备课参考一道课本折叠试题的设问方式探究
- 格式:doc
- 大小:22.00 KB
- 文档页数:6
平行四边形折叠问题解题技巧平行四边形折叠问题解题技巧什么是平行四边形折叠问题平行四边形折叠问题是一种数学问题,要求将一块平行四边形纸张折叠成特定的形状。
解决这个问题需要一些技巧和方法。
以下是一些常用的技巧,可以帮助你解题。
技巧一:注意对称性•在折叠平行四边形时,要注意纸张的对称性。
利用对称性可以简化问题,并找到更快的解决方案。
•如果可以发现平行四边形纸张具有对称性,可以根据对称性进行折叠,将问题简化为更小的子问题。
技巧二:利用角度相等•在平行四边形折叠问题中,角度是一个重要的概念。
角度相等的性质可以帮助我们确定折叠的方式。
•如果已知某个角度相等,可以通过将纸张折叠使得两个角度重合,从而找到解题的关键位置。
技巧三:利用边长比例•平行四边形的边长比例也是一个重要的信息。
通过观察边长比例,可以推导出纸张的折叠方式。
•如果已知两个边长的比例,可以利用这个比例关系进行折叠,从而找到解题的关键位置。
技巧四:分析折痕•折痕是平行四边形折叠问题中的关键点。
分析折痕的特点可以帮助我们确定折叠的方式。
•观察折痕的位置、形状和角度,可以推断出纸张的折叠方式,并找到最终的解答。
技巧五:尝试反向思考•在解决平行四边形折叠问题时,有时候可以尝试反向思考。
即从最终的形状出发,逆向推导出折叠的方式。
•这种方法可以帮助我们更直观地理解问题,从而找到更有效的解题方法。
技巧六:多练习、多实践•最后,最重要的是多练习、多实践。
通过反复练习和实践,可以加深对平行四边形折叠问题的理解,掌握更多的解题技巧。
•在实践中遇到问题不要气馁,可以寻求他人的帮助或参考相关资料,不断提升自己的解题能力。
以上是解决平行四边形折叠问题常用的技巧和方法。
通过灵活运用这些技巧,相信你能够轻松解决各种平行四边形折叠问题。
祝你成功!(以上仅为参考,具体文章内容可以根据实际需要进行修改和补充。
)。
中考数学几何折叠问题的答题技巧折叠问题题型多样,变化灵活,从考察学生空间想象能力与动手操作能力的实践操作题,到直接运用折叠相关性质的说理计算题,发展到基于折叠操作的综合题,甚至是压轴题. 考查的着眼点日趋灵活,能力立意的意图日渐明显.这对于识别和理解几何图形的能力、空间思维能力和综合解决问题的能力都提出了比以往更高的要求.折叠操作就是将图形的一部分沿着一条直线翻折1800,使它与另一部分图形在这条直线的同旁与其重叠或不重叠,其中折是过程,叠是结果. 折叠问题的实质是图形的轴对称变换,折叠更突出了轴对称问题的应用. 所以在解决有关的折叠问题时可以充分运用轴对称的思想和轴对称的性质.根据轴对称的性质可以得到:折叠重合部分一定全等,折痕所在直线就是这两个全等形的对称轴;互相重合两点(对称点)之间的连线必被折痕垂直平分;对称两点与对称轴上任意一点连结所得的两条线段相等; 对称线段所在的直线与对称轴的夹角相等. 在解题过程中要充分运用以上结论,借助辅助线构造直角三角形,结合相似形、锐角三角函数等知识来解决有关折叠问题,可以使得解题思路更加清晰,解题步骤更加简洁.1、利用点的对称例1.(2006 年南京市)已知矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A 与边CD 上的点E 重合.(1)如果折痕FG 分别与AD、AB 交于F、G(如图①),AF=,求DE 的长;(2)如果折痕FG 分别与CD、AB 交于F、G(如图②),△AED 的外接圆与直线BC 相切,求折痕FG 的长.图①中FG 是折痕,点A 与点E 重合,根据折叠的对称性,已知线段AF 的长,可得到线段EF 的长,从而将求线段的长转化到求Rt△DEF 的一条直角边DE. 图②中,连结对应点A、E,则折痕FG 垂直平分AE,取AD 的中点M,连结MO,则MO=DE,且MO∥CD,又AE 为Rt△AED 的外接圆的直径,则O 为圆心,延长MO 交BC 于N,则ONBC,MN=AB,又Rt△AED 的外接圆与直线BC 相切,所以ON 是Rt△AED 的外接圆的半径,即ON=AE,根据勾股定理可求出DE=,OE=. 通过Rt△FEO∽Rt△AED,求得FO=,从而求出EF 的长.对称点的连线被对称轴垂直平分,连结两对称点既可以得到相等的线段,也可以构造直角三角形, 本题把折叠问题转化为轴对称问题,利用勾股定理和相似求出未知线段,最后把所求的线段转化到直角三角形中去处理.二、利用线段的对称性质例2.(新课标人教版数学八年级下学期P126)数学活动1:折纸做300、600、150 的角对折矩形纸片ABCD,使AD 与BC 重合,得到折痕EF,把纸片展平,再次折叠纸片,使A 点落在折痕EF 上的N 点处,并使折痕经过点B 得到折痕BM,同时得到线段BN,观察所得到的ABM、MBN和NBC,这三个角有什么关系?(教师用书中给出了这样的提示:△ABM≌△NBC,作NGBC,则直角三角形中NG=BN,从而可得ABM=MBN=NBC=300.)若这样证明则要用到:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于300. 这个定理现行教材中没有涉及到,在这儿用不太合适. 如果直接运用轴对称思想说理应该比较简洁明了:连结AN,则AN=BN,又AB=BN,所以三角形ABN 为等边三角形,所以ABM=MBN=NBC=300.利用对称的思想来证明线段的相等比用其他方法快捷而且灵活.三、利用面对称的性质例3.(2006 年临安)如图,△OAB 是边长为2 的等边三角形,其中O 是坐标原点,顶点B 在y 轴的正方向上,将△OAB 折叠,使点A 落在OB 上,记为A`点,折痕为EF. 此题中第③问是:当A`点在OB 上运动,但不与O、B 重合时,能否使△A`EF 为直角三角形?这一问题需通过分类讨论,先确定直角顶点不可能在A`处. 当△A`EF 为直角三角形,且直角顶点在F 处时,根据轴对称性质我们可以得到AFE=A`FE=900,此时A`点与B 点重合,与题目中已知相矛盾,所以直角顶点在点F 处不成立. 同理可证,直角顶点亦不可能在点E 处. 故当A`点在OB 上运动,若不与O、B 重合,则不存在这样的A`点使△A`EF 为直角三角形.在折叠问题中,利用面的对称性可得到相等的角、全等的图形和相等的面积.解决折叠问题时,首先要对图形折叠有一准确定位,把握折叠的实质,抓住图形之间最本质的位置关系,从点、线、面三个方面入手,发现其中变化的和不变的量. 进一步发现图形中的数量关系;其次要把握折叠的变化规律,充分挖掘图形的几何性质,将其中的基本的数量关系用方程的形式表达出来,运用所学知识合理、有序、全面的解决问题. tips:感谢大家的阅读,本文由我司收集整编。
八年级数学翻折变换(折叠问题)参考答案与试题解析work Information Technology Company.2020YEAR八年级数学翻折变换(折叠问题)参考答案与试题解析一.选择题(共12小题)1.如图,矩形纸片ABCD,长AD=9m,宽AB=3cm,将其折叠,使点D与点B重合,那么折叠后DE的长为()A.7cm B.6cm C.5.5cm D.5cm【分析】由矩形的性质和折叠的性质以及勾股定理得出方程,解方程即可.【解答】解:由折叠的性质得:BE=DE,设DE长为xcm,则AE=(9﹣x)cm,BE=xcm,∵四边形ABCD是矩形,∴∠A=90°,根据勾股定理得:AE2+AB2=BE2,即(9﹣x)2+32=x2,解得:x=5,即DE长为5cm,故选:D.【点评】本题考查了矩形的性质、翻折变换、勾股定理等知识;熟练掌握矩形和翻折变换的性质,运用勾股定理进行计算是解决问题的关键.2.如图,在等边三角形ABC中,点D、E分别是边AC、BC上两点.将△ABC沿DE翻折,点C正好落在线段AB上的点F处,使得AF:BF=2:3.若BE=16,则点F到BC边的距离是()A.8B.12C.D.【分析】作EM⊥AB于M,由等边三角形的性质和直角三角形的性质求出BM=BE=8,ME=BM=8,由折叠的性质得出FE=CE,设FE=CE=x,则AB=BC=16+x,得出BF=(16+x),求出FM=BF﹣BM=(16+x)﹣8=+x,在Rt△EFM中,由勾股定理得出方程,解方程求出BF=21.作FN⊥BC于N,则∠BFN=30°,由直角三角形的性质得出BN=BF=,得出FN=BN=即可.【解答】解:作EM⊥AB于M,如图所示:∵△ABC是等边三角形,∴BC=AB,∠B=60°,∵EM⊥AB,∴∠BEM=30°,∴BM=BE=8,ME=BM=8,由折叠的性质得:FE=CE,设FE=CE=x,则AB=BC=16+x,∵AF:BF=2:3,∴BF=(16+x),∴FM=BF﹣BM=(16+x)﹣8=+x,在Rt△EFM中,由勾股定理得:(8)2+(+x)2=x2,解得:x=19,或x=﹣16(舍去),∴BF=(16+19)=21,作FN⊥BC于N,则∠BFN=30°,∴BN=BF=,∴FN=BN=,即点F到BC边的距离是,故选:D.【点评】本题考查了翻折变换的性质、等边三角形的性质、直角三角形的性质、勾股定理等知识;熟练掌握翻折变换和等边三角形的性质,由勾股定理得出方程是解题的关键.3.如图,在等腰Rt△ABC中∠C=90°,AC=BC=2.点D和点E分别是BC边和AB 边上两点,连接DE.将△BDE沿DE折叠,得到△B′DE,点B恰好落在AC的中点处设DE与BB交于点F,则EF=()A.B.C.D.【分析】根据等腰直角三角形的性质得到AB=AC=4,∠A=∠B=45°,过B′作B′H⊥AB与H,得到AH=B′H=AB′,求得AH=B′H=1,根据勾股定理得到BB′===,由折叠的性质得到BF=BB′=,DE ⊥BB′,根据相似三角形即可得到结论.【解答】解:∵在等腰Rt△ABC中∠C=90°,AC=BC=2,∴AB=AC=4,∠A=∠B=45°,过B′作B′H⊥AB与H,∴△AHB′是等腰直角三角形,∴AH=B′H=AB′,∵AB′=AC=,∴AH=B′H=1,∴BH=3,∴BB′===,∵将△BDE沿DE折叠,得到△B′DE,∴BF=BB′=,DE⊥BB′,∴∠BHB′=∠BFE=90°,∵∠EBF=∠B′BH,∴△BFE∽△BHB′,∴=,∴=,∴EF=,故答案为:.故选:C.【点评】本题考查了翻折变换(折叠问题),等腰直角三角形的判定和性质,勾股定理,相似三角形的判定和性质,正确的作出辅助线是解题的关键.4.如图,在△ABC中,AB=AC=2,∠BAC=30°,将△ABC沿AC翻折得到△ACD,延长AD交BC的延长线于点E,则△ABE的面积为()A.B.C.3D.【分析】由折叠的性质可知∠CAD=30°=∠CAB,AD=AB=2.由等腰三角形的性质得出∠BCA=∠ACD=∠ADC=75°.求出∠ECD=30°.由三角形的外角性质得出∠E=75°﹣30°=45°,过点C作CH⊥AE于H,过B作BM⊥AE于M,由直角三角形的性质得出CH=AC=1,AH=CH=.得出HD=AD﹣AH=2﹣.求出EH =CH=1.得出DE=EH﹣HD=﹣1,AE=AD+DE=1+,由直角三角形的性质得出AM=AB=1,BM=AM=.由三角形面积公式即可得出答案.【解答】解:由折叠的性质可知:∠CAD=30°=∠CAB,AD=AB=2.∴∠BCA=∠ACD=∠ADC=75°.∴∠ECD=180°﹣2×75°=30°.∴∠E=75°﹣30°=45°.过点C作CH⊥AE于H,过B作BM⊥AE于M,如图所示:在Rt△ACH中,CH=AC=1,AH=CH=.∴HD=AD﹣AH=2﹣.在Rt△CHE中,∵∠E=45°,∴△CEH是等腰直角三角形,∴EH=CH=1.∴DE=EH﹣HD=1﹣(2﹣)=﹣1,∴AE=AD+DE=1+,∵BM⊥AE,∠BAE=∠BAC+∠CAD=60°,∴∠ABM=30°,∴AM=AB=1,BM=AM=.∴△ABE的面积=AE×BM=×(1+)×=;故选:B.【点评】本题考查了翻折变换的性质、等腰三角形的性质、含30°角的直角三角形的性质、等腰直角三角形的判定与性质、三角形面积等知识;熟练掌握翻折变换和等腰三角形的性质是解题的关键.5.如图,点F是长方形ABCD中BC边上一点将△ABF沿AF折叠为△AEF,点E落在边CD上,若AB=5,BC=4,则BF的长为()A.B.C.D.【分析】根据矩形的性质得到CD=AB=5,AD=BC=4,∠B=∠D=∠C=90°,根据折叠的性质得到AE=AB=5,EF=BF,根据勾股定理得到DE===3,求得CE=2,设BF=EF=x,则CF=4﹣x,根据勾股定理列方程即可得到结论.【解答】解:∵四边形ABCD是矩形,∴CD=AB=5,AD=BC=4,∠B=∠D=∠C=90°,∵将△ABF沿AF折叠为△AEF,∴AE=AB=5,EF=BF,∴DE===3,∴CE=2,设BF=EF=x,则CF=4﹣x,∵EF2=CF2+CE2,∴x2=(4﹣x)2+22,解得:x=,故选:B.【点评】本题考查了翻折变换(折叠问题),矩形的矩形,勾股定理,熟练掌握折叠的性质是解题的关键.6.如图,在矩形纸片ABCD中,CB=12,CD=5,折叠纸片使AD与对角线BD重合,与点A重合的点为N,折痕为DM,则△MNB的面积为()A.B.C.D.26【分析】由勾股定理得出BD==13,由折叠的性质可得ND=AD=12,∠MND=∠A=90°,NM=AM,得出∠EA′B=90°,BN=BD﹣ND=1,设AM=NM =x,则BM=AB﹣AM=5﹣x,在Rt△BMN中,由勾股定理得出方程,解方程得出NM =AM=,即可得出答案.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,AD=BC=12,AB=CD=5,∴BD===13,由折叠的性质可得:ND=AD=12,∠MND=∠A=90°,NM=AM,∴∠EA′B=90°,BN=BD﹣ND=13﹣12=1,设AM=NM=x,则BM=AB﹣AM=5﹣x,在Rt△BMN中,NM2+BN2=BM2,∴x2+12=(5﹣x)2,解得:x=,∴NM=AM=,∴△MNB的面积=BN×NM=×1×=;故选:A.【点评】此题考查了折叠的性质、勾股定理以及矩形的性质.熟练掌握折叠的性质和矩形的性质,由勾股定理得出方程是解题的关键.7.如图,在△ABC中∠ACB=90°、∠CAB=30°,△ABD是等边三角形、将四边形ACBD折叠,使点D与点C重合,HK为折痕,则sin∠ACH的是()A.B.C.D.【分析】在Rt△ABC中,设BC=a,则AB=2BC=2a,AD=AB=2a.设AH=x,则HC=HD=AD﹣AH=2a﹣x.在Rt△ABC中,由勾股定理得AC2=3a2,在Rt△ACH 中,由勾股定理得AH2+AC2=HC2,即x2+3a2=(2a﹣x)2.解得x=a,即AH=a.求得HC的值后,利用sin∠ACH=AH:HC求值.【解答】解:∵△ABD是等边三角形,∴∠BAD=60°,AB=AD,∵∠CAB=30°,∴∠CAH=90°.在Rt△ABC中,∠CAB=30°,设BC=a,则AB=2BC=2a.∴AD=AB=2a.设AH=x,则HC=HD=AD﹣AH=2a﹣x,在Rt△ABC中,AC2=(2a)2﹣a2=3a2,在Rt△ACH中,AH2+AC2=HC2,即x2+3a2=(2a﹣x)2,解得x=a,即AH=a.∴HC=2a﹣x=2a﹣a=a.∴sin∠ACH==,故选:C.【点评】本题考查了折叠的性质,锐角三角函数值,勾股定理的应用,熟练掌握折叠的性质和解直角三角形是解题的关键.8.如图,在矩形ABCD中,AB=1,在BC上取一点E,连接AE、ED,将△ABE沿AE翻折,使点B落在B'处,线段EB'交AD于点F,将△ECD沿DE翻折,使点C的对应点C'落在线段EB'上,若点C'恰好为EB'的中点,则线段EF的长为()A.B.C.D.【分析】由折叠的性质可得AB=AB'=CD=C'D=1,∠B=∠B'=90°=∠C=∠DC'E,BE=B'E,CE=C'E,由中点性质可得B'E=2C'E,可得BC=AD=3EC,由勾股定理可求可求CE的长,由“AAS”可证△AB'F≌△DC'F,可得C'F=B'F=,即可求解.【解答】解:∵四边形ABCD是矩形,∴AB=CD=1,AD=BC,∠B=∠C=90°由折叠的性质可得:AB=AB'=CD=C'D=1,∠B=∠B'=90°=∠C=∠DC'E,BE=B'E,CE=C'E,∵点C'恰好为EB'的中点,∴B'E=2C'E,∴BE=2CE,∴BC=AD=3EC,∵AE2=AB2+BE2,DE2=DC2+CE2,AD2=AE2+DE2,∴1+4CE2+1+CE2=9CE2,解得:CE=,∴B'E=BE=,BC=AD=,C'E=,∴B'C'=,在△AB'F和△DC'F中,∴△AB'F≌△DC'F(AAS),∴C'F=B'F=,∴EF=C'E+C'F=,故选:D.【点评】本题考查了翻折变换,矩形的性质,全等三角形的性质,勾股定理,求出CE 的长是本题的关键.9.如图,▱ABCD中,AB=6,∠B=75°,将△ABC沿AC边折叠得到△AB′C,B′C交AD于E,∠B′AE=45°,则点A到BC的距离为()A.2B.3C.D.【分析】过B′作B′H⊥AD于H,根据等腰直角三角形的性质得到AH=B′H=AB′,根据折叠的性质得到AB′=AB=6,∠AB′E=∠B=75°,求得∠AEB′=60°,解直角三角形得到HE=B′H=,B′E=2,根据平行线的性质得到∠DAC=∠ACB,推出AE=CE,根据全等三角形的性质得到DE=B′E=2,求得AD=AE+DE=3+3,过A作AG⊥BC于G,根据直角三角形的性质即可得到结论.【解答】解:过B′作B′H⊥AD于H,∵∠B′AE=45°,∴△AB′H是等腰直角三角形,∴AH=B′H=AB′,∵将△ABC沿AC边折叠得到△AB′C,∴AB′=AB=6,∠AB′E=∠B=75°,∴∠AEB′=60°,∴AH=B′H=×6=3,∴HE=B′H=,B′E=2,∵▱ABCD中,AD∥BC,∴∠DAC=∠ACB,∵∠ACB=∠ACB′,∴∠EAC=∠ACE,∴AE=CE,∵∠AB′E=∠B=∠D,∠AEB′=∠CED,∴△AB′E≌△CDE(AAS),∴DE=B′E=2,∴AD=AE+DE=3+3,∵∠AEB′=∠EAC+∠ACE=60°,∴∠ACE=∠CAE=30°,∴∠BAC=75°,∴AC=AD=BC,∠ACB=30°,过A作AG⊥BC于G,∴AG=AC=,故选:C.【点评】本题考查了翻折变换(折叠问题),全等三角形的判定和性质,解直角三角形,正确的作出辅助线是解题的关键.10.如图1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB 的中点,连结CE并延长交AD于F,如图2,现将四边形ACBD折叠,使D与C重合,HK为折痕,则sin∠ACH的值为()A.B.C.D.【分析】在Rt△ABC中,设BC=a,则AB=2BC=2a,AD=AB=2a.设AH=x,则HC=HD=AD﹣AH=2a﹣x.在Rt△ABC中,由勾股定理得AC2=3a2,在Rt△ACH 中,由勾股定理得AH2+AC2=HC2,即x2+3a2=(2a﹣x)2.解得x=a,即AH=a.求得HC的值后,利用sin∠ACH=AH:HC求值.【解答】解:∵∠BAD=60°,∠CAB=30°,∴∠CAH=90°.在Rt△ABC中,∠CAB=30°,设BC=a,∴AB=2BC=2a.∴AD=AB=2a.设AH=x,则HC=HD=AD﹣AH=2a﹣x,在Rt△ABC中,AC2=(2a)2﹣a2=3a2,在Rt△ACH中,AH2+AC2=HC2,即x2+3a2=(2a﹣x)2,解得x=a,即AH=a.∴HC=2a﹣x=2a﹣a=a.∴sin∠ACH==,故选:B.【点评】本题考查了折叠的性质,锐角三角函数值,勾股定理的应用,注意:折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.11.如图,在△ABC中,D是AC边上的中点,连结BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连结AC',若AD=AC′=2,BD=3,则点D到BC′的距离为()A.B.C.D.【分析】连接CC',交BD于点M,过点D作DH⊥BC'于点H,由翻折知,△BDC≌△BDC',BD垂直平分CC',证△ADC'为等边三角形,利用解直角三角形求出DM=1,C'M=DM=,BM=2,在Rt△BMC'中,利用勾股定理求出BC'的长,在△BDC'中利用面积法求出DH的长.【解答】解:如图,连接CC',交BD于点M,过点D作DH⊥BC'于点H,∵AD=AC′=2,D是AC边上的中点,∴DC=AD=2,由翻折知,△BDC≌△BDC',BD垂直平分CC',∴DC=DC'=2,BC=BC',CM=C'M,∴AD=AC′=DC'=2,∴△ADC'为等边三角形,∴∠ADC'=∠AC'D=∠C'AC=60°,∵DC=DC',∴∠DCC'=∠DC'C=×60°=30°,在Rt△C'DM中,∠DC'C=30°,DC'=2,∴DM=1,C'M=DM=,∴BM=BD﹣DM=3﹣1=2,在Rt△BMC'中,BC'===,∵S△BDC'=BC'•DH=BD•CM,∴DH=3×,∴DH=,故选:B.【点评】本题考查了轴对称的性质,解直角三角形,勾股定理等,解题关键是会通过面积法求线段的长度.12.如图,在△ABC中,∠ABC=45°,AB=3,AD⊥BC于点D,BE⊥AC于点E,AE=1.连接DE,将△AED沿直线AE翻折至△ABC所在的平面内,得△AEF,连接DF.过点D作DG⊥DE交BE于点G.则四边形DFEG的周长为()A.8B.4C.2+4D.3+2【分析】先证△BDG≌△ADE,得出AE=BG=1,再证△DGE与△EDF是等腰直角三角形,在直角△AEB中利用勾股定理求出BE的长,进一步求出GE的长,可通过解直角三角形分别求出GD,DE,EF,DF的长,即可求出四边形DFEG的周长.【解答】解:∵∠ABC=45°,AD⊥BC于点D,∴∠BAD=90°﹣∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,∴∠GBD+∠C=90°,∵∠EAD+∠C=90°,∴∠GBD=∠EAD,∵∠ADB=∠EDG=90°,∴∠ADB﹣∠ADG=∠EDG﹣∠ADG,即∠BDG=∠ADE,∴△BDG≌△ADE(ASA),∴BG=AE=1,DG=DE,∵∠EDG=90°,∴△EDG为等腰直角三角形,∴∠AED=∠AEB+∠DEG=90°+45°=135°,∵△AED沿直线AE翻折得△AEF,∴△AED≌△AEF,∴∠AED=∠AEF=135°,ED=EF,∴∠DEF=360°﹣∠AED﹣∠AEF=90°,∴△DEF为等腰直角三角形,∴EF=DE=DG,在Rt△AEB中,BE===2,∴GE=BE﹣BG=2﹣1,在Rt△DGE中,DG=GE=2﹣,∴EF=DE=2﹣,在Rt△DEF中,DF=DE=2﹣1,∴四边形DFEG的周长为:GD+EF+GE+DF=2(2﹣)+2(2﹣1)=3+2,故选:D.【点评】本题考查了等腰直角三角形的判定与性质,全等三角形的判定与性质,勾股定理,解直角三角形等,解题关键是能够灵活运用等腰直角三角形的判定与性质.二.填空题(共7小题)13.如图,把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE、FG,得到∠AGE=30°,若AE=EG=2厘米,则△ABC的边BC的长为(6+4)厘米.【分析】根据折叠的性质和含30°的直角三角形的性质解答即可.【解答】解:∵把三角形纸片折叠,使点B、点C都与点A重合,折痕分别为DE,FG,∴BE=AE,AG=GC,∵∠AGE=30°,AE=EG=2厘米,∴AG=6厘米,∴BE=AE=2厘米,GC=AG=6厘米,∴BC=BE+EG+GC=(6+4)厘米,故答案为:(6+4),【点评】此题考查翻折问题,关键是根据折叠的性质和含30°的直角三角形的性质解答.14.如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于.【分析】根据题意、解直角三角形、菱形的性质、翻折变化可以求得AE的长.【解答】解:由题意可得,DE=DB=CD=AB,∴∠DEC=∠DCE=∠DCB,∵DE∥AC,∠DCE=∠DCB,∠ACB=90°,∴∠DEC=∠ACE,∴∠DCE=∠ACE=∠DCB=30°,∴∠ACD=60°,∠CAD=60°,∴△ACD是等边三角形,∴AC=CD,∴AC=DE,∵AC∥DE,AC=CD,∴四边形ACDE是菱形,∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,∴AC=,∴AE=.【点评】本题考查翻折变化、平行线的性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.已知Rt△ABC中,∠ACB=90°,AC=8,BC=4,D为斜边AB上的中点,E是直角边AC上的一点,连接DE,将△ADE沿DE折叠至△A′DE,A′E交BD于点F,若△DEF的面积是△ADE面积的一半,则CE=2.【分析】根据等高的两个三角形的面积比等于边长比可得AD=2DF,A'F=EF,通过勾股定理可得AB的长度,可可求AD,DF,BF的长度,可得BF=DF,可证BEDA'是平行四边形,可得BE=A'D=2,根据勾股定理可得CE的长度【解答】解:如图连接BE∵∠ACB=90°,AC=8,BC=4∴AB=4∵D是AB中点∴BD=AD=2∵折叠∴AD=A'D=2,S△ADE=S△A'DE∵S△DEF=S△ADE∴AD=2DF,S△DEF=S△A'DE∴DF=,A'F=EF∴BF=DF=,且A'F=EF∴四边形BEDA'是平行四边形∴A'D=BE=∴根据勾股定理得:CE=2故答案为2【点评】本题考查了折叠问题,直角三角形斜边上的中线等于斜边的一半,关键是用面积法解决问题.16.如图,在△ABC中,AB=AC=5,tan A=,BC=,点D是AB边上一点,连接CD,将△BCD沿着CD翻折得△B1CD,DB1⊥AC且交于点E,则DE=.【分析】作BF⊥AC于F,证明△B1EC≌△CFB(AAS),得出B1E=CF=1,设DE=3a,则AD=5a,得出BD=B1D=3a+1,得出方程,解方程即可.【解答】解:作BF⊥AC于F,如图所示:则∠AFB=∠CFB=90°,在Rt△ABF中,tan A==,AB=5,∴AF=4,BF=3,sin A==,∴CF=AC﹣AF=1,由折叠的性质得:B1C=BC=,∠CB1E=∠ABC,B1D=BD,∵AB=AC,∴∠ABC=∠BCF,∴∠CB1E=∠BCF,∵DB1⊥AC,∴∠B1EC=90°=∠CFB,在△B1EC和△CBF中,,∴△B1EC≌△CFB(AAS),∴B1E=CF=1,设DE=3a,则AD=5a,∴BD=B1D=3a+1,∵AD+BD=AB,∴3a+1+5a=5,∴a=,∴DE=;故答案为:【点评】本题考查了翻折的性质、等腰三角形的性质、全等三角形的判定与性质、解直角三角形以及方程的解题思想,熟练掌握翻折变换的性质,证明三角形全等是解题的关键.17.如图,在Rt△ABC中,∠ABC=90°,把△ABC沿斜边AC折叠,使点B落在B’,点D,点E分别为BC和AB′上的点,连接DE交AC于点F,把四边形ABDE沿DE 折叠,使点B与点C重合,点A落在A′,连接AA′交B′C于点H,交DE于点G.若AB=3,BC=4,则GE的长为.【分析】设HC=HA=x,在Rt△CA′H中,可得x2=32+(4﹣x)2,解得x=,由△CA′H∽△AGE,可得=,由此即可解决问题.【解答】解:由题意四边形ABCA′是矩形,BD=CD=2,AG=GA′=2,∵BC∥AA′,∴∠BCA=∠CAA′,∵∠ACB=∠ACB′,∴∠HCA=∠HAC,∴HC=HA,设HC=HA=x,在Rt△CA′H中,x2=32+(4﹣x)2,∴x=,∴A′H=4﹣=,由△CA′H∽△AGE,可得:=,∴=,∴EG=.【点评】本题考查翻折变换,解直角三角形,勾股定理,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.如图,在平行四边形ABCD中,∠B=30°,且BC=CA,将△ABC沿AC翻折至△AB′C,AB′交CD于点E,连接B′D.若AB=3,则B′D的长度为6.【分析】作CM⊥AB于M,由折叠的性质得:B'C=BC=AC,∠AB'C=∠B=∠CAB'=30°,AB'=AB=CD,由平行四边形的性质得出AD=CB,AB=CD,∠ADC=∠B=30°,求出AD=AC,AM=BM=AB=,∠BAC=∠B=30°,由等腰三角形的性质得出∠ACD=∠ADC=30°,由直角三角形的性质得出CM=,证出AD=BC=2CM=3,再由勾股定理即可得出结果.【解答】解:作CM⊥AB于M,如图所示:由折叠的性质得:B'C=BC=AC,∠AB'C=∠B=∠CAB'=30°,AB'=AB=CD,∵四边形ABCD是平行四边形,∴AD=CB,AB=CD,∠ADC=∠B=30°,∠BAD=∠BCD=180°﹣∠B=150°,∴∠B'AD=150°﹣30°﹣30°=90°,∵BC=AC,∴AM=BM=AB=,∠BAC=∠B=30°,∴CM=,∴AD=BC=2CM=3,在Rt△AB'D中,由勾股定理得:B'D===6;故答案为:6.【点评】本题考查了翻折变换的性质、平行四边形的性质、等腰三角形的性质以及勾股定理等知识;熟练掌握翻折变换的性质和平行四边形的性质,求出∠B'AD=90°是解题关键.19.如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,使点D恰好落在BC 边上的F点处.已知折痕AE=10,且CE:CF=4:3,那么该矩形的周长为96.【分析】由CE:CF=4:3,可以假设CE=4k,CF=3k推出EF=DE=5k,AB=CD=9k,利用相似三角形的性质求出BF,再在Rt△ADE中,利用勾股定理构建方程即可解决问题.【解答】解:∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠B=∠C=∠D=90°,∵CE:CF=4:3,∴可以假设CE=4k,CF=3k∴EF=DE=5k,AB=CD=9k,∵∠AFE=∠D=90°,∴∠AFB+∠EFC=90°,∠EFC+∠FEC=90°,∴∠AFB=∠CEF,∴△ABF∽△FCE,∴∴∴BF=12k∴AD=BC=15k,在Rt△AED中,∵AE2=AD2+DE2,∴1000=225k2+25k2,∴k=2或﹣2(舍弃),∴矩形的周长=48k=96,故答案为:96【点评】本题考查翻折变换,矩形的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题.。
《图形的折叠问题(专题)——特殊四边形之翻折 》教学设计2017年6月9日一.教材分析:图形的折叠问题是图形变换的一种,折叠型问题立意新颖,变幻巧妙,对培养学生的识图能力及灵活运用数学知识解决问题的能力非常有效。
有关折叠问题在近几年各地中考中也频频出现,主要是考查学生的自主探索能力与空间想象能力以及判断推理能力。
二.教学目标:1.知识与技能目标:把握图形折叠问题的实质,分清折叠前后哪些元素没变,哪些元素变化,理解折叠前后关于折痕成轴对称图形。
2.通过动手操作掌握寻找折痕条数的规律、掌握图形折叠后求折痕长度的方法、掌握图形剪拼的方法3.理解数学思想方法的综合运用:方程思想、数形结合思想、勾股定理,结合运用成为具体策略。
4.过程与方法:采用小组合作探究与动手实践相结合的教学模式,使学生学会与他人交流思维过程和结果,在动手实践中使学生的逆向思维和发散思维的到发展,自主探索能力与空间想象能力以及判断推理能力 得以提高。
5.情感态度与价值观:在小组的讨论与交流中培养学生的合作意识,在动手实践中激发学生兴趣,通过折叠问题的研究,使学生明确事物的变化与统一,理解事物的联系与区别。
三、教学重点:把握折叠与拼图的实质,并利用它与轴对称、全等三角形、相似三角形、勾股定理、矩形的判定等联系在 一起,提高学生的分析问题、解决问题的能力。
四、教学难点:把握折叠的变化规律,运用所学知识合理、有序、全面的解决问题五、教学方法:在教学过程中注重学生的亲身实践,注重学生能力的培养,采用小组合作探究与动手实践相结合的教学模式,充分尊重学生的主体地位。
六、学法指导数与形是一对孪生姐妹,要学好数学就要学生的数与形结合起来,把动手得到的图形转变成几何图形 七、设计理念:21世纪的教育要以人为本,在教学过程中充分尊重学生的主体地位,注重学生的亲身实践,注重学生能力的培养。
本节课我始终让学生分组合作和动手实践,使学生在合作中思维过程得以展现,思维结果得以肯定。
课题:图形与变换(折叠专题)
教学目标:1、掌握简单的折叠题
2、了解综合题的解题策略
重点:轴对称与折叠
难点:综合题的解题技巧
教学过程:
一、激趣导入,激发学生的思维
将矩形纸片沿对角线折叠,使点落在平面上的点处,交于点。
二、考点聚焦——轴对称与翻折
A组:
1、如下图,把长方形纸条ABCD沿EF,GH同时折叠,B,C两点恰好落在AD边的P点处.
若∠FPH=90°,PF=8,PH=6,则长方形ABCD的边BC长为( ).
A.20
B.22
C.24
D.30
(第1题)(第2题)(第3题)2、把一张长方形纸片ABCD按如图的方式折叠,使顶点B和D重合,折痕为EF.若AB=3 cm,BC=5 cm,则重叠部分△DEF的面积是cm2。
°,将该直角三角形纸片。
AB=2,
处,则AB= 。
(第5题)
分别在轴和轴上,
三、能力提升(C组)
7、已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处
(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.若△OCP与△PDA的面积比为1:4,求边CD的长.
(2)如图2,在(1)的条件下,擦去折痕AO、线段OP,连接BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP 于点E.试问当动点M、N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF的长度.。
教学设计一、水平面运动的叠放物体例1:如图所示,木块A 、B 静止叠放在光滑水平面上,木块A 的质量为2m ,木块B 的质量为m .现用水平力F 拉木块A(如图甲所示),木块A 、B 刚好不发生相对滑动,一起沿着水平面运动.若改用水平力F′拉木块B(如图乙所示),使木块A 、B 也保持相对静止一起沿着水平面运动,已知最大静摩擦力等于滑动摩擦力,则F′可能为A .4F B .3F C .2F D .23F【分析】物体A 与B 刚好不发生相对滑动的临界条件是A 、B 间的静摩擦力达到最大值,可以先对A 或B 受力分析,再对整体受力分析,然后根据牛顿第二定律列式求解. 【详解】当F 作用在物体A 上时,A 、B 恰好不滑动时,A 、B 间的静摩擦力达到最大值,对物体A ,有F -f m =2ma 1;对整体有:F=3ma 1;联立解得:F=3f m ;力F′拉物体B 时,A 、B 恰好不滑动,故A 、B 间的静摩擦力达到最大值,对物体A ,根据牛顿第二定律,有f m =2ma 2;对A 、B 整体,根据牛顿第二定律,有F′=3ma 2,解得:F′=1.5f m ;即木块A 、B 也保持相对静止一起沿着水平面运动F′≤12F ,故选ABC. 【点睛】本题关键抓住恰好不滑动的临界条件,然后灵活地选择研究对象,运用牛顿第二定律列式求解.拓展提升:1. 如图所示,A 、B 、C 三个物体静止叠放在水平桌面上,物体A 、B 、C 的质量均为m ,A 、B 间和B 、C 间的动摩擦因数均为μ,B 和地面间的动摩擦因数为16μ,设最大静摩擦力等于滑动摩擦力,重力加速度为g 。
现对A 施加一水平向右的拉力F ,则下列判断正确的是( )A .无论力F 为何值,B 的加速度不会超过14g μ B .当力F mg μ>时,B 相对滑动AC .若A 、B 、C 三个物体始终相对静止,则力F 不能超过54mg μ D .当力F mg μ=时,B 、C 间的摩擦力为34mg μ【详解】A .当AB 之间的摩擦力达到最大静摩擦力时,此时BC 的加速度31624mg mga g mμμμ-⋅==即无论力F 为何值,B 的加速度不会超过14g μ,选项A 正确;BC .当AB 之间的摩擦力达到最大静摩擦力时,对A 分析可知54m F mg ma mg μμ=+=则若A 、B 、C 三个物体始终相对静止,则力F 不能超过54mg μ,选项B 错误,C 正确;D .当力F mg μ=时,对ABC 的整体'131636F mga gm μμ-⋅== 对C 分析,可得B 、C 间的摩擦力为'16BC f ma mg μ==,选项D 错误。
初中数学折叠问题解析教案教学目标:1. 理解折叠问题的基本概念和性质;2. 学会运用折叠性质解决实际问题;3. 提高逻辑思维能力和空间想象力。
教学重点:1. 折叠问题的基本概念和性质;2. 运用折叠性质解决实际问题。
教学难点:1. 理解折叠问题的空间想象力;2. 灵活运用折叠性质解决实际问题。
教学准备:1. 教学课件或黑板;2. 纸张、剪刀、直尺等工具。
教学过程:一、导入(5分钟)1. 引入折叠问题的概念,展示一些实际的折叠问题;2. 引导学生观察和思考折叠问题的特点和性质。
二、新课讲解(15分钟)1. 讲解折叠问题的基本概念和性质,如折叠前后图形的大小、形状不变,折痕是折叠前后对应点连线的垂直平分线等;2. 通过示例演示折叠过程,让学生直观地理解折叠问题的空间想象力;3. 讲解如何运用折叠性质解决实际问题,如如何求解对应边的长度、对应角的度数等。
三、课堂练习(15分钟)1. 让学生自主完成一些折叠问题的练习题,巩固所学知识;2. 引导学生运用折叠性质解决问题,提高解题能力。
四、拓展提高(15分钟)1. 引导学生思考折叠问题在不同情境下的应用,如几何图形的折叠、实际生活中的折叠问题等;2. 让学生尝试解决一些较复杂的折叠问题,提高空间想象力和逻辑思维能力。
五、总结反思(5分钟)1. 让学生回顾本节课所学内容,总结折叠问题的基本概念和性质;2. 引导学生反思如何运用折叠性质解决实际问题,反思自己在解题过程中的思路和方法。
教学评价:1. 课后作业:布置一些折叠问题的练习题,检验学生对折叠问题的理解和掌握程度;2. 课堂表现:观察学生在课堂上的参与程度、思考问题和解决问题的能力。
教学反思:本节课通过讲解折叠问题的基本概念和性质,让学生了解折叠问题的特点和规律。
通过课堂练习和拓展提高,让学生学会运用折叠性质解决实际问题,提高空间想象力和逻辑思维能力。
在教学过程中,要注意引导学生积极参与、思考和解决问题,培养学生的动手能力和创新意识。
备课参考一道课本折叠试题的设问方式探究作者:郭贵锋来源:《数学教学通讯·初等教育》2013年第04期[摘要] 本文围绕新课程理念,从分析课本例题入手,以问题为载体,开展多角度探究,剖析解题思路,渗透数学思想方法,并进行变式设问,培养学生的解题能力和求异思维,从而促进“学生全面、持续、和谐的发展”.[关键词] 探究;新课程;多角度;变式课本上例题、习题的权威性和示范性无疑是创新变式的源泉,有必要进行反思和深层次的探究,一方面,进行适当地变换、延伸、拓展,能在加深、巩固基础知识的同时,开拓解题思路,培养学生的解题能力;另一方面,能将题目之间的共性及本质的东西进行提炼、概括、升华,增强学生的学习兴趣,开阔视野、丰富思维,培养学生积极探究的精神和创新的能力. 张奠宙先生说过:“没有问题的数学教学,不会有火热的思考. ”数学源于问题,问题是思维的起点. 所以在课堂教学中,应以学生合作讨论交流为前提,以教材为基础,以问题为载体,在教师的启发、指引下,学生通过观察、猜测、推理、验证、交流等有效的数学活动,积极发挥自主能动性,经历数学知识的形成与应用过程,掌握方法,培养能力,达到举一反三、触类旁通的目的.题目引入在数学课本110页(人教版八年级下册四边形)有这样一道习题:如图1,四边形ABCD是矩形, BC=4 cm,AB=3 cm,将矩形纸片沿对角线BD折叠,点C落在点E处,BE交AD于点F,连结AE. 四边形ABDE是什么图形?为什么?它的面积是多少?周长呢?分析本题的综合性较强,考查的知识点较多,对学生的推理能力和思维要求较高,须降低难度或改变设问方式,以增设低起点问题的形式,供数学能力层次低一些的同学作答,从而促使学生的思维向深层次、多角度、多方面发散,引导学生积极、主动探索知识的形成、应用过程,有意识地展现教学中师生思维互动的活动过程,培养学生独立分析、解决问题的能力,以及大胆创新、勇于探索的精神,体现“实现人人学有价值的数学;人人都获得必需的数学;不同的人在数学上得到不同的发展”的新课程理念,真正把学生的能力培养落到实处.题目设问方式皮亚杰的认知发展理论认为,学习是一种能动的建构过程. 新课标强调,要培养学生的自主探究能力,能综合运用所学的知识和技能解决问题,发展应用意识和应变技巧. 要根据教学内容和目标要求,遵循学生的认知发展规律进行基础教学,让学生牢固掌握基础知识,形成基本技能,了解数学的基本思想和体会数学的基本活动经验(即“四基”),从而使学生打下扎实“双基”的同时,学会从各个角度推出新颖独特的解决问题的方法,培养他们解决问题的实践能力,发展他们的创新思维.1. 基础设问设问1 (2000山西)如图2,将矩形ABCD沿对角线BD折叠,使点C落在点C′处,BC′交AD于点E,AD=8,AB=4.(1)请说明:BE=DE;(2)求△BED的面积.分析(1)因为折叠前后∠DBC=∠DBC′,且因为平行,内错角相等,所以∠DBC=∠ADB,所以根据角之间的等量代换可知DE=BE.(2)要想求出三角形BED的面积,根据题中条件,只要求出DE的长即可. 要求DE的长,可利用勾股定理以及(1)的结论.解答(1)因为△BDC′是由△BDC沿直线BD折叠得到的,所以∠C′BD=∠CBD. 因为四边形ABCD是矩形,所以AD∥BC. 所以∠CBD=∠EDB. 所以∠C′BD=∠EDB. 所以BE=DE.(2)设DE=x,则AE=AD-DE=8-x. 因为∠A=90°,BE=DE=x,所以BE2=AB2+AE2,即x2=42+(8-x)2,解得x=5. 所以S△BED=■×DE×AB=■×5×4=10.点评设问1引导学生从题目的基本条件出发,读图,分析,有条理地合情推理,试题内容以几何知识点为载体,融几何的基本知识、基本方法、基本技能、基本思想为一体,考查学生的基本推理证明和计算,主要涵盖等角的证明和勾股定理的应用. 试题切入容易,能较好地激发学生解题的兴趣和积极性.?摇此外,问题(1)还可改变为以下表述方式:试判断重叠部分(三角形BED)的形状,并证明你的结论. 问题(2)的解答还可用作差法解决:△BDE的面积=△ABD的面积-△ABE的面积.设问2 (2007宁夏)如图3,将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,连结AE.(1)证明:BF=DF.(2)证明:AE∥BD.分析与解(1)与设问1(1)一样.(2)因为△BDE是由△BDC沿直线BD折叠得到的,所以BE=BC. 因为四边形ABCD是矩形,所以AD=BC. 由(1)BF=DF得AF=EF;又由对顶角定义∠BFD=∠AFE,推出∠AEF=∠FBD. 所以AE∥BD.设问3 如图4,将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,连结AE.(1)求证:△AFB≌△EFD;(2)四边形ABDE是什么图形?为什么?分析与解(1)因为△BDE是由△BDC沿直线BD折叠得到的,所以DE=DC,∠BED=∠C=90°. 因为四边形ABCD是矩形,所以AB=DC,∠BAF=90°. 所以AB=DE,∠BAF=∠BED=90°. 由对顶角定义可得∠AFB=∠EFD,所以△AFB≌△EFD.(2)四边形ABDE是等腰梯形. 理由如下:由设问2(2)得AE∥BD,因为△AFB≌△EFD,所以AB=DE. 又AE≠BD,由等腰梯形的定义可得出结论:四边形ABDE是等腰梯形.点评通过三个设问,无论是在试题内容的呈现方式上,还是在解题思路的探寻过程中,试题总是引导过程教学,提高学生的思维层次. 一方面重视学生的思维过程,另一方面则重视数学知识的发生、发展过程,既遵循数学思维规律,又充分反映数学思维的基本特征,体现了新课程所倡导的学习方式.此外,还可设置以下问题:(1)图中有哪些等腰三角形?试写出所有等腰三角形,并证明其中一个.(2)图中有哪些全等三角形?试写出所有全等三角形,并证明其中一对.(3)图中有哪些相似三角形?试写出所有相似三角形,并证明其中一对.2. 拓展设问设问4 如图5,四边形ABCD是矩形,把矩形沿直线BD折叠,点C落在点E处,连结AE,BE,BE与AD交于点M.(1)证明四边形ABDE是等腰梯形;设问5 (2008湖北十堰)如图6,把一张矩形的纸片ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.(1)线段BF与DF相等吗?请说明理由.(2)若将折叠的图形恢复原状,点F与BC边上的点G正好重合,连结DG,试判断四边形BGDF的形状,并说明理由.(3)若AB=4,AD=8,在(1)(2)的条件下,求线段DG的长.分析(2)四边形BGDF是菱形. 理由如下:由折叠可知BG=BF=DF,因为在矩形ABCD 中,BG∥DF,所以四边形BGDF是菱形.(3)设DF=x,则AF=AD-DF=8-x. 因为∠A=90°,BF=DF=x,所以BF2=AB2+AF2,即x2=42+(8-x)2,解得x=5. 因为四边形BGDF是菱形,所以DG=DF=5.设问6 如图7,已知矩形ABCD沿着BD折叠,使点C落在点C′处,BC′交AD于点E,AD=8,AB=4. 若过点E作EF⊥BD于点F,求EF的长.设问7 (2012广东)如图8,在矩形纸片ABCD中,AB=6,BC=8. 把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E,F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.解答(1)因为△BDC′由△BDC翻折而成,所以∠C′=∠C=∠BAG=90°,C′D=AB=CD. 又∠AGB=∠DGC′,所以△ABG≌△C′DG.3. 改变折叠方式设问8 (2010湖南邵阳)如图9,将矩形纸片ABCD沿EF折叠,使点A与点C重合,点D落在点G处,EF为折痕.(1)求证:△FGC≌△EBC;(2)若AB=8,AD=4,求四边形ECGF(阴影部分)的面积.(2)在矩形纸片ABCD中,AB=5,AD=13. 如图13所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ. 当点A′在BC边上移动时,折痕的端点P,Q也随之移动. 若限定点P,Q分别在AB,AD边上移动,求点A′在BC边上可移动的最大距离.分析(1)①先利用翻折变换的性质及勾股定理求出AE的长,再利用勾股定理求出AF和EF的长,即可得出△EFG的面积;②先证明四边形BGEF是平行四边形,再利用BG=EG得出四边形BGEF是菱形,于是可求出FG的长.(2)如图16,当点P与点B重合时,根据翻折对称性可得BA′=AB=5. 如图17,当点D 与点Q重合时,根据翻折对称性可得A′D=AD=13,在Rt△A′CD中,A′D2=A′C2+CD2,即132=(13-A′B)2+52,解得A′B=1,所以点A′在BC上可移动的最大距离为5-1=4.设问11 (2011江苏徐州)如图,将矩形纸片ABCD按如下的顺序进行折叠:对折,展平,得折痕EF(如图18);沿CG折叠,使点B落在EF上的点B′处(如图19);展平,得折痕GC(如图20);沿GH折叠,使点C落在DH上的点C′处(如图21);沿GC′折叠(如图22);展平,得折痕GC′,GH(如图23).(1)求图19中∠BCB′的大小;(2)图23中的△GCC′是正三角形吗?请说明理由.设问12 取一张矩形的纸进行折叠,具体操作过程如下:第一步:先把矩形ABCD对折,折痕为MN,如图24所示;第二步:把B点叠在折痕线MN上,折痕为AE,点B在MN上的对应点为B′,得Rt△AB′E,如图25所示;第三步:沿EB′线折叠得折痕EF,如图26所示;展开图如图27所示.探究(1)△AEF是什么三角形?证明你的结论.(2)对于任一矩形,按照上述方法是否都能折出这种三角形?请说明理由.(3)如图28,将矩形纸片ABCD沿EF折叠,使点A落在DC边上的点A′处,x轴垂直平分DA,直线EF的表达式为y=kx-k(k评析前面题目的矩形纸片ABCD都是沿着对角线折叠方式进行并提出问题开展探究,通过改变折叠方式,设置问题由易到难,题目综合性增强,透过现象看本质,有利于培养学生的思维迁移能力,进一步激发学生的探索精神和创新意识,并切实反映知识间的串联关系,让学生提升综合解题能力,有助于锻炼学生的逻辑思维,优化思维品质,培养创新精神,增强化生为熟、化繁为简的转化意识.1. 试题的设问应具有多样性,呈现方式应丰富多彩,有文字、数字、表达式、图形、图象、表格等;试卷题型新颖别致、内涵隽永、难易适中;试题内容上应体现探究性和思考性、针对性,能引导学生积极参与解题和热烈讨论,体现一定的解题思路和分析方法.2. 试题以初中阶段核心的内容为载体,以四基为立足点,切实关注实际,培养学生能力的同时,加强知识间的纵横类比与区别,且拓宽学生知识面的同时,有利于巩固和加深所学知识的理解,达到活学活用的目的.3. 试题的设问以多元化、多途径、开放式等为背景,能客观、全面地测试学生观察、操作、比较、概括、猜测、推理等数学活动的水平,从而培养学生动手、动脑的能力,活化思维,让学生从被动接受知识到主动获取知识,探究知识的形成过程.4. 试题的设问要发挥评价的导向功能,引导教师在教学方式的改变,在不断了解学生的学情和教材的深化研究中修正、完善,进一步提高试题的信度和效度,加强设问的应用性、创新性和综合性,科学、合理、全面地体现新课程精神和学科特点.数学家笛卡儿说过“我所解决的每一个问题都成为一个模式,以用于解决其他相关的问题. ”就题讲题,教学枯燥;创新处理,师生活跃. 教师要调动学生积极参与学习活动,要充分发挥例、习题的典型示范功能,让学生从不同角度思考问题、提出问题,进而解决问题,可以通过多种方法的证明,优化解题思路,起到举一反三的效果;让不同层次的学生在教师的引导下得到不同程度的提高,同时引起学生强烈的求异欲望和勇于创新的精神,体现“实现人人学有价值的数学;人人都获得必需的数学;不同的人在数学上得到不同的发展”的新课程理念.。