=________(用a ,b ,c 表示). 答案 12a +14b +14c解析 OE →=12OA →+12OD →=12OA →+14OB →+14OC →=12a +14b +14c .题型一 空间向量的线性运算例1 三棱锥O —ABC 中,M ,N 分别是OA ,BC 的中点,G 是△ABC 的重心,用基向量OA →,OB →,OC →表示MG →,OG →. 思维启迪 利用空间向量的加减法和数乘运算表示即可. 解 MG →=MA →+AG →=12OA →+23AN →=12OA →+23(ON →-OA →) =12OA →+23[12(OB →+OC →)-OA →] =-16OA →+13OB →+13OC →.OG →=OM →+MG →=12OA →-16OA →+13OB →+13OC →=13OA →+13OB →+13OC →. 思维升华 用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键.要正确理解向量加法、减法与数乘运算的几何意义.首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们可把这个法则称为向量加法的多边形法则.如图,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.(1)化简A 1O →-12AB →-12AD →=________;(2)用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________. 答案 (1)A 1A →(2)12AB →+12AD →+AA 1→解析 (1)A 1O →-12AB →-12AD →=A 1O →-12AC →=A 1O →-AO →=A 1A →. (2)OC 1→=OC →+CC 1→ =12AB →+12AD →+AA 1→. 题型二 共线定理、共面定理的应用例2 已知E 、F 、G 、H 分别是空间四边形ABCD 的边AB 、BC 、CD 、 DA 的中点,(1)求证:E 、F 、G 、H 四点共面; (2)求证:BD ∥平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任一点O ,有OM →=14(OA →+OB →+OC →+OD →).思维启迪 对于(1)只要证出向量EG →=EF →+EH →即可;对于(2)只要证出BD →与EH →共线即可;对于(3),易知四边形EFGH 为平行四边形,则点M 为线段EG 与FH 的中点,于是向量OM →可由向量OG →和OE →表示,再将OG →与OE →分别用向量OC →,OD →和向量OA →,OB →表示. 证明 (1)连接BG , 则EG →=EB →+BG → =EB →+12(BC →+BD →)=EB →+BF →+EH →=EF →+EH →, 由共面向量定理的推论知: E 、F 、G 、H 四点共面. (2)因为EH →=AH →-AE →=12AD →-12AB →=12(AD →-AB →)=12BD →, 所以EH ∥BD .又EH ⊂平面EFGH ,BD ⊄平面EFGH , 所以BD ∥平面EFGH .(3)找一点O ,并连接OM ,OA ,OB ,OC ,OD ,OE ,OG . 由(2)知EH →=12BD →,同理FG →=12BD →,所以EH →=FG →,即EH 綊FG , 所以四边形EFGH 是平行四边形. 所以EG ,FH 交于一点M 且被M 平分. 故OM →=12(OE →+OG →)=12OE →+12OG →=12⎣⎡⎦⎤12(OA →+OB →)+12⎣⎡⎦⎤12(OC →+OD →) =14(OA →+OB →+OC →+OD →). 思维升华 (1)证明点共线的方法证明点共线的问题可转化为证明向量共线的问题,如证明A ,B ,C 三点共线,即证明AB →,AC →共线,亦即证明AB →=λAC →(λ≠0). (2)证明点共面的方法证明点共面问题可转化为证明向量共面问题,如要证明P ,A ,B ,C 四点共面,只要能证明P A →=xPB →+yPC →或对空间任一点O ,有OA →=OP →+xPB →+yPC →或OP →=xOA →+yOB →+zOC (x +y +z =1)即可.共面向量定理实际上也是三个非零向量所在直线共面的充要条件.如图,正方体ABCD -A 1B 1C 1D 1中,E 是A 1B 上的点,F 是AC 上的点,且A 1E =2EB ,CF =2AF ,则EF 与平面A 1B 1CD 的位置关系为________. 答案 平行解析 取AB →=a ,AD →=b ,AA 1→=c 为基底,易得EF →=-13(a -b +c ),而DB 1→=a -b +c ,即EF →∥DB 1→,故EF ∥DB 1, 且EF ⊄平面A 1B 1CD ,DB 1⊂平面A 1B 1CD , 所以EF ∥平面A 1B 1CD .题型三 空间向量数量积的应用例3 如图所示,已知空间四边形AB -CD 的各边和对角线的长都等于 a ,点M 、N 分别是AB 、CD 的中点. (1)求证:MN ⊥AB ,MN ⊥CD ; (2)求MN 的长;(3)求异面直线AN 与CM 所成角的余弦值.思维启迪 两条直线的垂直关系可以转化为两个向量的垂直关系;利用|a |2=a ·a 可以求线段长;利用cos θ=a ·b |a ||b |可求两条直线所成的角.(1)证明 设AB →=p ,AC →=q ,AD →=r .由题意可知,|p |=|q |=|r |=a ,且p 、q 、r 三向量两两夹角均为60°. MN →=AN →-AM →=12(AC →+AD →)-12AB →=12(q +r -p ),∴MN →·AB →=12(q +r -p )·p =12(q ·p +r ·p -p 2)=12(a 2cos 60°+a 2cos 60°-a 2)=0. ∴MN →⊥AB →.即MN ⊥AB .同理可证MN ⊥CD . (2)解 由(1)可知MN →=12(q +r -p ),∴|MN →|2=14(q +r -p )2=14[q 2+r 2+p 2+2(q ·r -p ·q -r ·p )] =14[a 2+a 2+a 2+2(a 22-a 22-a 22)] =14×2a 2=a 22. ∴|MN →|=22a .∴MN 的长为22a .(3)解 设向量AN →与MC →的夹角为θ. ∵AN →=12(AC →+AD →)=12(q +r ),MC →=AC →-AM →=q -12p ,∴AN →·MC →=12(q +r )·(q -12p )=12(q 2-12q ·p +r ·q -12r ·p ) =12(a 2-12a 2cos 60°+a 2cos 60°-12a 2cos 60°) =12(a 2-a 24+a 22-a 24)=a 22. 又∵|AN →|=|MC →|=32a ,∴AN →·MC →=|AN →||MC →|cos θ=32a ×32a ×cos θ=a 22.∴cos θ=23.∴向量AN →与MC →的夹角的余弦值为23,从而异面直线AN 与CM 所成角的余弦值为23.思维升华 (1)当题目条件有垂直关系时,常转化为数量积为零进行应用;(2)当异面直线所成的角为α时,常利用它们所在的向量转化为向量的夹角θ来进行计算.应该注意的是α∈(0,π2],θ∈[0,π],所以cos α=|cos θ|=|a ·b ||a ||b |;(3)立体几何中求线段的长度可以通过解三角形,也可依据|a |=a 2转化为向量求解.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)求向量a 与向量b 的夹角的余弦值; (2)若k a +b 与k a -2b 互相垂直,求实数k 的值. 解 (1)∵a =(1,1,0),b =(-1,0,2), ∴a ·b =(1,1,0)·(-1,0,2)=-1, 又|a |=12+12+02=2, |b |=(-1)2+02+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=-110=-1010,即向量a 与向量b 的夹角的余弦值为-1010. (2)方法一 ∵k a +b =(k -1,k,2). k a -2b =(k +2,k ,-4),且k a +b 与k a -2b 互相垂直,∴(k -1,k,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0, ∴k =2或k =-52,∴当k a +b 与k a -2b 互相垂直时,实数k 的值为2或-52.方法二 由(1)知|a |=2,|b |=5,a ·b =-1, ∴(k a +b )·(k a -2b )=k 2a 2-k a ·b -2b 2 =2k 2+k -10=0, 得k =2或k =-52.“两向量同向”意义不清致误典例:(5分)已知向量a =(1,2,3),b =(x ,x 2+y -2,y ),并且a ,b 同向,则x ,y 的值分别为________.易错分析 将a ,b 同向和a ∥b 混淆,没有搞清a ∥b 的意义:a ·b 方向相同或相反.解析 由题意知a ∥b ,所以x 1=x 2+y -22=y3,即⎩⎪⎨⎪⎧y =3x ①x 2+y -2=2x ②把①代入②得x 2+x -2=0,(x +2)(x -1)=0, 解得x =-2,或x =1当x =-2时,y =-6;当x =1时,y =3.当⎩⎪⎨⎪⎧x =-2y =-6时,b =(-2,-4,-6)=-2a , 两向量a ,b 反向,不符合题意,所以舍去.当⎩⎪⎨⎪⎧ x =1y =3时,b =(1,2,3)=a ,a 与b 同向,所以⎩⎪⎨⎪⎧x =1y =3.答案1,3温馨提醒(1)两向量平行和两向量同向不是等价的,同向是平行的一种情况.两向量同向能推出两向量平行,但反过来不成立,也就是说,“两向量同向”是“两向量平行”的充分不必要条件;(2)若两向量a,b满足a=λb(b≠0)且λ>0则a,b同向;在a,b的坐标都是非零的条件下,a,b的坐标对应成比例.方法与技巧1.利用向量的线性运算和空间向量基本定理表示向量是向量应用的基础.2.利用共线向量定理、共面向量定理可以证明一些平行、共面问题;利用数量积运算可以解决一些距离、夹角问题.3.利用向量解立体几何题的一般方法:把线段或角度转化为向量表示,用已知向量表示未知向量,然后通过向量的运算或证明去解决问题.失误与防范1.向量的数量积满足交换律、分配律,但不满足结合律,即a·b=b·a,a·(b+c)=a·b+a·c成立,(a·b)·c=a·(b·c)不一定成立.2.求异面直线所成的角,一般可以转化为两向量的夹角,但要注意两种角的范围不同,最后应进行转化.A 组 专项基础训练(时间:40分钟)一、选择题1.空间直角坐标系中,A (1,2,3),B (-2,-1,6),C (3,2,1),D (4,3,0),则直线AB 与CD 的位置关系是( ) A.垂直B.平行C.异面D.相交但不垂直 答案 B解析 由题意得,AB →=(-3,-3,3),CD →=(1,1,-1),∴AB →=-3CD →,∴AB →与CD →共线,又AB →与CD →没有公共点.∴AB ∥CD .2.已知O ,A ,B ,C 为空间四个点,又OA →,OB →,OC →为空间的一个基底,则 ( )A.O ,A ,B ,C 四点不共线B.O ,A ,B ,C 四点共面,但不共线C.O ,A ,B ,C 四点中任意三点不共线D.O ,A ,B ,C 四点不共面答案 D解析 OA →,OB →,OC →为空间的一个基底,所以OA →,OB →,OC →不共面,但A ,B ,C 三种情况都有可能使OA →,OB →,OC →共面.3.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是( ) A.2,12B.-13,12C.-3,2D.2,2 答案 A解析 由题意知:⎩⎨⎧ λ+16=22λ,2μ-1=0,解得⎩⎪⎨⎪⎧ λ=2,μ=12或⎩⎪⎨⎪⎧λ=-3,μ=12.4.空间四点A (2,3,6)、B (4,3,2)、C (0,0,1)、D (2,0,2)的位置关系是( ) A.共线B.共面C.不共面D.无法确定 答案 C解析 ∵AB →=(2,0,-4),AC →=(-2,-3,-5),AD →=(0,-3,-4).假设四点共面,由共面向量定理得,存在实数x ,y ,使AD →=xAB →+yAC →,即⎩⎪⎨⎪⎧ 2x -2y =0, ①-3y =-3, ②-4x -5y =-4, ③由①②得x =y =1,代入③式不成立,矛盾.∴假设不成立,故四点不共面.5.如图所示,已知空间四边形OABC ,OB =OC ,且∠AOB =∠AOC =π3,则cos 〈OA →,BC →〉的值为( ) A.0 B.12 C.32 D.22 答案 A解析 设OA →=a ,OB →=b ,OC →=c ,则|b |=|c |,〈a ,b 〉=〈a ,c 〉=π3,BC →=c -b , ∴OA →·BC →=a ·(c -b )=a ·c -a ·b=|a ||c |cos π3-|a ||b |cos π3=0, ∴OA →⊥BC →,∴cos 〈OA →,BC →〉=0.二、填空题6.已知2a +b =(0,-5,10),c =(1,-2,-2),a ·c =4,|b |=12,则以b ,c 为方向向量的两直线的夹角为________.答案 60°解析 由题意得,(2a +b )·c =0+10-20=-10.即2a ·c +b ·c =-10,又∵a ·c =4,∴b ·c =-18,∴cos 〈b ,c 〉=b ·c |b |·|c |=-1812×1+4+4=-12,∴〈b ,c 〉=120°,∴两直线的夹角为60°.7.已知a =(1-t,1-t ,t ),b =(2,t ,t ),则|b -a |的最小值为________.答案 355解析 b -a =(1+t,2t -1,0),∴|b -a |=(1+t )2+(2t -1)2= 5⎝⎛⎭⎫t -152+95,∴当t =15时,|b -a |取得最小值355.8.如图所示,已知P A ⊥平面ABC ,∠ABC =120°,P A =AB =BC =6,则PC 等于________.答案 12解析 因为PC →=P A →+AB →+BC →,所以PC →2=P A →2+AB →2+BC →2+2AB →·BC →=36+36+36+2×36cos 60°=144.所以|PC →|=12.三、解答题9.已知向量a =(1,-3,2),b =(-2,1,1),点A (-3,-1,4),B (-2,-2,2).(1)求|2a +b |;(2)在直线AB 上是否存在一点E ,使得OE →⊥b (O 为原点)?解 (1)∵a =(1,-3,2),b =(-2,1,1),∴2a +b =(0,-5,5),∴|2a +b |=02+(-5)2+52=5 2.(2)假设存在点E ,其坐标为E (x ,y ,z ),则AE →=λAB →,即(x +3,y +1,z -4)=λ(1,-1,-2),∴⎩⎪⎨⎪⎧ x =λ-3y =-λ-1z =-2λ+4,∴E (λ-3,-λ-1,-2λ+4),∴OE →=(λ-3,-λ-1,-2λ+4).又∵b =(-2,1,1),OE →⊥b ,∴OE →·b =-2(λ-3)+(-λ-1)+(-2λ+4)=-5λ+9=0,∴λ=95,∴E (-65,-145,25),∴在直线AB 上存在点E (-65,-145,25),使OE →⊥b .10.如图所示,四棱柱ABCD -A 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长;(2)求BD 1与AC 夹角的余弦值.解 记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°,∴a ·b =b ·c =c ·a =12.(1)|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×(12+12+12)=6,∴|AC 1→|=6,即AC 1的长为 6.(2)BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3,BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1.∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66. ∴AC 与BD 1夹角的余弦值为66. B 组 专项能力提升(时间:30分钟)1.若向量c 垂直于不共线的向量a 和b ,d =λa +μb (λ、μ∈R ,且λμ≠0),则( ) A.c ∥dB.c ⊥dC.c 不平行于d ,c 也不垂直于dD.以上三种情况均有可能答案 B解析 由题意得,c 垂直于由a ,b 确定的平面.∵d =λa +μb ,∴d 与a ,b 共面.∴c ⊥d .2.以下命题中,正确的命题个数为 ( ) ①若a ,b 共线,则a 与b 所在直线平行;②若{a ,b ,c }为空间一个基底,则{a +b ,b +c ,c +a }构成空间的另一个基底; ③若空间向量m 、n 、p 满足m =n ,n =p ,则m =p ;④对空间任意一点O 和不共线三点A 、B 、C ,若OP →=xOA →+yOB →+zOC →(其中x ,y ,z ∈R ),则P 、A 、B 、C 四点共面.A.1B.2C.3D.4答案 B解析 由共线向量知a 与b 所在直线可能重合知①错;若a +b ,b +c ,c +a 共面,则存在实数x ,y ,使a +b =x (b +c )+y (c +a )=y a +x b +(x +y )c , ∵a ,b ,c 不共面,∴y =1,x =1,x +y =0,∴x ,y 无解,∴{a +b ,b +c ,c +a }能构成空间的一个基底,∴②正确;由向量相等的定义知③正确;由共面向量定理的推论知,当x +y +z =1时,P ,A ,B ,C 四点共面,∴④不正确.故选B.3.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,那么直线AM 和CN 所成角的余弦值为________.答案 25解析 以D 为原点,DA 、DC 、DD 1为x 、y 、z 轴正半轴建立空间直角 坐标系,则A (1,0,0),A 1(1,0,1),B 1(1,1,1),B (1,1,0),C (0,1,0),∴M (1,12,1),N (1,1,12),∴AM →=(0,12,1),CN →=(1,0,12),∴cos 〈AM →,CN →〉=AM →·CN→|AM →|·|CN →|=12(12)2+12× 12+(12)2=25.4.已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).(1)求以AB →,AC →为边的平行四边形的面积;(2)若|a |=3,且a 分别与AB →,AC →垂直,求向量a 的坐标.解 (1)由题意可得:AB →=(-2,-1,3),AC →=(1,-3,2),∴cos 〈AB →,AC →〉=AB →·AC →|AB →||AC →|=-2+3+614×14=714=12.∴sin 〈AB →,AC →〉=32,∴以AB →,AC →为边的平行四边形的面积为S =2×12|AB →|·|AC →|·sin 〈AB →,AC →〉=14×32=7 3.(2)设a =(x ,y ,z ),由题意得⎩⎪⎨⎪⎧ x 2+y 2+z 2=3-2x -y +3z =0x -3y +2z =0,解得⎩⎪⎨⎪⎧ x =1y =1z =1或⎩⎪⎨⎪⎧ x =-1y =-1z =-1,∴向量a 的坐标为(1,1,1)或(-1,-1,-1).5.直三棱柱ABC —A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D 、E 分别 为AB 、BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值.(1)证明 设CA →=a ,CB →=b ,CC ′→=c ,根据题意,|a |=|b |=|c |,且a·b =b·c =c·a =0,∴CE →=b +12c ,A ′D →=-c +12b -12a .∴CE →·A ′D →=-12c 2+12b 2=0.∴CE →⊥A ′D →,即CE ⊥A ′D .(2)解 ∵AC ′→=-a +c ,|AC ′→|=2|a |,|CE →|=52|a |.AC ′→·CE →=(-a +c )·⎝⎛⎭⎫b +12c =12c 2=12|a |2,∴cos 〈AC ′→,CE →〉=12|a |22·52|a |2=1010.即异面直线CE 与AC ′所成角的余弦值为1010.。
第7讲 立体几何中的向量方法(一)A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.若直线l 1,l 2的方向向量分别为a =(2,4,-4),b =(-6,9,6),则 ( ). A .l 1∥l 2B .l 1⊥l 2C .l 1与l 2相交但不垂直D .以上均不正确答案 B2.若直线l 的方向向量为a ,平面α的法向量为n ,能使l ∥α的是 ( ). A .a =(1,0,0),n =(-2,0,0) B .a =(1,3,5),n =(1,0,1) C .a =(0,2,1),n =(-1,0,-1) D .a =(1,-1,3),n =(0,3,1)解析 若l ∥α,则a·n =0.而A 中a·n =-2,B 中a·n =1+5=6,C 中a·n =-1,只有D 选项中a·n =-3+3=0. 答案 D3.平面α经过三点A (-1,0,1),B (1,1,2),C (2,-1,0),则下列向量中与平面α的法向量不垂直的是( ).A.⎝ ⎛⎭⎪⎫12,-1,-1 B .(6,-2,-2) C .(4,2,2)D .(-1,1,4)解析 设平面α的法向量为n ,则n ⊥AB →,n ⊥AC →,n ⊥BC →,所有与AB →(或AC →、BC →)平行的向量或可用AB →与AC →线性表示的向量都与n 垂直,故选D. 答案 D4.(2012·全国)已知正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,CC 1=22,E 为CC 1的中点,则直线AC 1与平面BED 的距离为( ).A .2B. 3C. 2D .1解析 连接AC ,交BD 于点O ,连接EO ,过点O 作OH ⊥AC 1于点H ,因为AB =2,所以AC =22,又CC 1=22,所以OH =2sin 45°=1. 答案 D二、填空题(每小题5分,共10分)5.若向量a =(1,λ,2),b =(2,-1,2)且a 与b 的夹角的余弦值为89,则λ=________. 解析 由已知得89=a·b |a ||b |=2-λ+45+λ2·9,∴85+λ2=3(6-λ),解得λ=-2或λ=255.答案 -2或2556.在四面体P ABC 中,P A ,PB ,PC 两两垂直,设P A =PB =PC =a ,则点P 到平面ABC 的距离为________.解析 根据题意,可建立如图所示的空间直角坐标系P -xyz ,则P (0,0,0),A (a ,0,0),B (0,a,0),C (0,0,a ).过点P 作PH ⊥平面ABC ,交平面ABC 于点H ,则PH 的长即为点P 到平面ABC 的距离. ∵P A =PB =PC , ∴H 为△ABC 的外心. 又∵△ABC 为正三角形,∴H 为△ABC 的重心,可得H 点的坐标为⎝ ⎛⎭⎪⎫a 3,a 3,a 3.∴PH =⎝ ⎛⎭⎪⎫0-a 32+⎝ ⎛⎭⎪⎫0-a 32+⎝ ⎛⎭⎪⎫0-a 32=33a . ∴点P 到平面ABC 的距离为33a . 答案 33a三、解答题(共25分)7.(12分)已知正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为BB 1、C 1D 1的中点,建立适当的坐标系,求平面AMN 的一个法向量.解 以D 为原点,DA 、DC 、DD 1所在直线为坐标轴建立空间直角坐标系(如图所示).设正方体ABCD -A 1B 1C 1D 1的棱长为1,则A (1,0,0), M ⎝ ⎛⎭⎪⎫1,1,12,N ⎝ ⎛⎭⎪⎫0,12,1. ∴AM →=⎝ ⎛⎭⎪⎫0,1,12,AN →=⎝ ⎛⎭⎪⎫-1,12,1.设平面AMN 的一个法向量为n =(x ,y ,z ), ∴⎩⎪⎨⎪⎧n ·AM →=y +12z =0,n ·AN →=-x +12y +z =0,令y =2,∴x =-3,z =-4.∴n =(-3,2,-4). 8.(13分)如图所示,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB =2,AF =1,M 是线段EF 的中点.求证:(1)AM ∥平面BDE ; (2)AM ⊥平面BDF .证明 (1)建立如图所示的空间直角坐标系, 设AC ∩BD =N ,连接NE .则N ⎝ ⎛⎭⎪⎫22,22,0,E (0,0,1),A (2,2,0),M ⎝ ⎛⎭⎪⎫22,22,1∴NE →=⎝ ⎛⎭⎪⎫-22,-22,1.AM →=⎝ ⎛⎭⎪⎫-22,-22,1.∴NE →=AM →且NE 与AM 不共线.∴NE ∥AM . 又∵NE ⊂平面BDE ,AM ⊄平面BDE , ∴AM ∥平面BDE .(2)由(1)知AM →=⎝ ⎛⎭⎪⎫-22,-22,1,∵D (2,0,0),F (2,2,1), ∴DF →=(0,2,1) ∴AM →·DF →=0,∴AM ⊥DF . 同理AM ⊥BF .又DF ∩BF =F ,∴AM ⊥平面BDF .B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为( ).A.337,-157,4 B.407,-157,4 C.407,-2,4D .4,407,-15解析 ∵AB →⊥BC →,∴AB →·BC →=0,即3+5-2z =0,得z =4,又BP ⊥平面ABC ,∴BP ⊥AB ,BP ⊥BC ,BC →=(3,1,4),则⎩⎪⎨⎪⎧(x -1)+5y +6=0,3(x -1)+y -12=0,解得⎩⎪⎨⎪⎧x =407,y =-157.答案 B2.正方体ABCD -A 1B 1C 1D 1的棱长为a ,点M 在AC 1上且AM →=12MC 1→,N 为B 1B 的中点,则|MN →|为( ).A.216aB.66aC.156aD.153a解析 以D 为原点建立如图所示的空间直角坐标系D -xyz ,则A (a,0,0),C 1(0,a ,a ),N ⎝ ⎛⎭⎪⎫a ,a ,a 2.设M (x ,y ,z ),∵点M 在AC 1上且AM →=12MC 1→, ∴(x -a ,y ,z )=12(-x ,a -y ,a -z ) ∴x =23a ,y =a 3,z =a 3. 得M ⎝ ⎛⎭⎪⎫2a 3,a 3,a 3,∴|MN →|= ⎝ ⎛⎭⎪⎫a -23a 2+⎝ ⎛⎭⎪⎫a -a 32+⎝ ⎛⎭⎪⎫a 2-a 32=216a . 答案 A二、填空题(每小题5分,共10分)3.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别是棱BC 、DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.解析 以D 1A 1、D 1C 1、D 1D 分别为x ,y ,z 轴建立空间直角坐标系,设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),∴B 1E →=(x -1,0,1),又F (0,0,1-y ),B (1,1,1),∴FB →=(1,1,y ),由于AB ⊥B 1E ,故若B 1E⊥平面ABF ,只需FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1. 答案 14.(2013·淮南模拟)在正方体ABCD -A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 内一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN →的实数λ的有____________个.解析 建立如图的坐标系,设正方体的边长为2,则P (x ,y,2),O (1,1,0),∴OP 的中点坐标为⎝ ⎛⎭⎪⎫x +12,y +12,1,又知D 1(0,0,2),∴Q (x +1,y +1,0),而Q 在MN 上,∴x Q +y Q =3,∴x +y =1,即点P 坐标满足x +y =1.∴有2个符合题意的点P ,即对应有2个λ. 答案 2三、解答题(共25分)5.(12分)在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点. (1)求证:EF ⊥CD ;(2)在平面P AD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论. (1)证明 如图,以DA 、DC 、DP 所在直线分别为x 轴,y 轴、z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0)、A (a,0,0)、B (a ,a,0)、C (0,a,0)、E ⎝ ⎛⎭⎪⎫a ,a 2,0、P (0,0,a )、F ⎝ ⎛⎭⎪⎫a 2,a 2,a 2.EF →=⎝ ⎛⎭⎪⎫-a2,0,a 2,DC →=(0,a,0).∵EF →·DC →=0,∴EF →⊥DC →,即EF ⊥CD .(2)解 设G (x,0,z ),则FG →=⎝ ⎛⎭⎪⎫x -a2,-a 2,z -a 2,若使GF ⊥平面PCB ,则由FG →·CB →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(a,0,0)=a ⎝ ⎛⎭⎪⎫x -a 2=0,得x =a 2;由FG →·CP →=⎝ ⎛⎭⎪⎫x -a2,-a 2,z -a 2·(0,-a ,a )=a 22+a ⎝ ⎛⎭⎪⎫z -a 2=0,得z =0.∴G 点坐标为⎝ ⎛⎭⎪⎫a 2,0,0,即G 点为AD 的中点.6.(13分)(2012·湖南)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB =4,BC =3,AD =5,∠DAB =∠ABC =90°,E 是CD 的中点. (1)证明:CD ⊥平面P AE ;(2)若直线PB 与平面P AE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P -ABCD 的体积.解 如图,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设P A =h ,则相关各点的坐标为:A (0,0,0),B (4,0,0),C (4,3,0),D (0,5,0),E (2,4,0), P (0,0,h ).(1)易知CD →=(-4,2,0),AE →=(2,4,0),AP →=(0,0,h ).因为CD →·AE →=-8+8+0=0,CD →·AP →=0,所以CD ⊥AE ,CD ⊥AP .而AP ,AE 是平面P AE 内的两条相交直线,所以CD ⊥平面P AE .(2)由题设和(1)知,CD →·P A →分别是平面P AE ,平面ABCD 的法向量.而PB 与平面P AE 所成的角和PB 与平面ABCD 所成的角相等,所以|cos 〈CD →,PB →〉|=|cos 〈P A →,PB →〉|, 即⎪⎪⎪⎪⎪⎪⎪⎪CD →·PB →|CD →|·|PB →|=⎪⎪⎪⎪⎪⎪⎪⎪P A →·PB →|P A →|·|PB →|.由(1)知,CD →=(-4,2,0),P A →=(0,0,-h ), 又PB →=(4,0,-h ),故⎪⎪⎪⎪⎪⎪-16+0+025×16+h 2=⎪⎪⎪⎪⎪⎪0+0+h 2h ×16+h 2. 解得h =855.又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为V =13×S ×P A =13×16×855=128515.。
第3讲 立体几何中的向量方法考情解读 1.以多面体(特别是棱柱、棱锥或其组合体)为载体,考查空间中平行与垂直的证明,常出现在解答题的第(1)问中,考查空间想象能力,推理论证能力及计算能力,属低中档问题.2.以多面体(特别是棱柱、棱锥或其组合体)为载体,考查空间角(主要是线面角和二面角)的计算,是高考的必考内容,属中档题.3.以已知结论寻求成立的条件(或是否存在问题)的探索性问题,考查逻辑推理能力、空间想象能力以及探索能力,是近几年高考命题的新亮点,属中高档问题.1.直线与平面、平面与平面的平行与垂直的向量方法设直线l 的方向向量为a =(a 1,b 1,c 1).平面α、β的法向量分别为μ=(a 2,b 2,c 2),v =(a 3,b 3,c 3)(以下相同). (1)线面平行l ∥α⇔a ⊥μ⇔a ·μ=0⇔a 1a 2+b 1b 2+c 1c 2=0. (2)线面垂直l ⊥α⇔a ∥μ⇔a =k μ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2. (3)面面平行α∥β⇔μ∥v ⇔μ=λv ⇔a 2=λa 3,b 2=λb 3,c 2=λc 3. (4)面面垂直α⊥β⇔μ⊥v ⇔μ·v =0⇔a 2a 3+b 2b 3+c 2c 3=0. 2.直线与直线、直线与平面、平面与平面的夹角计算设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).平面α、β的法向量分别为 μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4)(以下相同). (1)线线夹角设l ,m 的夹角为θ(0≤θ≤π2),则cos θ=|a ·b ||a ||b |=|a 1a 2+b 1b 2+c 1c 2|a 21+b 21+c 21a 22+b 22+c 22.(2)线面夹角设直线l 与平面α的夹角为θ(0≤θ≤π2),则sin θ=|a ·μ||a ||μ|=|cos 〈a ,μ〉|.(3)面面夹角设半平面α、β的夹角为θ(0≤θ≤π),则|cos θ|=|μ·v ||μ||v |=|cos 〈μ,v 〉|. 提醒 求二面角时,两法向量的夹角有可能是二面角的补角,要注意从图中分析.3.求空间距离直线到平面的距离,两平行平面的距离均可转化为点到平面的距离,点P 到平面α的距离:d =|PM →·n ||n |(其中n 为α的法向量,M 为α内任一点).热点一 利用向量证明平行与垂直例1 如图,在直三棱柱ADE —BCF 中,面ABFE 和面ABCD 都是正方形且互相垂直,M 为AB 的中点,O 为DF 的中点.运用向量方法证明: (1)OM ∥平面BCF ;(2)平面MDF ⊥平面EFCD .思维启迪 从A 点出发的三条直线AB 、AD ,AE 两两垂直,可建立空间直角坐标系.思维升华 (1)要证明线面平行,只需证明向量OM →与平面BCF 的法向量垂直;另一个思路则是根据共面向量定理证明向量OM →与BF →,BC →共面.(2)要证明面面垂直,只要证明这两个平面的法向量互相垂直;也可根据面面垂直的判定定理证明直线OM 垂直于平面EFCD ,即证OM 垂直于平面EFCD 内的两条相交直线,从而转化为证明向量OM →与向量FC →、CD →垂直.如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 是菱形,P A =AB =2,∠BAD =60°,E 是P A 的中点. (1)求证:直线PC ∥平面BDE ; (2)求证:BD ⊥PC ;热点二 利用向量求空间角例2 如图,五面体中,四边形ABCD 是矩形,AB ∥EF ,AD ⊥平面ABEF ,且AD =1,AB =12EF =22,AF =BE =2,P 、Q 分别为AE 、BD 的中点.(1)求证:PQ ∥平面BCE ; (2)求二面角A -DF -E 的余弦值.思维启迪 (1)易知PQ 为△ACE 的中位线;(2)根据AD⊥平面ABEF 构建空间直角坐标系.思维升华 (1)运用空间向量坐标运算求空间角的一般步骤:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论.(2)求空间角注意:①两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cos α=|cos β|.②两平面的法向量的夹角不一定是所求的二面角,有可能为两法向量夹角的补角.③直线和平面所成的角的正弦值等于平面法向量与直线方向向量夹角的余弦值的绝对值,即注意函数名称的变化.(2013·山东)如图所示,在三棱锥P -ABQ 中,PB ⊥平面ABQ ,BA =BP =BQ ,D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点,AQ =2BD ,PD 与EQ 交于点G ,PC 与FQ 交于点H ,连接GH . (1)求证:AB ∥GH ;(2)求二面角D -GH -E 的余弦值.热点三 利用空间向量求解探索性问题例3 如图,在直三棱柱ABC -A 1B 1C 1中,AB =BC =2AA 1,∠ABC =90°,D 是BC 的中点.(1)求证:A 1B ∥平面ADC 1; (2)求二面角C 1-AD -C 的余弦值;(3)试问线段A 1B 1上是否存在点E ,使AE 与DC 1成60°角?若存在,确定E 点位置;若不存在,说明理由. 思维升华 空间向量最适合于解决这类立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法.如图,在三棱锥P —ABC 中,AC =BC =2,∠ACB =90°,AP =BP =AB ,PC ⊥AC ,点D 为BC 的中点.(1)求二面角A —PD —B 的余弦值;(2)在直线AB 上是否存在点M ,使得PM 与平面P AD 所成角的正弦值为16,若存在,求出点M 的位置;若不存在,说明理由.空间向量在处理空间问题时具有很大的优越性,能把“非运算”问题“运算”化,即通过直线的方向向量和平面的法向量,把立体几何中的平行、垂直关系,各类角、距离以向量的方式表达出来,把立体几何问题转化为空间向量的运算问题.应用的核心是充分认识形体特征,进而建立空间直角坐标系,通过向量的运算解答问题,达到几何问题代数化的目的,同时注意运算的准确性.提醒三点:(1)直线的方向向量和平面的法向量所成角的余弦值的绝对值是线面角的正弦值,而不是余弦值. (2)求二面角除利用法向量外,还可以按照二面角的平面角的定义和空间任意两个向量都是共面向量的知识,我们只要是在二面角的两个半平面内分别作和二面角的棱垂直的向量,并且两个向量的方向均指向棱或者都从棱指向外,那么这两个向量所成的角的大小就是二面角的大小.如图所示.(3)对于空间任意一点O 和不共线的三点A ,B ,C ,且有OP →=xOA →+yOB →+zOC →(x ,y ,z ∈R ),四点P ,A ,B ,C 共面的充要条件是x +y +z =1.空间一点P 位于平面MAB 内⇔存在有序实数对x ,y ,使MP →=xMA →+yMB →,或对空间任一定点O ,有序实数对x ,y ,使OP →=OM →+xMA →+yMB →.真题感悟(2014·北京)如图,正方形AMDE 的边长为2,B ,C 分别为AM ,MD 的中点,在五棱锥P -ABCDE 中,F 为棱PE 的中点,平面ABF 与棱PD ,PC 分别交于点G ,H.(1)求证:AB ∥FG ;(2)若P A ⊥底面ABCDE ,且P A =AE ,求直线BC 与平面ABF 所成角的大小,并求线段PH 的长. 押题精练如图所示,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB =2,AF =1。
第7讲 立体几何中的向量方法(一)一、选择题1.直线l 1,l 2相互垂直,则下列向量可能是这两条直线的方向向量的是( ) A .s 1=(1,1,2),s 2=(2,-1,0) B .s 1=(0,1,-1),s 2=(2,0,0) C .s 1=(1,1,1),s 2=(2,2,-2) D .s 1=(1,-1,1),s 2=(-2,2,-2)解析 两直线垂直,其方向向量垂直,只有选项B 中的两个向量垂直. 答案 B2.已知a =⎝ ⎛⎭⎪⎫1,-32,52,b =⎝ ⎛⎭⎪⎫-3,λ,-152满足a∥b ,则λ等于( ).A.23B.92 C .-92 D .-23 解析 由1-3=-32λ=52-152,可知λ=92.答案 B3.平面α经过三点A (-1,0,1),B (1,1,2),C (2,-1,0),则下列向量中与平面α的法向量不垂直的是( ).A.⎝ ⎛⎭⎪⎫12,-1,-1 B .(6,-2,-2) C .(4,2,2)D .(-1,1,4)解析 设平面α的法向量为n ,则n ⊥AB →,n ⊥AC →,n ⊥BC →,所有与AB →(或AC →、BC →)平行的向量或可用AB →与AC →线性表示的向量都与n 垂直,故选D. 答案 D4.已知正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,CC 1=22,E 为CC 1的中点,则直线AC 1与平面BED 的距离为( ).A .2B. 3C. 2D .1解析 连接AC ,交BD 于点O ,连接EO ,过点O 作OH ⊥AC 1于点H ,因为AB =2,所以AC =22,又CC 1=22,所以OH =2sin 45°=1. 答案 D5.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5, λ),若a ,b ,c 三向量共面,则实数λ等于( ). A.627 B.637 C.607 D.657解析 由题意得c =t a +μb =(2t -μ,-t +4μ,3t -2μ),∴⎩⎨⎧7=2t -μ5=-t +4μ,λ=3t -2μ∴⎩⎪⎨⎪⎧t =337μ=177λ=657.答案 D6.正方体ABCD -A 1B 1C 1D 1的棱长为a ,点M 在AC 1上且AM →=12MC 1→,N 为B 1B 的中点,则|MN →|为( ).A.216aB.66aC.156aD.153a解析 以D 为原点建立如图所示的空间直角坐标系D -xyz ,则A (a,0,0),C 1(0,a ,a ),N ⎝ ⎛⎭⎪⎫a ,a ,a 2.设M (x ,y ,z ),∵点M 在AC 1上且AM →=12MC 1→, ∴(x -a ,y ,z )=12(-x ,a -y ,a -z ) ∴x =23a ,y =a 3,z =a3.得M ⎝ ⎛⎭⎪⎫2a 3,a 3,a 3,∴|MN →|= ⎝ ⎛⎭⎪⎫a -23a 2+⎝ ⎛⎭⎪⎫a -a 32+⎝ ⎛⎭⎪⎫a 2-a 32=216a . 答案 A 二、填空题7.若向量a =(1,λ,2),b =(2,-1,2)且a 与b 的夹角的余弦值为89,则λ=________. 解析 由已知得89=a·b |a ||b |=2-λ+45+λ2·9,∴85+λ2=3(6-λ),解得λ=-2或λ=255. 答案 -2或2558.在四面体P ABC 中,P A ,PB ,PC 两两垂直,设P A =PB =PC =a ,则点P 到平面ABC 的距离为________.解析 根据题意,可建立如图所示的空间直角坐标系P -xyz ,则P (0,0,0),A (a ,0,0),B (0,a,0),C (0,0,a ).过点P 作PH ⊥平面ABC ,交平面ABC 于点H ,则PH 的长即为点P 到平面ABC 的距离. ∵P A =PB =PC , ∴H 为△ABC 的外心. 又∵△ABC 为正三角形,∴H 为△ABC 的重心,可得H 点的坐标为⎝ ⎛⎭⎪⎫a 3,a 3,a 3.∴PH =⎝ ⎛⎭⎪⎫0-a 32+⎝ ⎛⎭⎪⎫0-a 32+⎝ ⎛⎭⎪⎫0-a 32=33a .∴点P 到平面ABC 的距离为33a . 答案 33a9.平面α的一个法向量n =(0,1,-1),如果直线l ⊥平面α,则直线l 的单位方向向量是s =________.解析 直线l 的方向向量平行于平面α的法向量,故直线l 的单位方向向量是s =±⎝ ⎛⎭⎪⎫0,22,-22.答案 ±⎝⎛⎭⎪⎫0,22,-2210.在正方体ABCD -A1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 内一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN →的实数λ的有____________个.解析 建立如图的坐标系,设正方体的边长为2,则P (x ,y,2),O (1,1,0),∴OP 的中点坐标为⎝ ⎛⎭⎪⎫x +12,y +12,1,又知D 1(0,0,2),∴Q (x +1,y +1,0),而Q 在MN 上,∴x Q +y Q =3,∴x +y =1,即点P 坐标满足x +y =1.∴有2个符合题意的点P ,即对应有2个λ. 答案 2 三、解答题11.已知:a =(x,4,1),b =(-2,y ,-1),c =(3,-2,z ),a∥b ,b⊥c ,求:a ,b ,c .解 因为a∥b ,所以x -2=4y =1-1,解得x =2,y =-4,这时a =(2,4,1),b =(-2,-4,-1). 又因为b⊥c ,所以b·c =0,即-6+8-z =0, 解得z =2,于是c =(3,-2,2).12.如图所示,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB =2,AF =1,M 是线段EF 的中点. 求证:(1)AM ∥平面BDE ;(2)AM ⊥平面BDF .证明 (1)建立如图所示的空间直角坐标系, 设AC ∩BD =N ,连接NE .则N ⎝ ⎛⎭⎪⎫22,22,0,E (0,0,1),A (2,2,0),M ⎝ ⎛⎭⎪⎫22,22,1∴NE →=⎝ ⎛⎭⎪⎫-22,-22,1.AM →=⎝ ⎛⎭⎪⎫-22,-22,1.∴NE →=AM →且NE 与AM 不共线.∴NE ∥AM . 又∵NE ⊂平面BDE ,AM ⊄平面BDE , ∴AM ∥平面BDE .(2)由(1)知AM →=⎝ ⎛⎭⎪⎫-22,-22,1,∵D (2,0,0),F (2,2,1), ∴DF →=(0,2,1) ∴AM →·DF →=0,∴AM ⊥DF . 同理AM ⊥BF .又DF ∩BF =F ,∴AM ⊥平面BDF .13.在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点. (1)求证:EF ⊥CD ;(2)在平面P AD 内求一点G ,使GF ⊥平面PCB ,并证明你的结论. (1)证明 如图,以DA 、DC 、DP 所在直线分别为x轴,y 轴、z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0)、A (a,0,0)、B (a ,a,0)、C (0,a,0)、E ⎝ ⎛⎭⎪⎫a ,a 2,0、P (0,0,a )、F ⎝ ⎛⎭⎪⎫a 2,a 2,a 2.EF →=⎝ ⎛⎭⎪⎫-a2,0,a 2,DC →=(0,a,0).∵EF →·DC →=0,∴EF →⊥DC →,即EF ⊥CD .(2)解 设G (x,0,z ),则FG →=⎝ ⎛⎭⎪⎫x -a2,-a 2,z -a 2,若使GF ⊥平面PCB ,则由FG →·CB →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(a,0,0)=a ⎝ ⎛⎭⎪⎫x -a 2=0,得x =a 2; 由FG →·CP →=⎝ ⎛⎭⎪⎫x -a2,-a 2,z -a 2·(0,-a ,a )=a 22+a ⎝ ⎛⎭⎪⎫z -a 2=0,得z =0.∴G 点坐标为⎝ ⎛⎭⎪⎫a 2,0,0,即G 点为AD 的中点.14.如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB =4,BC =3,AD =5,∠DAB =∠ABC =90°,E 是CD 的中点.(1)证明:CD ⊥平面P AE ;(2)若直线PB 与平面P AE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P -ABCD 的体积.解 如图,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设P A =h ,则相关各点的坐标为:A (0,0,0),B (4,0,0),C (4,3,0),D (0,5,0),E (2,4,0), P (0,0,h ).(1)易知CD →=(-4,2,0),AE →=(2,4,0),AP →=(0,0,h ).因为CD →·AE →=-8+8+0=0,CD →·AP →=0,所以CD ⊥AE ,CD ⊥AP .而AP ,AE 是平面P AE 内的两条相交直线,所以CD ⊥平面P AE .(2)由题设和(1)知,CD →·P A →分别是平面P AE ,平面ABCD 的法向量.而PB 与平面P AE 所成的角和PB 与平面ABCD 所成的角相等,所以|cos 〈CD →,PB →〉|=|cos 〈P A →,PB →〉|,即⎪⎪⎪⎪⎪⎪⎪⎪CD →·PB →|CD →|·|PB →|=⎪⎪⎪⎪⎪⎪⎪⎪P A →·PB →|P A →|·|PB →|.由(1)知,CD →=(-4,2,0),P A →=(0,0,-h ), 又PB →=(4,0,-h ),故⎪⎪⎪⎪⎪⎪-16+0+025×16+h 2=⎪⎪⎪⎪⎪⎪0+0+h 2h ×16+h 2. 解得h =855.又梯形ABCD 的面积为S =12×(5+3)×4=16,所以四棱锥P -ABCD 的体积为V =13×S ×P A =13×16×855=128515.。