电磁场、微波技术与天线
- 格式:ppt
- 大小:707.00 KB
- 文档页数:25
2023年微波技术与天线(王新稳著)课后答案下载2023年微波技术与天线(王新稳著)课后答案下载绪篇电磁场理论概要第1章电磁场与电磁波的基本概念和规律1.1 电磁场的四个基本矢量1.1.1 电场强度E1.1.2 高斯(Gauss)定律1.1.3 电通量密度D1.1.4 电位函数p1.1.5 磁通密度B1.1.6 磁场强度H1.1.7 磁力线及磁通连续性定理1.1.8 矢量磁位A1.2 电磁场的基本方程1.2.1 全电流定律:麦克斯韦第一方程1.2.2 法拉第一楞次(Faraday-Lenz)定律:麦克斯韦第二方程1.2.3 高斯定律:麦克斯韦第三方程1.2.4 磁通连续性原理:麦克斯韦第四方程1.2.5 电磁场基本方程组的微分形式1.2.6 不同时空条件下的麦克斯韦方程组1.3 电磁场的媒质边界条件1.3.1 电场的边界条件1.3.2 磁场的边界条件1.3.3 理想导体与介质界面上电磁场的边界条件1.3.4 镜像法1.4 电磁场的能量1.4.1 电场与磁场存储的能量1.4.2 坡印廷(Poyllfing)定理1.5 依据电磁场理论形成的电路概念1.5.1 电路是特定条件下对电磁场的简化表示1.5.2 由电磁场方程推导出的电路基本定律1.5.3 电路参量1.6 电磁波的产生——时变场源区域麦克斯韦方程的解 1.6.1 达朗贝尔(DAlembert)方程及其解1.6.2 电流元辐射的电磁波1.7 平面电磁波1.7.1 无源区域的时变电磁场方程1.7.2 理想介质中的均匀平面电磁波1.7.3 导电媒质中的均匀平面电磁波1.8 均匀平面电磁波在不同媒质界面的入射反射和折射 1.8.1 电磁波的极化1.8.2 均匀平面电磁波在不同媒质界面上的垂直入射 1.8.3 均匀平面电磁波在不同媒质界面上的斜入射__小结习题上篇微波传输线与微波元件第2章传输线的基本理论2.1 传输线方程及其解2.1.1 传输线的电路分布参量方程2.1.2 正弦时变条件下传输线方程的解2.1.3 对传输线方程解的讨论2.2 无耗均匀传输线的工作状态2.2.1 电压反射系数2.2.2 传输线的工作状态2.2.3 传输线工作状态的测定2.3 阻抗与导纳厕图及其应用2.3.1 传输线的匹配2.3.2 阻抗圆图的构成原理2.3.3 阻抗圆图上的特殊点和线及点的移动2.3.4 导纳圆图2.3.5 圆图的应用举例2.4 有损耗均匀传输线2.4.1 线上电压、电流、输入阻抗及电压反射系数的'分布特性 2.4.2 有损耗均匀传输线的传播常数2.4.3 有损耗均匀传输线的传输功率和效率__小结习题二第3章微波传输线3.1 平行双线与同轴线3.1.1 平行双线传输线3.1.2 同轴线3.2 微带传输线3.2.1 微带线的传输模式3.2.2 微带线的传输特性3.3 矩形截面金属波导3.3.1 矩形截面波导中场方程的求解3.3.2 对解式的讨论3.3.3 矩形截面波导中的TElo模3.3.4 矩形截面波导的使用3.4 圆截面金属波导3.4.1 圆截面波导中场方程的求解3.4.2 基本结论3.4.3 圆截面波导中的三个重要模式TE11、TM01与TE01 3.4.4 同轴线中的高次模3.5 光波导3.5.1 光纤的结构形式及导光机理3.5.2 单模光纤的标量近似分析__小结习题三第4章微波元件及微波网络理论概要4.1 连接元件4.1.1 波导抗流连接4.1.2 同轴线——波导转接器4.1.3 同轴线——微带线转接器4.1.4 波导——微带线转接器4.1.5 矩形截面波导——圆截面波导转接器4.2 波导分支接头……微波技术与天线(王新稳著):内容简介本书是在作者三十多年教学及科研实践基础上编写而成的,系统讲述电磁场与电磁波、微波技术、天线的基本概念、理论、分析方法和基本技术。
《电磁场·微波技术与天线》课程教学的几点体会信号与系统是高等工科院校通信与电子信息类专业的一门重要的专业基础课,其中的概念和分析方法广泛应用于通信、自动控制、信号与信息处理、电路与系统等领域[1]。
本课程与先修课程“电路分析基础”联系密切,电路分析基础课程是从电路分析的角度研究问题,本课程则从系统的观点进行分析。
此外,在本课程中还涉及用到高等数学、线性代数里的一些基础知识。
因此,该门课程对学生的数学基础要求较高,同时,需要学生具有一定的电路分析能力。
该课程主要涉及信号和系统两个部分,分为连续时间信号与系统的分析和离散时间信号与系统分析两大类。
在分析方法中,又可以从时域和变换域两个角度来进行。
本课程与后续课程之间存在着较为密切的联系,如其中的离散时间信号与系统的分析是数字信号处理这门课的基础,其中的傅里叶变换分析法是通信原理,数字通信等课程的基础。
对于系统的响应的分析方法又在后续的自动控制原理课程中得到深入地体现。
因此,信号与系统这门专业基础课的教学效果,对于相关专业的本科生后续课程的学习具有十分重要的作用,同时,在这门课的讲解中,也可以帮助学生顺带复习先修课程的一些重要的概念,定理和方法。
经过几年的教学实践,笔者认为有必要对本课程教学工作认真总结,弥补不足,以期取得更好的效果。
1.1 注重基本概念以及定理的实际意义的讲解与其他专业基础课较之,信号与系统这门课中的公式和定理还是比较多的,一些学生在课后作业和考试中常常使用死记硬背的方式忘记公式和解题过程,最终还是没有能够深入细致地认知暗藏在公式和解题方法背后的原理和意义。
因此,在实际课程的传授中,须要强化基本概念以及定理的实际意义的传授。
具体来说,必须花掉小力气讲清楚基本概念,特别就是那些先修成课程中没的、而信号与系统课中崭新发生的概念。
比如,冲激函数这个概念先前没发生过,在传授中就无法只是直观地说学生存有这么一个函数,后面章节中要使用就完结了,而是必须从冲激函数起源抓起,用多媒体课件中的动画模拟或板书的方式,使学生确切地晓得这个函数就是门函数挑音速获得的,存有这样直观的模拟过程,学生就可以更容易地认知、掌控冲激函数的基本性质就是怎么获得的,为什么可以存有这些性质等等;此外,还须要鼓励学生必须存有不仅知其然,还要知其所以然的精神,也就是说必须急于地回去引起学生思索:这门课为什么必须导入这样的一个冲激函数,导入这样一个具备特定性质的函数之后是不是给信号分析,系统分析过程增添了便利。
《电磁场微波技术与天线》总复习填空题选择题《电磁场微波技术与天线》习题及参考答案⼀、填空题:1、静⽌电荷所产⽣的电场,称之为_静电场_;电场强度的⽅向与正电荷在电场中受⼒的⽅向__相同_。
2、电荷之间的相互作⽤⼒是通过电场发⽣的,电流与电流之间的相互作⽤⼒是通过磁场发⽣的。
3、⽮量场基本⽅程的微分形式是:V A ρ=?? 和 J A =?? ;说明⽮量场的散度和旋度可以描述⽮量场在空间中的分布和变化规律。
4、⽮量场基本⽅程的积分形式是:dV dS A V V S ρ??=?? 和 dS J s dl A l ?=??;说明⽮量场的环量和通量可以描述⽮量场在空间中的分布和变化规律。
5、⽮量分析中的两个重要定理分别是⾼斯定理和斯托克斯定理, 它们的表达式分别是: dS A dV A S v ??= 和dS rotA dl A s l ?= 。
6、静电系统在真空中的基本⽅程的积分形式是:∮D s ·d S =q 和?E ·d =0。
7、静电系统在真空中的基本⽅程的微分形式是:V ρ=??和0=??。
8、镜象法的理论依据是静电场的唯⼀性定理。
基本⽅法是在所求场域的外部放置镜像电荷以等效的取代边界表⾯的感应电荷或极化电荷。
9、在两种媒质分界⾯的两侧,电场→E 的切向分量E 1t -E 2t =_0__;⽽磁场→B 的法向分量 B 1n -B 2n =__0__。
10、法拉弟电磁感应定律的⽅程式为E n =-dtd φ,当d φ/dt>0时,其感应电流产⽣的磁场将阻⽌原磁场增加。
11、在空间通信中,为了克服信号通过电离层后产⽣的法拉第旋转效应,其发射和接收天线都采⽤圆极化天线。
12、长度为2h=λ/2的半波振⼦发射天线,其电流分布为:I (z )=I m sink (h-|z|)。
13、在介电常数为e 的均匀各向同性介质中,电位函数为 2211522x y z ?=+-,则电场强度E =5x y z xe ye e --+ 。
电磁场微波技术与天线课程设计前言电磁场微波技术与天线课程是电子信息工程专业的必修课程,是培养学生掌握电磁场和微波技术的理论和实践知识,以及设计和分析天线的能力的重要途径。
在这门课程中,学生将学习电磁场的基础知识、微波元器件的设计和应用、天线的原理和设计等内容。
本文将重点介绍本人在该课程中的课程设计。
课程设计背景在本次课程设计中,我和我的同学合作完成了一项毫米波天线的设计和制作。
毫米波天线是微波技术领域的重要组成部分,常用于实现高速通讯和雷达探测等领域。
在本次课程设计中,我们将模拟设计并制作一款工作在28GHz频段的天线,以深入了解电磁场和微波技术的理论和应用。
课程设计流程第一步:需求分析在本课程设计中,我们需要设计一款工作在28GHz频段的天线。
为了实现如此高频的工作需求,我们需要使用微带天线设计和制作技术,并且需要对微带天线的理论基础知识有一定的了解。
第二步:仿真设计为了确保天线的设计符合实际需求,我们首先需要在仿真软件中对天线进行建模和仿真分析。
我们选择使用CST Microwave Studio软件进行仿真设计,该软件可以帮助我们进行天线建模、电磁场仿真分析,以及性能评估等。
在仿真过程中,我们将尝试不同的天线结构和参数设置,并对其性能进行比较和评估。
通过多次仿真和修改优化,最终得到一款性能较优的天线方案。
第三步:实验制作在确定了天线设计方案之后,我们需要进行实验制作并对其性能进行测试和验证。
实验制作过程中,我们需要按照天线的设计方案,在板子上进行PCB设计,并进行切割、注锡和贴片等工艺步骤。
制作完成后,我们需要使用微波测试仪对天线进行性能测试,包括频率响应、阻抗匹配和辐射性能等。
通过测试,我们可以了解天线的实际性能并对其进行优化和调整。
第四步:实验结果分析最后,通过对实验结果的分析,我们可以得到一份完整的课程设计报告,并展示我们所设计的天线的性能参数和实际应用效果。
总结本次电磁场微波技术与天线课程设计是一次非常有收获和意义的实践活动。