材料力学试题
- 格式:doc
- 大小:298.50 KB
- 文档页数:10
材料力学试题及答案一、选择题(每题2分,共20分)1. 材料力学中,下列哪一项不是材料的基本力学性质?A. 弹性B. 塑性C. 韧性D. 导电性答案:D2. 根据胡克定律,当材料受到正应力时,其应变与应力成正比,比例系数称为:A. 杨氏模量B. 剪切模量C. 泊松比D. 屈服强度答案:A3. 在材料力学中,材料的屈服强度是指:A. 材料开始发生塑性变形的应力B. 材料发生断裂的应力C. 材料发生弹性变形的应力D. 材料发生脆性断裂的应力答案:A4. 材料的疲劳寿命与下列哪一项无关?A. 材料的疲劳极限B. 应力循环次数C. 材料的弹性模量D. 应力循环的幅度答案:C5. 在材料力学中,下列哪一项不是材料的力学性能指标?A. 硬度B. 韧性C. 密度D. 冲击韧性答案:C二、简答题(每题5分,共10分)6. 简述材料力学中弹性模量和剪切模量的区别。
答:弹性模量,也称为杨氏模量,是描述材料在受到正应力作用时,材料的纵向应变与应力成正比的比例系数。
剪切模量,也称为刚度模量,是描述材料在受到剪切应力作用时,材料的剪切应变与剪切应力成正比的比例系数。
7. 什么是材料的疲劳寿命,它与哪些因素有关?答:材料的疲劳寿命是指材料在反复加载和卸载过程中,从开始加载到发生疲劳断裂所需的循环次数。
它与材料的疲劳极限、应力循环的幅度、材料的微观结构和环境因素等有关。
三、计算题(每题15分,共30分)8. 一根直径为20mm的圆杆,材料的杨氏模量为200GPa,当受到100N的拉力时,求圆杆的伸长量。
答:首先计算圆杆的截面积A = π * (d/2)^2 = π * (0.02/2)^2m^2 = 3.14 * 0.01 m^2。
然后根据胡克定律ΔL = F * L / (A * E),其中 L 为杆长,假设 L = 1m,代入数值得ΔL = 100 * 1 / (3.14* 0.01 * 200 * 10^9) m = 7.96 * 10^-6 m。
材料力学试题A成绩班 级 姓名 学号 一、单选题(每小题2分,共10小题,20分)1、 工程构件要正常安全的工作,必须满足一定的条件。
下列除( )项,其他各项是必须满足的条件。
A 、强度条件B 、刚度条件C 、稳定性条件D 、硬度条件 2、内力和应力的关系是( )A 、内力大于应力B 、内力等于应力的代数和C 、内力是矢量,应力是标量D 、应力是分布内力的集度 3、根据圆轴扭转时的平面假设,可以认为圆轴扭转时横截面( )。
A 、形状尺寸不变,直径线仍为直线。
B 、形状尺寸改变,直径线仍为直线。
C 、形状尺寸不变,直径线不保持直线。
D 、形状尺寸改变,直径线不保持直线。
4、建立平面弯曲正应力公式zI My =σ,需要考虑的关系有( )。
A 、平衡关系,物理关系,变形几何关系;B 、变形几何关系,物理关系,静力关系;C 、变形几何关系,平衡关系,静力关系;D 、平衡关系, 物理关系,静力关系; 5、利用积分法求梁的变形,不需要用到下面那类条件( )来确定积分常数。
A 、平衡条件。
B 、边界条件。
C 、连续性条件。
D 、光滑性条件。
6、图示交变应力的循环特征r 、平均应力m σ、应力幅度a σ分别为( )。
A -10、20、10;B 30、10、20; C31-、20、10; D 31-、10、20 。
7、一点的应力状态如下图所示,则其主应力1σ、2σ、3σ分别为( )。
A 30MPa 、100 MPa 、50 MPaB 50 MPa 、30MPa 、-50MPaC 50 MPa 、0、-50Mpa 、D -50 MPa 、30MPa 、50MPa8、对于突加载的情形,系统的动荷系数为( )。
A 、2 B 、3 C 、4 D 、5 9、压杆临界力的大小,( )。
A 与压杆所承受的轴向压力大小有关;B 与压杆的柔度大小有关;C 与压杆材料无关;D 与压杆的柔度大小无关。
10、利用图乘法计算弹性梁或者刚架的位移,要求结构满足三个条件。
一、一结构如题一图所示。
钢杆1、2、3的横截面面积为A=200mm 2,弹性模量E=200GPa,长度l =1m 。
制造时3杆短了△=0。
8mm.试求杆3和刚性梁AB 连接后各杆的内力。
(15分)aalABC123∆二、题二图所示手柄,已知键的长度30 mm l =,键许用切应力[]80 MPa τ=,许用挤压应力bs[]200 MPa σ=,试求许可载荷][F 。
(15分)三、题三图所示圆轴,受eM 作用。
已知轴的许用切应力[]τ、切变模量G ,试求轴直径d 。
(15分)四、作题四图所示梁的剪力图和弯矩图。
(15分)五、小锥度变截面悬臂梁如题五图所示,直径2bad d =,试求最大正应力的位置及大小。
(10分)六、如题六图所示,变截面悬臂梁受均布载荷q 作用,已知q 、梁长l 及弹性模量E .试用积分法求截面A 的得分评分人F键40633400Aal bM eBd a a aqqaqa 2dbBda AF挠度w A 和截面C 的转角θC .(15分)七、如图所示工字形截面梁AB ,截面的惯性矩672.5610zI -=⨯m 4,求固定端截面翼缘和腹板交界处点a 的主应力和主方向。
(15分)一、(15分)(1)静力分析(如图(a))1N F2N F3N F图(a)∑=+=231,0N N N yF F F F(a)∑==31,0N N CF F M(b)(2)几何分析(如图(b))1l∆2l∆3l∆∆图(b)wql /3x lhb 0b (x )b (x )BAC 50kN AB0.75m303030140150zya∆=∆+∆+∆3212l l l(3)物理条件EA l F l N 11=∆,EA l F l N 22=∆,EAl F l N 33=∆ (4)补充方程∆=++EAlF EA l F EA l F N N N 3212 (c) (5)联立(a)、(b)、(c)式解得:kN FkN FF N N N 67.10,33.5231===二、(15分)以手柄和半个键为隔离体,S0, 204000OM F F ∑=⨯-⨯=取半个键为隔离体,bsS20F F F ==由剪切:S []s FA ττ=≤,720 N F = 由挤压:bs bs bs bs[][], 900N FF Aσσ=≤≤取[]720N F =.三、(15分)eABM M M +=0ABϕ=, A B M a M b ⋅=⋅得 e B a M M a b =+, e A b MM a b=+当a b >时 e316π ()[]M ad a b τ≥+;当b a >时 e316π ()[]M bd a b τ≥+。
材料力学试题及答案一、选择题(每题2分,共20分)1. 材料力学中,下列哪一项不是基本力学性质?A. 弹性B. 塑性C. 硬度D. 韧性2. 材料在拉伸过程中,当应力达到屈服点后,材料将:A. 断裂B. 产生永久变形C. 恢复原状D. 保持不变3. 材料的弹性模量是指:A. 材料的密度B. 材料的硬度C. 材料的抗拉强度D. 材料在弹性范围内应力与应变的比值4. 根据材料力学的胡克定律,下列说法正确的是:A. 应力与应变成正比B. 应力与应变成反比C. 应力与应变无关D. 应力与应变成线性关系5. 材料的疲劳寿命是指:A. 材料的总寿命B. 材料在循环加载下达到破坏的周期数C. 材料的断裂寿命D. 材料的磨损寿命6. 材料的屈服强度是指:A. 材料在弹性范围内的最大应力B. 材料在塑性变形开始时的应力C. 材料的抗拉强度D. 材料的极限强度7. 材料的断裂韧性是指:A. 材料的硬度B. 材料的抗拉强度C. 材料抵抗裂纹扩展的能力D. 材料的屈服强度8. 材料力学中的泊松比是指:A. 材料的弹性模量B. 材料的屈服强度C. 材料在拉伸时横向应变与纵向应变的比值D. 材料的断裂韧性9. 在材料力学中,下列哪一项是衡量材料脆性程度的指标?A. 弹性模量B. 屈服强度C. 断裂韧性D. 泊松比10. 材料在受力过程中,当应力超过其极限强度时,将:A. 发生弹性变形B. 发生塑性变形C. 发生断裂D. 恢复原状答案1. C2. B3. D4. A5. B6. B7. C8. C9. C10. C试题二、简答题(每题10分,共30分)1. 简述材料力学中材料的三种基本力学性质。
2. 解释什么是材料的疲劳现象,并简述其对工程结构的影响。
3. 描述材料在拉伸过程中的四个主要阶段。
答案1. 材料的三种基本力学性质包括弹性、塑性和韧性。
弹性指的是材料在受到外力作用时发生变形,当外力移除后能够恢复原状的性质。
塑性是指材料在达到一定应力水平后,即使外力移除也无法完全恢复原状的性质。
材料力学的试题及答案一、选择题1. 材料力学中,下列哪个选项不是材料的基本力学性质?A. 弹性B. 塑性C. 韧性D. 硬度答案:D2. 根据材料力学的理论,下列哪个选项是正确的?A. 材料在弹性范围内,应力与应变成正比B. 材料在塑性变形后可以完全恢复原状C. 材料的屈服强度总是高于其抗拉强度D. 材料的硬度与弹性模量无关答案:A二、填空题1. 材料力学中,应力是指_______与_______的比值。
答案:单位面积上的压力;受力面积2. 在材料力学中,材料的弹性模量E与_______成正比,与_______成反比。
答案:杨氏模量;泊松比三、简答题1. 简述材料力学中材料的三种基本变形类型。
答案:材料力学中材料的三种基本变形类型包括拉伸、压缩和剪切。
2. 描述材料的弹性模量和屈服强度的区别。
答案:弹性模量是指材料在弹性范围内应力与应变的比值,反映了材料的刚性;屈服强度是指材料开始发生永久变形时的应力值,反映了材料的韧性。
四、计算题1. 已知一材料的弹性模量E=200 GPa,杨氏模量E=210 GPa,泊松比ν=0.3,试计算该材料的剪切模量G。
答案:G = E / (2(1+ν)) = 200 / (2(1+0.3)) = 200 / 2.6 ≈ 76.92 GPa2. 某材料的抗拉强度为σt=300 MPa,若该材料承受的应力为σ=200 MPa,试判断材料是否发生永久变形。
答案:由于σ < σt,材料不会发生永久变形。
五、论述题1. 论述材料力学在工程设计中的重要性。
答案:材料力学是工程设计中的基础学科,它提供了对材料在力作用下行为的深入理解。
通过材料力学的分析,工程师可以预测材料在各种载荷下的响应,设计出既安全又经济的结构。
此外,材料力学还有助于新材料的开发和现有材料性能的优化。
2. 讨论材料的疲劳寿命与其力学性能之间的关系。
答案:材料的疲劳寿命与其力学性能密切相关。
材料的疲劳寿命是指在循环载荷作用下材料能够承受的循环次数。
材料力学试题及答案一、选择题(每题2分,共20分)1. 材料力学中,弹性模量E的单位是()。
A. N/mB. N·mC. PaD. m/N答案:C2. 材料力学中,材料的屈服强度通常用()表示。
A. σyB. σsC. σbD. E答案:A3. 根据胡克定律,当应力超过材料的弹性极限时,材料将()。
A. 保持弹性B. 发生塑性变形C. 发生断裂D. 无法预测答案:B4. 材料力学中,第一强度理论认为材料破坏的原因是()。
A. 最大正应力B. 最大剪应力C. 最大正应变D. 最大剪应变答案:A5. 下列哪种材料不属于脆性材料()。
A. 玻璃B. 铸铁C. 混凝土D. 铝答案:D6. 材料力学中,梁的弯曲应力公式为()。
A. σ = Mc/IB. σ = Mc/IbC. σ = Mc/ID. σ = Mc/Ib答案:C7. 在材料力学中,梁的剪应力公式为()。
A. τ = VQ/IB. τ = VQ/ItC. τ = VQ/ID. τ = VQ/It答案:B8. 材料力学中,梁的挠度公式为()。
A. δ = (5PL^3)/(384EI)B. δ = (5PL^3)/(384EI)C. δ = (PL^3)/(48EI)D. δ = (PL^3)/(48EI)答案:C9. 材料力学中,影响材料屈服强度的因素不包括()。
A. 材料的微观结构B. 加载速度C. 温度D. 材料的密度答案:D10. 材料力学中,影响材料疲劳强度的因素不包括()。
A. 应力集中B. 表面粗糙度C. 材料的硬度D. 材料的导热性答案:D二、填空题(每题2分,共20分)1. 材料力学中,材料在外力作用下,其形状和尺寸发生的变化称为______。
答案:变形2. 材料力学中,材料在外力作用下,其内部产生的相互作用力称为______。
答案:应力3. 材料力学中,材料在外力作用下,其内部产生的相对位移称为______。
答案:应变4. 材料力学中,材料在外力作用下,其内部产生的单位面积上的力称为______。
材料力学试题及答案一、选择题(每题5分,共25分)1. 下列哪个选项是材料力学的基本假设之一?A. 材料是各向同性的B. 材料是各向异性的C. 材料是均匀的D. 材料是线弹性的答案:A2. 在材料力学中,下列哪个公式表示杆件的正应力?A. σ = F/AB. τ = F/AC. σ = F/LD. τ = F/L答案:A3. 当材料受到轴向拉伸时,下列哪个选项是正确的?A. 拉伸变形越大,材料的强度越高B. 拉伸变形越小,材料的强度越高C. 拉伸变形与材料的强度无关D. 拉伸变形与材料的强度成正比答案:B4. 下列哪种材料在拉伸过程中容易发生断裂?A. 钢材B. 铸铁C. 铝合金D. 塑料答案:B5. 下列哪个选项表示材料的泊松比?A. μ = E/GB. μ = G/EC. μ = σ/εD. μ = ε/σ答案:C二、填空题(每题10分,共30分)6. 材料力学研究的是材料在______作用下的力学性能。
答案:外力7. 材料的强度分为______强度和______强度。
答案:屈服强度、断裂强度8. 材料在受到轴向拉伸时,横截面上的正应力公式为______。
答案:σ = F/A三、计算题(每题25分,共50分)9. 一根直径为10mm的圆钢杆,受到轴向拉伸力F=20kN 的作用,求杆件横截面上的正应力。
解:已知:d = 10mm,F = 20kNA = π(d/2)^2 = π(10/2)^2 = 78.5mm^2σ = F/A = 20kN / 78.5mm^2 = 255.8N/mm^2答案:杆件横截面上的正应力为255.8N/mm^2。
10. 一根长度为1m的杆件,受到轴向拉伸力F=10kN的作用,已知材料的弹性模量E=200GPa,泊松比μ=0.3,求杆件的伸长量。
解:已知:L = 1m,F = 10kN,E = 200GPa,μ = 0.3ε = F/(EA) = 10kN / (200GPa × π(10mm)^2) =0.025δ = εL = 0.025 × 1000mm = 25mm答案:杆件的伸长量为25mm。
材料力学试题及答案一、选择题1. 材料力学中,下列哪个参数是用来描述材料在受力时抵抗变形的能力?A. 弹性模量B. 屈服强度C. 抗拉强度D. 断裂韧性答案:A2. 以下哪种材料在受力后能够完全恢复原状?A. 弹性体B. 塑性体C. 粘弹性体D. 脆性体答案:A3. 应力集中现象主要发生在哪种情况下?A. 材料表面存在缺陷B. 材料内部存在孔洞C. 材料受到均匀分布的载荷D. 材料受到单一集中载荷答案:D4. 根据胡克定律,当应力不超过比例极限时,应力与应变之间的关系是:A. 线性的B. 非线性的C. 指数的D. 对数的答案:A5. 材料的疲劳破坏是指在何种条件下发生的?A. 单次超负荷B. 长期重复载荷C. 瞬间高温D. 腐蚀环境答案:B二、填空题1. 在简单的拉伸和压缩实验中,应力(σ)是力(F)与横截面积(A)的比值,即σ=______。
答案:F/A2. 材料的韧性是指其在断裂前能够吸收的能量,通常通过______试验来测定。
答案:冲击3. 当材料在受力时发生塑性变形,且变形量随时间增加而增加,这种现象称为______。
答案:蠕变4. 剪切应力τ是剪切力(V)与剪切面积(A)的比值,即τ=______。
答案:V/A5. 材料的泊松比是指在单轴拉伸时,横向应变与纵向应变的比值,通常用希腊字母______表示。
答案:ν三、简答题1. 请简述材料弹性模量的定义及其物理意义。
答:弹性模量,又称杨氏模量,是指材料在弹性范围内抵抗形变的能力的量度。
它定义为应力与相应应变的比值。
物理意义上,弹性模量越大,表示材料在受力时越不易发生形变,即材料越硬。
2. 描述材料的屈服现象,并解释屈服强度的重要性。
答:屈服现象是指材料在受到外力作用时,由弹性状态过渡到塑性状态的过程。
在这个过程中,材料首先经历弹性变形,当应力达到某个特定值时,即使应力不再增加,材料也会继续发生显著的塑性变形。
屈服强度是衡量材料开始屈服的应力值,它对于工程设计和材料选择具有重要意义,因为它决定了结构在载荷作用下的安全性和可靠性。
材料力学试题及答案一、选择题(每题2分,共20分)1. 材料力学中,下列哪一项不是基本力学性质?A. 弹性B. 塑性C. 脆性D. 磁性答案:D2. 根据胡克定律,弹簧的伸长量与所受力的关系是:A. 正比B. 反比C. 无关D. 非线性关系答案:A3. 材料的屈服强度是指:A. 材料开始发生永久变形的应力B. 材料发生断裂的应力C. 材料开始发生弹性变形的应力D. 材料达到最大应力点的应力答案:A4. 材料力学中,应力的定义为:A. 材料单位面积上承受的力B. 材料单位长度上承受的力C. 材料单位体积上承受的力D. 材料单位质量上承受的力答案:A5. 材料的泊松比是描述材料在受力时的:A. 弹性变形能力B. 塑性变形能力C. 横向变形与纵向变形的关系D. 断裂韧性答案:C6. 材料的疲劳寿命与下列哪个因素无关?A. 应力水平B. 材料的疲劳极限C. 温度D. 材料的弹性模量答案:D7. 在材料力学中,剪切应力与正应力的区别在于:A. 作用方向B. 作用面积C. 材料的破坏形式D. 材料的应力-应变曲线答案:A8. 材料的硬度通常通过什么测试来测量?A. 拉伸测试B. 压缩测试C. 冲击测试D. 硬度测试答案:D9. 材料的屈服现象通常发生在:A. 弹性阶段B. 塑性阶段C. 断裂阶段D. 疲劳阶段答案:B10. 材料的疲劳破坏通常发生在:A. 材料表面B. 材料内部C. 材料的接合处D. 材料的任何位置答案:A二、简答题(每题10分,共30分)1. 简述材料力学中材料的弹性模量和剪切模量的区别。
答:弹性模量是描述材料在单轴拉伸或压缩时,应力与应变比值的物理量,反映了材料抵抗变形的能力。
剪切模量则是描述材料在剪切状态下,剪切应力与剪切应变的比值,反映了材料抵抗剪切变形的能力。
2. 解释什么是材料的疲劳破坏,并简述其形成过程。
答:材料的疲劳破坏是指在反复加载和卸载的过程中,即使应力水平低于材料的屈服强度,材料也会逐渐发生损伤并最终导致断裂。
材料力学练习题与答案-全1.当T三Tp时,剪切虎克定律及剪应力互等定理。
A、虎克定律成立,互等定理不成立B、虎克定律不成立,互等定理成立(正确答案)C、均不成立D、二者均成立2.木榫接头,当受F力作用时,接头的剪切面积和挤压面积分别是A、ab,lcB、cb,lbC、lb,cb(正确答案)D、lc,ab3.在下列四种材料中,()不可以应用各向同性假设。
A、铸钢B、玻璃C、松木(正确答案)D、铸铁4.一细长压杆当轴向压力P达到临界压力Pcr时受到微小干扰后发生失稳而处于微弯平衡状态,此时若解除压力P,则压杆的微弯变形。
A、有所缓和B、完全消失(正确答案)C、保持不变D、继续增大;5.矩形截面偏心受压杆件发生变形。
A、轴向压缩、平面弯曲B、轴向压缩、平面弯曲、扭转C、轴向压缩、斜弯曲(正确答案)D、轴向压缩、斜弯曲、扭转6.当杆件处于弯扭组合变形时,对于横截面的中性轴有这样的结论,正确的是:A、一定存在(正确答案)B、不一定存在C、一定不存在7.梁在某一段内作用有向下的分布载荷时,在该段内它的弯矩图为。
A、上凸曲线;(正确答案)B、下凸曲线;C、带有拐点的曲线;D、斜直线8.图示结构中,AB为钢材,BC为铝,在P力作用下()A、AB段轴力大B、BC段轴力大C、轴力一样大(正确答案)D、无法判断9.圆截面的悬臂梁在自由端受集中力的作用,若梁的长度增大一倍,其他条件不变,最大挠度是原来的倍。
图片2.pngA、2B、16C、8(正确答案)D、410.托架由横梁与杆组成。
若将杆由位于梁的下方改为位于梁的上方,其他条件不变,则此托架的承载力。
A、提高(正确答案)B、降低C、不变D、不确定11.单位长度的扭转角e与()无关A、杆的长度(正确答案)B、扭矩C、材料性质D、截面几何性质12.矩形截面拉弯组合变形时,对于横截面的中性轴有以下的结论。
正确的是:。
A、过形心B、过形心且与ZC轴有一夹角;C、不过形心,与ZC轴平行;(正确答案)D、不过形心,与ZC轴有一夹角。
2. 已知一圆杆受拉力F =25 kN ,直径 d =14mm ,许用应力[σ]=170MPa ,试校核此杆是否满足强度要求。
解: 轴力:F N = F =25kN 应力::强度校核:[]170MPa 162MPa max =<=σσ此杆满足强度要求,能够正常工作。
3. 齿轮用平键与轴联接(图中只画出了轴与键,未画出齿轮)。
已知轴的直径d =70mm ,键的尺寸为:b =20mm ,h =12mm ,l =100mm ,传递的扭转力偶矩M =2kN·m ,键的许用应力〔τ〕=60MPa ,〔σbs 〕=100MPa 。
试校核键的强度。
解 (1)校核剪切强度由平衡条件∑M O (F )=0得F ×d /2 =M则有 F S = F = 2M /d于是 τ=F S /A = 28.6MPa <〔τ〕剪切强度足够。
(2)校核挤压强度 挤压力为 F bs = Fσbs =F bs / A bs = 95.3MPa <〔σbs 〕挤压强度也满足。
4. 一铆钉联接如图所示。
已知F =200kN ,δ=2cm ,铆钉材料的许用剪应力〔τ〕=80MPa ,许用挤压应力〔σbs 〕=260MPa ,试设计铆钉的直径。
解 (1)按剪切强度设计。
铆钉的受力情况如图。
用截面法可得到内力计算图。
铆钉有两个面承受剪切,称为双剪切。
由平衡条件ΣF x =0得 F S =F /2τ=/A =F /2/ (πd 2/4)≤〔τ〕 于是d ≥0.04 m = 4cm 先取d =4cm(2)按挤压强度校核 挤压力 F bs = 200kN挤压面的计算面积为A bs = d δσbs =F bs /A bs =250MPa <〔σbs 〕满足挤压强度故取 d =4cm第三章1. T 为圆杆横截面上的扭矩,试画出截面上与T 对应的切应力分布图。
2. 传动轴如图所示,主动轮输入功率P A =37kW ,从动轮B 、C 、D 的输出功率分3max 22 442510 162MPa3140014 N F F A π d ..σ⨯⨯ ====⨯别为P B=P C=11kW,P D=15kW,轴的转速为n=300r/min。
试画出轴的扭矩图。
解:(1)计算外力偶矩M A=9550×N A/n=9550×37/300N·m=1178N·mM B=M c=350N·m M D=478N·m(2)分段计算扭矩由静力平衡条件 ΣM=0得T1+M B=0T1=-M B=-350N·m同理,由ΣM=0可得 T2+M B+M C=0T2=-(M B+M C)=-(350+350)N·m=-700 N·m由ΣM=0得T3-M D=0 T3=M D=478N·m(3)画扭矩图3. 一轴AB传递的功率P k=7.5kW,转速n=360r/min 轴的AC段为实心圆截面,CB段为空心圆截面。
已知D=3cm,d=2cm。
试计算AC段横截面边缘点①处的剪应力以及CB段横截面上外边缘点②处和内边缘点③处的剪应力。
解(1)计算外力偶矩M=9550×P k/n=199 N·m由截面法求得各横截面上的扭矩为T=M=199 N·m(2)计算惯性矩AC段I p1=πD4/32=7.95cm4CB段I p2=π/32(D4-d4)=6.38cm4(3)计算剪应力37.5MPa46.8MPa 31.2MPa4. 一直经为d=50mm的圆轴两端受M=1000N·m的外力偶作用而发生扭转,轴材料的剪切弹性模量为G=80GPa 。
求:(1)横截面上半径为ρA =d/4点处的剪应力和剪应变;(2)单位长度扭转角ϕ'。
解:(1)20.4MPaApTIρτρ==ρργτG=42.5510radργ-=⨯(2)0.02rad/mpTGIϕ'==(或1.15°/m)5. 已知薄壁圆轴的外径D =76mm,壁厚δ=2.5mm,所承受的转矩M=1.98kN·m,材料的许用应力[τ]=100MPa,剪切弹性模量G=80GPa,许用单位长度扭转角[ϕ'] =2°/m。
试校核此轴的强度和刚度。
解:934.02=-=DtDα()447417.810m32pI Dπα-=-=⨯,532.0510m/2ptIWD-==⨯max96.4MPatTWτ==<[τ]82.1180=⨯='πϕp GI T °/m < [ϕ'] 故:轴的强度和刚度足够。
6. 阶梯圆轴的直径分别为d 1=40mm ,d 2=50mm ,材料的许用应力为 [τ]=60MPa ,轴的功率由C 轮输入,P C =30kW , A 轮输出功率为P A =13kW ,轴的转速 n =200r/min 。
试校核轴的强度。
解:954962.7NmA A P M n==⋅95491432.4N m CC P M n==⋅620.7N mAB T =⋅1432.4N m BC T =⋅max 49.4MPa AB ABtT W τ==<[τ]max 58.4MPa BC BCtT W τ==<[τ] 故:轴的强度足够。
第四章一、作梁的剪力图和弯矩图。
第五章2. 梁AB为10号工字钢,W z=49cm3,已知梁下表面C处横截面上的正应力σc=60MPa。
试求载荷F的值。
解C处的弯矩为0.1CM F=由zCC WM=σ得zCCWM⋅=σ即66104910601.0-⨯⨯⨯=P得29.4kNF=3. 20a工字钢(W z=237cm3)受力如图,若[σ]=160MPa,a=2m 。
试求许可载荷F的值。
答案:F≤56.8kN4. 图示矩形截面梁,已知:M=16kN·m,F=20kN,许用应力为[σ]=120MPa,试校核梁的正应力强度。
解根据平衡方程解得12k NAF=,32kNBF=max20kNM=max104.2MPazMWσ==<[σ]5. 受均布载荷作用的工字形截面梁如图所示。
已知工字钢型号为18号,W z=185cm3,其许用弯曲正应力[σ]=140MPa。
试确定许可的均布载荷q。
解 (1)画弯矩图,求M max 。
从弯矩图上可知最大弯矩为M max=2.5q(2)确定均布载荷q []9.25max =≤σz W M kN·m即 2.5q ≤25.9 所以 q ≤10.4kN/m许可的均布载荷为10.4kN/m 。
1. 求图示单元体的主应力。
解:由公式 223122xy y x y x τσσσσσσ+⎪⎪⎭⎫ ⎝⎛-±+= 得σ1=8.284 MPa σ3= -48.284 MPa σ2=02. 已知图示单元体的80=x σMPa ,40-=y σMPa ,60-=xy τMPa ,试求出其主应力,并确定主平面的方位(要求在单元体上表示出来)。
解:由公式223122xy yx y x τσσσσσσ+⎪⎪⎭⎫ ⎝⎛-±+= 得σ1=105 MPa σ3=-65 MPaσ2=0 再由公式yx xy tg σστα--=220 得5.220=α σx 所在平面位置逆时针转5.220=α即到σ1所在主平面的位置3. 试求图示应力状态的主应力及最大剪应力(应力单位为MPa )。
解: 30=x σMPa ,20-=y σMPa ,40=xy τMPa50=z σMPa 是主应力452222231-=+⎪⎪⎭⎫ ⎝⎛-±+=xy y x y x τσσσσσσ MPa2.521=σMPa , 502=σMPa ,2.423-=σMPa2.47221max =-=σστ MPa 第八章1. 一倾斜矩形截面梁AB 如图,在其中点C 处作用有铅垂力F =25kN ,试求梁AB 中的最大拉应力和最大压应力。
解:(1)受力分析力F 可分解为 30cos 1F F =和 30sin 2F F =,梁发生弯曲和压缩的组合变形。
最大弯矩发生在C 截面max cos30cos3018750N m 44lF Fl M ⋅=== AC 段轴力为 30sin F F N -=(2)应力计算max 2918750Pa 7.81MPa 160300106w zM W σ-===⨯⨯36sin 30250.510Pa 0.26MPa 16030010N F A σ-⨯⨯===⨯⨯故 m a x 7.81M P al σ= max 0.267.818.07MPa y σ=+=2. 悬臂吊车如图,横梁用25a 号工字钢制成(工字钢的截面积和抗弯截面模量分别为:A =48.5cm 2,W z =402cm 3),梁长l =4m , F =24kN ,梁材料的许用应力〔σ〕=100MPa 。
试校核梁的强度。
解 (1)外力计算取横梁AB 为研究对象,当载荷移动到梁的中点时,可近似地认为梁处于危险状态。
此时,由平衡条件得 F By =12kN , F Bx =20.8kN 又由平衡条件ΣF x =0和ΣF y =0得 F Ax =20.8kN , F Ay =12kN(2)内力和应力计算在梁中点截面上的弯矩最大,其值为M max =Fl /4=24000N·m所以最大弯曲应力为σW max =M max /W z =60MPa梁危险截面的上边缘处受最大压应力、下边缘处受最大拉应力作用。
轴力产生的压应力为σy =FN /A =-4.3MPa(3)强度校核数值最大的正应力发生在跨度中央截面的上边缘,是压应力|σ|max =|σy -σW max |=64.3MPa <〔σ〕悬臂吊车的横梁是安全的。
3. 圆杆受轴力F 和力偶M 作用,已知圆杆直径为d =10mm ,材料为钢材,许用应力为 [σ]=120MPa ,力偶M =F ·d /10。
试求许可载荷F 的值。
解: 圆杆发生拉伸和扭转的组合变形 F F N =,M T = 24dF AF N πσ==,26.1dF W T tπτ== 6222310120281.144⨯≤⋅=+=dFxd πτσσ得 7.357F ≤kN62224101202166.143⨯≤⋅=+=dFxd πτσσ得 7.743F ≤kN4. 图示为一曲柄轴,位于竖直平面内,AB 段直径d =30mm ,许用应力为 [σ]= 100MPa 。
在D 点受垂直于竖直面的水平由外向里的力F 的作用。
试根据AB 段的强度按第三强度理论确定许可载荷F 的值。
解: AB 段发生弯、扭组合变形max 0.5M F =,0.4T F =由公式[]σ=+221T M W z得许可载荷F值为414N1. 一圆截面压杆AB ,两端铰支,直径d =160mm ,长l =2.5m 。