人教A版数学必修2立体几何测试题及详细答案
- 格式:pdf
- 大小:255.95 KB
- 文档页数:6
1一、选择题1. 如图,在体积为1的三棱锥A BCD -侧棱A BA C A D ,,上分别取点E F G ,,,使21AE EB AF FC AG GD ===∶∶∶∶,记O 为三平面BCG CDE DBF ,,的交点,则三棱锥O BCD -的体积等于( )A.19B.18C.17D.142.木星的体积约是地球体积的倍,则它的表面积是地球表面积的( ) A.60倍B.C.120倍D.3. 三棱锥P ABC -中,PA PB PC ,,互相两两垂直,且14PC PA x PB y x y ===+=,,,,则三棱锥P ABC -体积的最大值( )A.1 B.13C.23D.不存在4. 一条直线和直线外不在同一条直线上的三点所确定的过该直线的平面有( ) A.1个 B.2个 C.3个 D.至多3个5. 异面直线a b a b c ,,⊥,与a 成30角,则c 与b 成角范围是( )A.[6090],B.[3090],C.[60120],D.[30120],6. 在正方体1111ABCD A B C D -中,表面的对角线与1AD 成60的有( ) A.4条B.6条C.8条D.10条7. 如果两面角l αβ--的平面角是锐角,点P 到αβ,和棱l的距离分别为4和为( ) A.45或30B.15 或75C.30 或60D.15 或608. 下列四个命题,下确的结论个数有( )①若三条直线两两相交,则它们组成的图形为平面图形 ②一条直线和一个点确定一个平面 ③若四点不共面,则每三点一定不共线 ④三条平行线确定三个平面 A.1个 B.2个 C.3个 D.4个 9. 下列命题中正确的是( )A.两条直线可以确定一个平面 B.一组对边平行的四边形是平面图形 C.一个点与一条直线可以确定一个平面 D.两两相交的三条直线一定共面 10. 给出下列四个命题,其中正确的是( )①在空间若两条直线不相交,则它们一定平行 ②平行于同一条直线的两条直线 ③一条直线和两条平行直线的一条相交,那么它也和另一条相交④空间四条直线a ,b ,c ,d ,如果a b ∥,c d ∥,且a d ∥,那么b c ∥ A.①②③ B.②④ C.③④ D.②③ 11. 下列说法中错误..的个数是( ) ①过平面外一点有一条直线和该平面平行 ②过平面外一点只有一条直线和该平面平行 ③过平面一点外有且只有一条直线和该平面平行 A.0 B.1 C.2 D.3A EB FOCGD212. 已知直线a ∥直线b ,b ∥直线c ,c ∥平面α,则( ) A.a α∥ B.a α⊂ C.a 与α相交 D.a α∥或a α⊂ 13. 能保证直线a 与平面α平行的条件是( )A.a α⊄,b α⊂,a b ∥ B.b α⊂,a b ∥ C.b α⊂,c b ∥,a c ∥ D.b α⊂,A a ∈,B a ∈,C b ∈,D b ∈,且AC BD = 14. 下列四个命题中,不正确的命题是( )A.如果一条直线与两条平行直线中的一条垂直,那么也和另一条垂直B.已知直线a ,b ,c ,a b ∥,c 与a ,b 都不相交,若c 与a 所成的角为θ,则c 与b 所成的角也等于θ C.如果空间四个点不共面,则四个点中可能有三个点共线D.若直线a ∥平面α,点P α∈,则过点P 作a 的平行线一定在α内 15. 下列命题中,正确的是( )A.直线a ∥平面α,则a 平行于α内任何一条直线B.直线a 与平面α相交,则a 不平行于α内的任何一条直线 C.直线a 不平行于平面α,则a 不平行于α内任何一条直线D.直线a 不垂直于平面α内的某一条直线,则a 不垂直于α内任何一条直线二、填空题16. 已知m n ,是不同的直线,αβ,是不重合的平面,给出下列命题:① 若m n αβαβ⊂⊂,,∥,则m n ∥ ②若m n m n αββ⊂,,,∥∥,则αβ∥③若m n m n αβ⊥⊥,,∥,则αβ∥④m n ,是两条异面直线,若m m n n αβαβ,,,∥∥∥∥,则αβ∥ 上面命题中,真命题的序号是 (写出所有真命题的序号). 17. 若a b c a d b ∥,⊥,⊥,则c 与d 关系为 .18. 正方形ABCD 中,E F ,分别是AB CD ,中点,沿EF 将正方形折成60的二面角,则异面直线FB 与AE 所成的角的余弦值是 .19. 如图,1111ABCD A B C D -是正方体,E F , 分别是111AA A B ,的中点,则EF 与对角面11A C CA 所成角的度数是 .20. 如图,在空间四边形ABCD 中,2AD BC ==,E ,F 分别是AB ,CD的中点,若EF =AD ,BC 所成的角为.21. 有以下命题,正确命题的序号是 . ①直线与平面没有公共点,则直线与平面平行②直线与平面内的任何一条直线都不相交,则直线与平面平行; ③直线上有两点,它们到平面的距离相等,则直线与平面平行; ④直线与平面内的无数条直线不相交,则直线与平面平行.三、解答题22. 如图,在直三棱柱111ABC A B C -中,13454AC BC AB AA ====,,,,点D 是AB 的中点. (Ⅰ)求证1AC BC ⊥;(Ⅱ)求证1AC ∥平面1CDB ; (Ⅲ)求异面直线1AC 与1B C 所成角的余弦值.ABCED F 1A 1D 1C 1B F D AEB C1C 1B 1A CDAB323. 如图,在直四棱柱1111ABCD A B C D -中,2AB AD ==,DC =1AA =AD DC AC BC ⊥⊥,,垂足为E .(Ⅰ)求证11BD AC ⊥;(Ⅱ)求二面角11A BD C --的大小; (Ⅲ)求异面直线AD 与1BC 所成角的大小.24. 已知:四边形ABCD 中,AB CD AB BC DC AD ∥,,,,(或其延长线)分别与平α相交于E F G H ,,,四点.求证:E F G H ,,,四点共线.25. 在空间四边形ABCD 中,E F ,分别为AB BC ,的中点.求证:EF 和AD 为异面直线.26. 如图,在二面角l αβ--中,A B C D l α∈∈,,,,ABCD 为矩形,P β∈,PA α⊥,且PA AD =,M N ,依次是AB PC ,的中点.(1)求二面角l αβ--的大小;(2)求证:MN AB ⊥;(3)求异面直线PA 与MN 所成角的大小.DβαE CBM A QP Nl1AA 1DD1BE1C C427. 已知四边形ABCD 是空间四边形,E ,H 分别是线段AB ,AD 的中点,F ,G 分别是线段CB ,CD 上的点且23CF CG CB CD ==,求证:EF ,GH ,CA 交于一点.28. 如图所示,P 是ABC △所在平面外的一点,M ,N 分别是AB ,PC 的中点,已知PA BC m ==,PB AC =, (1)求证:MN 是AB 和PC 的公垂线;(2)当PA ,BC 成90角时,求AB 和PC 间的距离.29. 如图,正方体1111ABCD A B C D -中,AC BD O = ,11111AC B D O = .求证:1OO ⊥平面ABCD .30. 如图,在正方体1111ABCD A B C D -中,求1A B 与平面11A B CD 所成的角.CM BP NCO1O 1D 1A 1C 1B DC BA1A1D 1C1BOCBAD5一、选择题1. C.2. C.3. C4. D5. A 6. A 7. B8. A9. B10. B11. C12. D13. A14. C15. B二、填空题16. ③,④ 17. 平行、相交或异面.18.10. 19. 30 . 20. 6021. ①② 三、解答题22. (Ⅰ)∵直三棱柱111ABC A B C -底面三边长345AC BC AB ===,,,AC BC ⊥∴,且1BC 在平面ABC 内的射影为BC ,1AC BC ⊥∴.(Ⅱ)设1CB 与1C B 的交点为E ,连结DE .D ∵是AB 的中点,E 是1BC 的中点,1DE AC ∴∥. DE ⊂∵平面1CDB ,1AC ⊄平面1CDB ,1AC ∴∥平面1CDB .(Ⅲ)1DE AC ∵∥,CED ∠∴为1AC 与1B C 所成的角.在CED △中,11522ED AC ==,1522CD AB ==,112CE CB ==8cos 522CED ==∴ ∴异面直线1AC 与1B C23. (Ⅰ)在直四棱柱1111ABCD A B C D -中,1A A ⊥∵底面ABCD ,AC ∴是1AC 在平面ABCD 上的射影.BD AC ⊥∵,1BD AC ⊥∴. (Ⅱ)连结1111A E C E AC ,,.与(Ⅰ)同理可证1BD A E⊥,1BD C E ⊥, 11A EC ∠∴_为二面角11A BD C --的平面角.AD DC ⊥∵,11190A D C ADC ∠=∠= ∴.又112A D AD ==,11D C DC ==,1AA =AC BD ⊥,11413AC AE EC ===,,∴112A E C E ==,∴在11A EC △中,2221111AC A E C E =+61190A EC ∠= ∴,即二面角11A BD C --的大小为90 .(Ⅲ)过B 作BF AD ∥交AC 于F ,连结1FC ,则1C BF ∠就是AD 与1BC 所成的角.21AB AD BD AC AE ==⊥=,,∵,212BF EF FC BC DC ====,,,∴,11FC BC ==∴.在1BFC △中,1cos C BF ==1C BF ∠=∴ 即异面直线AD 与1BC所成的角的大小为 24. 证明:如图,AB CD ∥, AB CD ∴,确定一个平面β.BC AD ββ∴⊂⊂,.又E F G H ,,,分别在AB BC CD AD ,,,上,E F G H β∴∈,,,;又E F G H α∈,,,.E F G H ∴,,,必在平面αβ,的交线上E F G H ∴,,,四点共线.25. 证明:如图,假设EF 和AD 在同1平面α内, 则A D E F α∈,,,; 又A E AB AB B αα∈∴⊂∴∈,,,,同理C α∈ 故A B C D α∈,,,,这与ABCD 是空间四边形矛盾. EF ∴和AD 为异面直线.26. (1)解:连结PD ,PA α ⊥,AD l ⊥, PD l ∴⊥, PDA ∴∠是二面角l αβ--的平面角.由PA AD =,有45PAD ∠=,故二面角l αβ--的大小为45 .(2)证明:取CD 的中点为E ,连ME ,NE ,则EM AD ∥,EN PD ∥, CD ME ∴⊥,CD NE ⊥,CD ∴⊥平面MNE ,又AB CD ∥, AB ∴⊥平面MNE ,故AB MN ⊥,(3)解:取PD 中点为Q ,连QA ,QN ,则12QN CD∥,而12AM CD∥, QNMA ∴是平行四边形,AQ MN ∴∥,7PAQ ∴∠是异面直线PA 与MN 所成的角.PAD △为等腰直角三角形,AQ 为斜边上的中线, 45PAQ ∴∠= ,即PA 与MN 所成的角的大小为45 .27. 证明:如图,连结BD . EH ∵是ABD △的中位线,12EH BD ∴ ∥ 又23CF CG CB CD ==∵, 23FG BD ∴ ∥.EH FC ∴∥且EH FG <. ∴四边形EFGH 是一个梯形. 设EF 交GH 于P 点,EF ⊂∵平面ABC ,GH ⊂平面ACD , P ∴是平面ABC 与平面ACD 的公共点.∴点P 在两平面的交线AC 上,即EF ,GH ,CA 三线交于一点.28. (1)证明:连结AN 和BN ,在PAC △和CBP △中,PA BC =,AC PB =,PC PC =,PAC CBP ∴△≌△.N ∵是公共边PC 的中点,AN BN ∴=. M ∵是AB 的中点, NM AB ∴⊥.同理MN PC ⊥.故MN 是AB 和PC 的公垂线.(2)解:取PB 的中点D ,连结DM ,DN ,于是DM PA ∥,且1122DM PA m ==,同理DN BC ∥,且1122DN BC m ==,于是MDN ∠是异面直线PA ,BC 所成的角, 90MDC ∴∠=.从而MN =,即AB 和PC.29. 证明:1111ABCD A B C D -∵为正方体,1AA AB ∴⊥,1AA AD ⊥.AB AD A = ∵,1AA ∴⊥平面AC .11AA BB ∥∵,11BB CC ∥,11AA CC ∴ ∥.∴四边形11AA C C 为平行四边形. O ∵,1O 分别为AC ,11A C 的中点,11OO AA ∴∥,1OO ⊥平面AC .30. 解:连结1BC 交1B C 于O ,连结1AO ,在正方体1111ABCD A B C D -中各个面为正方形,设其棱长为a .11111111111111A B B C A B BCC B A B B B BC BCC B ⎫⎫⇒⎬⎪⎬⎭⎪⊂⎭平面平面⊥⊥⊥11111111A A B BC BC B CD BC B C ⇒⎫⇒⎬⎭平面⊥⊥ ⊥81AO ⇒为1A B 在平面11A B CD 内的射影 1B AO ⇒∠为1A B 与平面11A B CD 所成的角.111111111Rt 21sin 23030.BAO A B OB a OB BAO A B BAO BAO A B A B CD ⎫==⎪⎪⎪⎫⇒==⎪⎪⇒=⎬⎬⎪⎪∠⎭⎪⎪⇒⎪⎭在△中,, 为锐角与平面所成的角为。
高一数学必修第二册第八章《立体几何初步》单元练习题卷3(共22题)一、选择题(共10题)1.在空间四边形ABCD的边AB,BC,CD,DA上分别取E,F,G,H四点,若EF与HG交于点M,那么( )A.M一定在直线AC上B.M一定在直线BD上C.M可能在直线AC上,也可能在直线BD上D.M既不在直线AC上,也不在直线BD上2.关于“斜二测”画图法,下列说法不正确的是( )A.平行直线的斜二测图仍是平行直线B.斜二测图中,互相平行的任意两条线段的长度之比保持原比例不变C.正三角形的直观图一定为等腰三角形D.在画直观图时,由于坐标轴的选取不同,所得的直观图可能不同3.已知直线m,n与平面α,β,m⊥α,n⊥β,若α⊥β,则m,n的位置关系是( )A.平行B.垂直C.相交D.异面4.如图所示,正方体ABCD−A1B1C1D1的棱长为2,动点E,F在棱A1B1上,动点P,Q分别在棱AD,CD上,若EF=1,A1E=x,DQ=y,DP=z(x,y,z大于零),则四面体PQEF的体积( )A.与x,y,z都有关B.与x有关,与y,z无关C.与y有关,与x,z无关D.与z有关,与x,y无关5.在正方体中ABCD−A1B1C1D1中,E为棱CD的中点,则( )A.A1E⊥DC1B.A1E⊥BD C.A1E⊥BC1D.A1E⊥AC6.一个四面体的所有棱长都为√2,四个顶点在同一球面上,则此球的表面积为( )A.3πB.4πC.3√3πD.6π7.正方体的内切球与其外接球的体积之比为( )A.1:√3B.1:3C.1:3√3D.1:98.《九章算术》中,称底面为矩形且有一侧棱垂直于底面的四棱锥为阳马,如图,某阳马的三视图如图所示,则该阳马的最长棱的长度为( )A.√2B.√3C.2D.2√29.已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的体积取最大值时,其高的值为( )A.3√3B.√3C.2√6D.2√310.若一个圆锥的轴截面(过圆锥顶点和底面直径的截面)是等边三角形,其面积为√3,则这个圆锥的体积为( )A.3πB.√3π3C.√3πD.√3π2二、填空题(共6题)11.已知正方体ABCD−A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M−EFGH的体积为.12.如图,在正三棱柱ABC−A1B1C1中,已知AB=AA1=3,点P在棱CC1上,则三棱锥P−ABA1的体积为.13.正六棱柱的底面边长为4,高为6,则它的外接球(正六棱柱的顶点都在此球面上)的表面积为.14.正△ABC的斜二测画法的水平放置图形的直观图,若△AʹBʹCʹ的面积为√3,那么△ABC的面积为.15.正方体ABCD−A1B1C1D1中,若过A,C,B1三点的平面与底面A1B1C1D1的交线为l,则l与A1C1的位置关系是.16.如图所示,长方形ABCD−A1B1C1D1的体积为24,E为线段B1C上的一点,则棱锥A−DED1的体积为.三、解答题(共6题)17.如图,在正方体ABCD−A1B1C1D1中,P,Q分别是平面AA1D1D,平面A1B1C1D1的中心,证明:(1) D1Q∥平面C1DB;(2) 平面D1PQ∥平面C1DB.18.如图,在四棱锥P−ABCD中,底面ABCD是菱形,PB=PD.(1) 求证:平面APC⊥底面BPD;(2) 若PB⊥PD,∠DAB=60∘,AP=AB=2,求二面角A−PD−C的余弦值.19.如图,在△AOB中,∠AOB=90∘,AO=2,OB=1.△AOC可以通过△AOB以直线AO为轴旋转得到,且OB⊥OC,动点D在斜边AB上.(1) 求证:平面COD⊥平面AOB;(2) 当D为AB的中点时,求二面角B−CD−O的余弦值;(3) 求CD与平面AOB所成的角中最大角的正弦值.20.如图,在三棱柱ABC−A1B1C1中,四边形A1C1CA为菱形,∠B1A1A=∠C1A1A=60∘,AC=4,AB=2,平面ACC1A1⊥平面ABB1A1,Q在线段AC上移动,P为棱AA1的中点.(1) 若Q为线段AC的中点,H为BQ的中点,延长AH交BC于D,求证:AD∥平面B1PQ;(2) 若二面角B1−PQ−C1的平面角的余弦值为√13,求点P到平面BQB1的距离.1321.如图,AE⊥面ABCD,ABCD是正方形,AE=AB=2,F为BE的中点.求证:DE∥面ACF.22.阅读下面题目及其证明过程,在横线处填写适当的内容.如图,长方体ABCD−A1B1C1D1的底面ABCD是边长为1的正方形,点E,F分别为线段BD1,CC1的中点.(Ⅰ)求证:EF∥平面ABCD;(Ⅰ)当DD1=√2时,求证:DE⊥平面BFD1;证明:(Ⅰ)如图,连接AC,BD,设AC∩BD=O,连接OE.因为长方体ABCD−A1B1C1D1的底面ABCD是边长为1的正方形,所以BO=OD,又因为BE=ED1,DD1,所以OE∥DD1,OE=12因为F为线段CC1中点,DD1,所以CF∥DD1,CF=12所以CF∥OE,CF=OE.所以四边形OCFE为平行四边形.所以EF∥OC.又因为EF⊄平面ABCD,OC⊂平面ABCD,所以EF∥平面ABCD.(Ⅰ)因为F为线段CC1中点,所以BF=D1F,所以△D1FB是等腰三角形.因为E为BD1的中点,所以EF⊥BD1.因为BD⊥OC,EF∥OC,所以EF⊥BD.因为BD∩BD1=B,所以①.因为DE⊂平面BDD1,所以②.因为DD1=√2,所以DD1=BD,所以③.因为EF∩D1B=E,所以DE⊥平面BFD1.在上述证明过程中,(Ⅰ)的证明思路是:先证明“④”,再证明“⑤”.答案一、选择题(共10题)1. 【答案】A【解析】如图,因为EF∩HG=M,所以M∈EF,M∈HG,又EF⊂平面ABC,HG⊂平面ADC,故M∈平面ABC,M∈平面ADC,又平面ABC∩平面ADC=AC,所以M∈AC.故选A.【知识点】平面的概念与基本性质2. 【答案】C【解析】对于A,平行直线的斜二测图仍是平行直线,A正确;对于B,斜二测图中,互相平行的任意两条线段的长度之比保持原比例不变,B正确;对于C,正三角形的直观图不一定为等腰三角形,如图所示,所以C错误;对于D,画直观图时,由于坐标轴的选取不同,所得的直观图可能不同,D正确.【知识点】直观图3. 【答案】B【解析】m,n有可能相交或异面,但必定垂直.故答案选B.【知识点】直线与直线的位置关系4. 【答案】D【解析】设P点到平面A1B1CD的距离为ℎ,因为A1B1∥DC,所以Q到EF的距离为定值2√2,又因为EF=1,所以S△QEF=12×1×2√2=√2,因为V四面体PQEF =V三棱锥P−QEF=13S△QEF⋅ℎ=√23ℎ,即四面体的体积只与点P到平面A1B1CD的距离无关,所以四面体的体积与z有关,与x,y无关.【知识点】棱锥的表面积与体积5. 【答案】C【解析】画出正方体ABCD−A1B1C1D1,如图所示.对于选项A,连D1E,若A1E⊥DC1,又DC1⊥A1D1,所以DC1平面A1ED1,所以可得DC1⊥D1E,显然不成立,所以A不正确.对于选项B,连AE,若A1E⊥BD,又BD⊥AA1,所以DB⊥平面A1AE,故得BD⊥AE,显然不成立,所以B不正确.对于选项C,连AD1,则AD1∥BC1.连A1D,则得AD1⊥A1D,AD1⊥ED,所以AD1⊥平面A1DE,从而得AD1⊥A1E,所以A1E⊥BC1.所以C正确.对于选项D,连AE,若A1E⊥AC,又AC⊥AA1,所以AC⊥平面A1AE,故得AC⊥AE,显然不成立,所以D不正确.【知识点】空间中直线与直线的垂直6. 【答案】A【解析】联想只有正方体中有这么多相等的线段,所以构造一个正方体,则正方体的面对角线即为四面体的棱长,求得正方体的棱长为1,体对角线为√3,从而外接球的直径也为√3,所以此球的表面积为3π.【知识点】组合体、球的表面积与体积7. 【答案】C【解析】设正方体的棱长为a,则其内切球的半径为a2,所以V内=43π(a2)3−πa36,正方体的外接球的半径为√32a,所以V外=43π(√32a)3=3√3πa36,所以V内:V外=1:3√3.【知识点】球的表面积与体积8. 【答案】B【解析】根据题设条件可知三视图还原成的几何体为四棱锥,如图所示,其中PD=1,底面ABCD是边长为1的正方形,易知PB=√3,PA=PC=√2,故最长棱的长度为√3.【知识点】三视图、棱锥的结构特征9. 【答案】D【知识点】棱柱的表面积与体积10. 【答案】B【解析】设圆锥底面圆的半径为r,圆锥的高为ℎ,体积为V,则ℎ=√3r.因为12×2r×√3r=√3r2=√3,所以r=1,所以V=13πr2h=√33πr3=√3π3.【知识点】圆锥的表面积与体积二、填空题(共6题)11. 【答案】112【解析】连接AD1,CD1,B1A,B1C,AC,因为E,H分别为AD1,CD1的中点,所以EH∥AC,EH=12AC,因为 F ,G 分别为 B 1A ,B 1C 的中点, 所以 FG ∥AC ,FG =12AC ,所以 EH ∥FG ,EH =FG , 所以四边形 EHGF 为平行四边形, 又 EG =HF ,EH =HG , 所以四边形 EHGF 为正方形, 又点 M 到平面 EHGF 的距离为 12, 所以四棱锥 M −EFGH 的体积为 13×(√22)2×12=112.【知识点】棱锥的表面积与体积12. 【答案】9√34【解析】因为在正三棱柱 ABC −A 1B 1C 1 中,AB =AA 1=3,点 P 在棱 CC 1 上, 所以点 P 到平面 ABA 1 的距离即为 △ABC 的高, 即为 ℎ=√32−(32)2=3√32,S △ABA 1=12×3×3=92,三棱锥 P −ABA 1 的体积为:V =13×S △ABA 1×ℎ=13×92×3√32=9√34.【知识点】棱锥的表面积与体积13. 【答案】 100π【解析】依题意,该正六棱柱的外接球的球心应是上、下底面中心连线的中点, 所以其半径等于 √42+(62)2=5,其表面积等于 4π×25=100π.【知识点】球的表面积与体积14. 【答案】 2√6【知识点】直观图15. 【答案】 A 1C 1∥l【解析】因为 平面ABCD ∥平面A 1B 1C 1D 1,AC ⊂平面ABCD , 所以 AC ∥平面A 1B 1C 1D 1,又平面 ACB 1 经过直线 AC 与平面 A 1B 1C 1D 1 相交于直线 l , 所以 AC ∥l , 又因为 A 1C 1∥AC , 所以 A 1C 1∥l .【知识点】直线与平面平行关系的性质、直线与平面平行关系的判定16. 【答案】4【解析】设AB=a,AD=b,AA1=c,则长方体的体积V ABCD−A1B1C1D1=abc=24,三棱锥A−DED1的体积V A−DED1=V E−ADD1=13S△ADD1⋅AB=13×12×AD×DD1×AB=16×bc⋅a=16×24=4.【知识点】棱锥的表面积与体积三、解答题(共6题)17. 【答案】(1) 由题可知D1Q∥DB.因为D1Q⊄平面C1DB,DB⊂平面C1DB,所以D1Q∥平面C1DB.(2) 由题可知D1P∥C1B.因为D1P⊄平面C1DB,C1B⊂平面C1DB,所以D1P∥平面C1DB.由(1)知,D1Q∥平面C1DB,又D1Q∩D1P=D1,所以平面D1PQ∥平面C1DB.【知识点】平面与平面平行关系的判定、直线与平面平行关系的判定18. 【答案】(1) 记AC∩BD=O,连接PO,因为底面 ABCD 是菱形,所以 BD ⊥AC ,O 是 BD ,AC 的中点, 因为 PB =PD , 所以 PO ⊥BD , 因为 AC ∩PO =O , 所以 BD ⊥平面APC , 又因为 BD ⊂平面BPD ,所以 平面APC ⊥平面BPD .(2) 如图,以 O 为原点,OA ,OB ,OP 所在直线分别为 x ,y ,z 轴建立如图所示的空间坐标系, 则 A(√3,0,0),D (0,−1,0),P (0,0,1),C(−√3,0,0,),所以 DA ⃗⃗⃗⃗⃗ =(√3,1,0),DP ⃗⃗⃗⃗⃗ =(0,1,1),DC ⃗⃗⃗⃗⃗ =(−√3,1,0), 设 n 1⃗⃗⃗⃗ =(x 1,y 1,z 1) 是平面 APD 的法向量,则 {DA ⃗⃗⃗⃗⃗ ⋅n 1⃗⃗⃗⃗ =0,DP ⃗⃗⃗⃗⃗ ⋅n 1⃗⃗⃗⃗ =0⇒{√3x 1+y 1=0,y 1+z 1=0, 令 y 1=−√3,得 n 1⃗⃗⃗⃗ =(1,−√3,√3),同理可得平面 PCD 的法向量 n 2⃗⃗⃗⃗ =(1,√3,−√3),所以 cos ⟨n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ ⟩=n1⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗ ∣∣n 1⃗⃗⃗⃗⃗ ∣∣⋅∣∣n2⃗⃗⃗⃗⃗ ∣∣=√3)×√3+(−√3)×√3√7×√7=−57,由图形可知二面角 A −PD −C 为钝二面角, 所以二面角 A −PD −C 的余弦值为 −57.【知识点】利用向量的坐标运算解决立体几何问题、平面与平面垂直关系的判定、二面角19. 【答案】(1) 在 △AOC 中,AO ⊥OC , 因为 OB ⊥OC ,且 AO ∩OB =O , 所以 OC ⊥平面AOB , 又 OC ⊂平面COD ,所以 平面COD ⊥平面AOB .(2) 如图建立空间直角坐标系 O −xyz , 因为 D 为 AB 的中点,所以 O (0,0,0),A (0,0,2),B (0,1,0),C (1,0,0),D (0,12,1),所以 OC ⃗⃗⃗⃗⃗ =(1,0,0),OD ⃗⃗⃗⃗⃗⃗ =(0,12,1),BC ⃗⃗⃗⃗⃗ =(1,−1,0),BD⃗⃗⃗⃗⃗⃗ =(0,−12,1), 设 n 1⃗⃗⃗⃗ =(x 1,y 1,z 1) 为平面 OCD 的法向量,所以 {n 1⃗⃗⃗⃗ ⋅OC ⃗⃗⃗⃗⃗ =0,n 1⃗⃗⃗⃗ ⋅OD ⃗⃗⃗⃗⃗⃗ =0, 即 {x 1=0,12y 1+z 1=0, 令 z 1=1,则 y 1=−2,所以 n 1⃗⃗⃗⃗ =(0,−2,1) 是平面 BCD 的一个法向量, 设 n 2⃗⃗⃗⃗ =(x 2,y 2,z 2) 为平面 OCD 的法向量, 所以 {n 2⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =0,n 2⃗⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =0, 即 {x 2−y 2=0,−12y 2+z 2=0, 令 z 2=1,则 x 2=2,y 2=2,所以 n 2⃗⃗⃗⃗ =(2,2,1) 是平面 OCD 的一个法向量,所以 cos 〈n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ 〉=n 1⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗ ∣∣n 1⃗⃗⃗⃗⃗ ∣∣⋅∣∣n 2⃗⃗⃗⃗⃗ ∣∣=√02+(−2)2+12⋅√22+22+12=−√55, 所以二面角 B −CD −O 的余弦值为 √55. (3) 解法一:因为 OC ⊥平面AOB ,所以 ∠CDO 为 CD 与平面 AOB 所成的角, 因为 OC =1,所以点 O 到直线 AB 的距离最小时,∠CDO 的正弦值最大, 即当 OD ⊥AB 时,∠CDO 的正弦值最大, 此时 OD =2√55, 所以 CD =3√55, 所以 sin∠CDO =√53. 解法二:设 AD⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ (λ∈[0,1]), 所以 D (0,λ,2−2λ).CD ⃗⃗⃗⃗⃗ =(−1,λ,2−2λ),平面 AOB 的法向量 n ⃗ =(1,0,0),所以 sinθ=∣∣n ⃗ ⋅CD⃗⃗⃗⃗⃗ ∣∣∣∣n ⃗ ∣∣∣∣CD⃗⃗⃗⃗⃗ ∣∣=√5λ2−8λ+5=√5(λ−45)2+95,所以当 λ=45 时,CD 与平面 AOB 所成的角最大,sinθ=√53. 【知识点】二面角、平面与平面垂直关系的判定、线面角20. 【答案】(1) 如图,取 BB 1 的中点 E ,连接 AE ,EH . 因为 H 为 BQ 的中点, 所以 EH ∥B 1Q .在平行四边形 AA 1B 1B 中,P ,E 分别为 AA 1,BB 1 的中点, 所以 AE ∥PB 1.又 EH ∩AE =E ,PB 1∩B 1Q =B 1, 所以 平面EHA ∥平面B 1QP . 因为 AD ⊂平面EHA , 所以 AD ∥平面B 1PQ .(2) 如图,连接 PC 1,AC 1,因为四边形 A 1C 1CA 为菱形,∠C 1A 1A =60∘, 所以 AA 1=AC 1=A 1C 1=4, 即 △AC 1A 1 为等边三角形. 因为 P 为 AA 1 的中点, 所以 PC 1⊥AA 1.因为 平面ACC 1A 1⊥平面ABB 1A 1,平面ACC 1A 1∩平面ABB 1A 1=AA 1,PC 1⊂平面ACC 1A 1, 所以 PC 1⊥平面ABB 1A 1.在平面 ABB 1A 1 内过点 P 作 PR ⊥AA 1 交 BB 1 于 R .以 PR ,PA 1,PC 1 所在直线分别为 x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系 Pxyz ,则 P (0,0,0),A 1(0,2,0),A (0,−2,0),C 1(0,0,2√3),C(0,−4,2√3).设 AQ ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ =λ(0,−2,2√3),λ∈(0,1](当 λ=0 时,平面 B 1PQ 即平面 ABB 1A 1,不符合题意),所以 Q(0,−2(λ+1),2√3λ). 所以 PQ⃗⃗⃗⃗⃗ =(0,−2(λ+1),2√3λ). 因为 A 1B 1=AB =2,∠B 1A 1A =60∘, 所以 B 1(√3,1,0), 所以 PB 1⃗⃗⃗⃗⃗⃗⃗ =(√3,1,0).设平面 PQB 1 的法向量为 m ⃗⃗ =(x,y,z ),则 {m ⃗⃗ ⋅PQ⃗⃗⃗⃗⃗ =0⃗ ,m ⃗⃗ ⋅PB 1⃗⃗⃗⃗⃗⃗⃗ =0⃗ ,所以 {−2(λ+1)y +2√3λz =0,√3x +y =0,令 x =1, 则 y =−√3,z =−λ+1λ,所以平面 PQB 1 的一个法向量为 m ⃗⃗ =(1,−√3,−λ+1λ).设平面 AA 1C 1C 的法向量为 n ⃗ =(1,0,0), 二面角 B 1−PQ −C 1 的平面角为 θ, 则cosθ=∣m⃗⃗⃗ ⋅n ⃗ ∣∣m⃗⃗⃗ ∣∣n ⃗ ∣=√1+3+(−λ)2=√1313.所以 λ=12 或 λ=−14(舍), 所以 AQ⃗⃗⃗⃗⃗ =12AC ⃗⃗⃗⃗⃗ , 所以 Q(0,−3,√3), 又 B(√3,−3,0),所以 QB⃗⃗⃗⃗⃗ =(√3,0,−√3), 所以 ∣QB ⃗⃗⃗⃗⃗ ∣=√3+3=√6. 又 ∣B 1Q ⃗⃗⃗⃗⃗⃗⃗ ∣=√22, 所以 BQ 2+BB 12=B 1Q 2, 所以 ∠QBB 1=90∘.连接 BP ,设点 P 到平面 BQB 1 的距离为 ℎ, 则 13×12×4×√3×√3=13×12×4×√6⋅ℎ.所以 ℎ=√62, 即点 P 到平面 BQB 1 的距离为√62. 【知识点】直线与平面平行关系的判定、利用向量的坐标运算解决立体几何问题、二面角21. 【答案】连接 BD 交 AC 于 G ,连接 FG .因为 F ,G 分别为 BE ,BD 的中点, 所以 FG ∥DE ,因为 FG ⫋平面ACF ,DE ⊄面ACF , 所以 DE ∥面ACF .【知识点】直线与平面平行关系的判定22. 【答案】① EF ⊥平面BDD 1② EF ⊥DE③ DE ⊥BD 1 ④线线平行 ⑤线面平行【知识点】直线与平面垂直关系的判定、直线与直线的位置关系、直线与平面平行关系的判定、直线与平面垂直关系的性质。
1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年上海市松江区高中数学人教A 版 必修二第八章 立体几何章节测试(2)姓名:____________ 班级:____________学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)以上均有可能1. 如图,在四棱锥 中, 分别为 上的点,且 平面 ,则( )A. B. C. D. 平面BDE 平面平面平面三棱锥的外接球体积为2. 在正方体中,O 为底面A 1B 1C 1D 1的中心,E 为的中点,若该正方体的棱长为2,则下列结论正确的是( ).A.B. C. D.4 5 673.如图,一个三棱柱形容器中盛有水,且侧棱AA 1=8.若侧面AA 1B 1B 水平放置时,液面恰好过AC ,BC ,A 1C 1 , B 1C 1的中点.则当底面ABC 水平放置时,液面高为( )A. B. C. D. 若 ,则 若 ,则4. 设是两条不同直线, 是两个不同平面, ,下列说法正确的是( )A. B.若,则若,则C. D. 36πcm 264πcm 280πcm 2100πcm 25. 如图,有一个水平放置的透明无盖的正三棱柱容器,其中侧棱长为8cm ,底面边长为12cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时,测得水深为6cm ,如果不计容器的厚度,则球的表面积为()A. B. C. D. AG ⊥△EFH 所在平面AH ⊥△EFH 所在平面HF ⊥△AEF 所在平面HG ⊥△AEF 所在平面6. 如图,在正方形ABCD 中,E 、F 分别是BC 、CD 的中点,G 是EF 的中点,现在沿AE 、AF 及EF 把这个正方形折成一个空间图形,使B 、C 、D 三点重合,重合后的点记为H ,那么,在这个空间图形中必有()A. B. C. D. 12347. 直线m ,n 均不在平面α,β内,给出下列命题:①若m ∥n ,n ∥α,则m ∥α;②若m ∥β,α∥β,则m ∥α;③若m ⊥n ,n ⊥α,则m ∥α;④若m ⊥β,α⊥β,则m ∥α;则其中正确命题的个数是( )A. B. C. D. 必定只有三点共线必有三点不共线至少有三点共线不可能有三点共线8. 已知空间四点A 、B 、C 、D 确定惟一一个平面,那么这四个点中( )A. B. C. D. 平面平面平面平面三棱锥体积为定值9. 如图,在直三棱柱中, ,, 设 ,分别是棱上的两个动点,且满足, 则下列结论错误的是()A. B. C. D.10. 已知正△ABC 的边长为2,那么用斜二测画法得到的△ABC 的直观图△的面积为( )A. B. C. D.若 ,则 若 ,则若 ,则 若 ,则11. 已知是相异两平面, 是相异两直线,则下列命题中错误的是( )A. B. C. D. 平面 三棱锥 的体积为直线 与平面 所成角的正切值为 异面直线 与 所成角的余弦值为12. 如图,在边长为2的正方形中, , 分别为 , 的中点, 为 的中点,沿 , , 将正方形折起,使 , , 重合于点 ,在构成的三棱锥 中,下列结论错误的是( )A. B. C. D. 13. 已知四面体ABCD 的底面BCD 是边长为2的等边三角形,AB=AC=3,则当棱AD 长为 时,四面体ABCD 的体积最大.14. 在棱长为1的正方体中, 为线段 的中点, 是棱 上的动点,若点 为线段 上的动点,则 的最小值为 .15. 棱长为12的正四面体ABCD 与正三棱锥E—BCD 的底面重合,若由它们构成的多面体ABCDE 的顶点均在一球的球面上,则正三楼锥E—BCD 的体积为 ,该正三棱锥内切球的半径为 .16. 某几何体由圆锥挖去一个正三棱柱而得,且正三棱柱的上底面与圆锥内接,下底面在圆锥的底面上,已知该圆锥的底面半径 ,正三棱柱的底面棱长 ,且圆锥的侧面展开图的圆心角为 ,则该几何体的体积为 .17. 如图所示,在直三棱柱,其中P为棱上的任意一点,设平面PAB与平面的交线为QR.(1) 求证:AB∥QR;(2) 若P为棱上的中点,求几何体的体积.18. 如图所示,DC⊥平面BCEF,且四边形ABCD为矩形,四边形BCEF为直角梯形,BF∥CE,BC⊥CE,DC=CE=4,BC=BF =2.(1) 求证:AF∥平面CDE;(2) 求平面AEF与平面ABCD所成锐二面角的余弦值.19. 在四棱锥中,底面是菱形,且,若平面与平面的交线为.求证:.20. 如图,等腰三角形PAD所在平面与菱形ABCD所在平面互相垂直,已知点E,F,M,N分别为边BA,BC,AD,AP的中点.(1) 求证:AC⊥PE;(2) 求证:PF∥平面BNM.21. 如图,已知四棱锥的侧棱底面,且底面是直角梯形,,,,,,点在棱上,且 .(1) 证明:平面 .(2) 求直线与平面所成角的正弦值.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.(1)(2)(1)(2)19.20.(1)(2)21.(1)(2)。
一、选择题1.已知直三棱柱111ABC A B C -中,1AA AB AC ==,AB AC ⊥,则异面直线1AB 和1BC 所成的角的大小是( ).A .π6B .π4C .π3D .π22.如图,P 是正方体1111ABCD A B C D -中1BC 上的动点,下列命题:①1AP B C ⊥;②BP 与1CD 所成的角是60°;③1P AD C V -为定值;④1//B P 平面1D AC ;⑤二面角PAB C 的平面角为45°. 其中正确命题的个数有( ) A .2个 B .3个 C .4个 D .5个3.如图所示,AB 是⊙O 的直径,VA 垂直于⊙O 所在的平面,点C 是圆周上不同于A ,B 的任意一点,M ,N 分别为VA ,VC 的中点,则下列结论正确的是( )A .MN //ABB .MN 与BC 所成的角为45° C .OC ⊥平面VACD .平面VAC ⊥平面VBC 4.已知l ,m 是两条不同的直线,α是一个平面,且//l α,则下列选项正确的是( )A .若//l m ,则//m αB .若//m α,则//l mC .若l m ⊥,则m α⊥D .若m α⊥,则l m ⊥5.如图,已知正方体1111ABCD A B C D -,Q 为棱1AA 的中点,P 为棱1CC 的动点,设直线m 为平面BDP 与平面11B D P 的交线,直线n 为平面ABCD 与平面11B D Q 的交线,下列结论中错误的是( )A .//m 平面11B D QB .平面PBD 与平面11B D P 不垂直C .平面PBD 与平面11B D Q 可能平行 D .直线m 与直线n 可能不平行6.如图,在底面边长为4,侧棱长为6的正四棱锥P ABCD -中,E 为侧棱PD 的中点,则异面直线PB 与CE 所成角的余弦值是( )A 34B 234C 517D 317 7.一个透明封闭的正四面体容器中,恰好盛有该容器一半容积的水,任意转动这个正四面体,则水面在容器中的形状可能是:①正三角形②直角三形③正方形⑤梯形,其中正确的个数有( )A .1个B .2个C .3个D .4个8.在三棱锥P ABC -中,AB BC ⊥,P 在底面ABC 上的投影为AC 的中点D ,1DP DC ==.有下列结论:①三棱锥P ABC -的三条侧棱长均相等;②PAB ∠的取值范围是,42ππ⎛⎫ ⎪⎝⎭; ③若三棱锥的四个顶点都在球O 的表面上,则球O 的体积为23π; ④若AB BC =,E 是线段PC 上一动点,则DE BE +的最小值为622.其中正确结论的个数是( )A .1B .2C .3D .49.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=8,AB =3,AD =8,点M 是棱AD 的中点,点N 是棱AA 1的中点,P 是侧面四边形ADD 1A 1内一动点(含边界),若C 1P ∥平面CM N ,则线段C 1P 长度的取值范围是( )A .17,5⎡⎤⎣⎦B .[4,5]C .[3,5]D .3,17⎡⎤⎣⎦10.一个几何体的三视图如图所示,则该几何体的表面积为( )A .186+B .206+C .2010+D .1810+ 11.已知m 为一条直线,,αβ为两个不同的平面,则下列说法正确的是( ) A .若//,//m ααβ,则//m βB .若,,m αβα⊥⊥则//m βC .若,//,m ααβ⊥则m β⊥D .若//,,m ααβ⊥则m β⊥12.已知四棱锥的各个顶点都在同一个球的球面上,且侧棱长都相等,高为4,底面是边长为32 )A .75518πB .62516πC .36πD .34π13.设l 是直线,α,β是两个不同的平面,下列命题正确的是( )A .若//l α,//l β,则//αβB .若αβ⊥,//l α,则l β⊥C .若αβ⊥,l α⊥,则//l βD .若//l α,l β⊥,则αβ⊥14.用一个平行于圆锥底面的平面截这个圆锥,截得的圆台上、下底面的面积之比为1:16,截去的圆锥的母线长是3cm ,则圆台的母线长是( )A .9cmB .10cmC .12cmD .15cm二、解答题15.如图所示的四棱锥E -ABCD 中,底面ABCD 为矩形,AE =EB =BC =2,AD ⊥平面ABE ,且CE 上的点F 满足BF ⊥平面ACE .(1)求证:AE ∥平面BFD ;(2)求三棱锥C -AEB 的体积.16.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,PD ⊥面ABCD , 2PD AB ==,,,E F G 分别为,,AB PC PD 的中点.(1)证明:直线/ /EF 平面PAD ;(2)求EF 与平面ABCD 所成角的正弦值.17.如图,在三棱锥V-ABC 中,VC ⊥底面ABC ,AC BC ⊥,D 是棱AB 的中点,且AC BC VC ==.(1)证明:平面VAB ⊥平面VCD ;(2)若22AC =,且棱AB 上有一点E ,使得线VD 与平面VCE 所成角的正弦值为15,试确定点E 的位置,并求三棱锥C-VDE 的体积. 18.在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,90,,60ADP PD AD PDC ∠==∠=,E 为PD 的中点.(1)证明:CE ⊥平面PAD .(2)求三棱锥E ABC -外接球的体积.19.如图,圆柱的轴截面ABCD 是正方形,点E 是底面圆周上异于,A B 的一点,AF DE ⊥,F 是垂足.(1)证明:AF DB ⊥;(2)若2AB =,当三棱锥D ABE -体积最大时,求点C 到平面BDE 的距离. 20.如图,在四棱锥P ABCD -中,底面ABCD 为正方形, PA ⊥底面ABCD ,2AB AP ==,E 为棱PD 的中点.(Ⅰ)求证CD AE ⊥;(Ⅱ)求直线AE 与平面PBD 所成角的正弦值;(Ⅲ)求点A 到平面PBD 的距离.21.如图,AB 是圆O 的直径,CA 垂直圆O 所在的平面,D 是圆周上一点.(1)求证:平面ADC ⊥平面CDB ;(2)若1AC =,12AD =,BD AD =,求二面角A BC D --的余弦值. 22.如图,四面体ABCD 中,点E ,F 分别为线段AC ,AD 的中点,平面EFNM ⋂平面BCD MN =,90CDA CDB ∠=∠=︒,DH AB ⊥,垂足为H .EF MN;(1)求证://(2)求证:平面CDH⊥平面ABC.-中,平面PCD⊥平面ABCD,且PCD是边长为2的23.如图,在四棱锥P ABCD等边三角形,四边形ABCD是矩形,22BC=,M为BC的中点.⊥;(1)证明:AM PM--的大小;(2)求二面角P AM D(3)求点D到平面APM的距离.24.如图所示,正方形ABCD与直角梯形ADEF所在平面互相垂直,,,.∠====90//22ADE AF DE DE DA AF(1)求证:AC⊥平面BDE;(2)求证://AC 平面BEF ;(3)若AC 与BD 相交于点O ,求四面体BOEF 的体积.25.如图,在空间几何体A -BCDE 中,底面BCDE 是梯形,且CD //BE ,CD =2BE =4,∠CDE =60°,△ADE 是边长为2的等边三角形.(1)若F 为AC 的中点,求证:BF //平面ADE ;(2)若AC =4,求证:平面ADE ⊥平面BCDE .26.在斜三棱柱111ABC A B C -中,AB AC ⊥,1B C ⊥平面ABC ,且2AB AC ==,123AA =.(Ⅰ)求证:平面1AB C ⊥平面11ABB A ;(Ⅱ)求直线1BC 与平面11ABB A 所成角的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】连结1A B ,可证1A B ⊥平面11A BC ,从而可到异面直线1AB 和1BC 所成的角为直角,故可得正确的选项.【详解】连结1A B ,1AA ⊥面,ABC 平面111//A B C 面ABC ,1AA ∴⊥平面111A B C11A C ⊂平面111111,A B C AA AC ∴⊥ ABC 与111A B C △是全等三角形,AB AC ⊥1111A B A C ∴⊥111111,A B AA A AC ⋂=∴⊥平面11AA B B又1AB ⊂平面11AA B B ,111AC AB ∴⊥矩形11AA B B 中,1AA AB =∴四边形11AA B B 为正方形,可得11A B AB ⊥11111A B AC A AB ⋂=∴⊥,平面11A BC 结合1BC ⊂平面11A BC ,可得11AB BC ⊥,即异面直线1AB 与1BC 所成角为2π 故选:D【点睛】在求异面直线所成角时可以将异面直线通过平行线转化到共面直线,然后构造三角形,求得直线夹角.本题通过补全图形,判定线面的垂直关系,得证线线垂直关系,求得异面直线夹角为2π. 2.C解析:C【详解】①在正方体中,1111,,AB B C BC B C AB BC B ⊥⊥=,所以1B C ⊥平面11,ABC D AP ⊂平面11ABC D ,从而1AP B C ⊥正确;②由于11//CD A B ,并且11,BC A B 的夹角是60°,故1BP CD 与所成的角是60°正确;③虽然点P 变化,但P 到1AD 的距离始终不变,故1P AD C V -为定值正确;④若1//B P 平面1D AC ,而1//BC 平面1D AC ,1111,,B P BC P B P BC =⊂平面11BB C C ,所以平面1//D AC 平面11BB C C ,这与平面1D AC 与平面11BB C C 相交矛盾,所以不正确;⑤P 点变化,但二面角PAB C 都是面11ABC D 与面ABCD 所成的角, 故二面角PAB C 的平面角为45°正确;故选:C. 3.D解析:D【分析】由中位线性质,平移异面直线即可判断MN 不与AB 平行,根据异面直线平面角知MN 与BC 所成的角为90°,应用反证知OC 不与平面VAC 垂直,由面面垂直的判定知面VAC ⊥面VBC ,即可知正确选项.【详解】M ,N 分别为VA ,VC 的中点,在△VAC 中有//MN AC ,在面ABC 中AB AC A =,MN 不与AB 平行;AC BC C =,知:MN 与BC 所成的角为90BCA ∠=︒;因为OC ⋂面VAC C =,OC 与平面内交线,AC VC 都不垂直,OC 不与平面VAC 垂直; 由VA ⊥面ABC ,BC ⊂面ABC 即VA BC ⊥,而90BCA ∠=︒知AC BC ⊥,AC VA A ⋂=有BC ⊥面VAC ,又BC ⊂面VBC ,所以面VAC ⊥面VBC ;故选:D【点睛】本题考查了异面直线的位置关系、夹角,以及线面垂直的性质,面面垂直判定的应用,属于基础题.4.D解析:D【分析】根据空间中直线与平面平行与垂直的相关性质依次判断各个选项可得结果.【详解】对于A ,若//l m ,此时//m α或m α⊂,A 错误;对于B ,若//m α,此时l 与m 可能平行、相交或异面,B 错误;对于C ,若l m ⊥,此时m 与平面α可能平行或相交,C 错误;对于D ,若m α⊥,则m 垂直于α内任意直线,必垂直于l 的平行线,则l m ⊥,D 正确. 故选:D .【点睛】本题考查空间中线线关系、线面关系相关命题的辨析,考查学生对于平行与垂直相关性质和定理掌握的熟练程度,属于基础题.5.D解析:D【分析】在正方体1111ABCD A B C D -中,可得11//BD B D ,根据线面平行的判定定理和性质定理可得11////m BD B D ,可判断选项A 结论;分别取11,BD B D 中点1,O O ,连1,OP O P ,则1OPO ∠为平面PBD 与平面11B D P 的平面角,判断1OPO ∠是否为直角,即可判断选项B 的结论;若P 为1CC 中点时,可证平面PBD 与平面11B D Q 平行,即可判断选项C 的结论;根据面面平行的性质定理可得11//n B D ,即可判断选项D 的结论.【详解】在正方体1111ABCD A B C D -中,四边形11BB D D 为矩形,11//,BD B D BD ∴⊂平面PBD ,11B D ⊄平面PBD ,11//B D 平面PBD ,11B D ⊂平面11B D P ,平面BDP 与平面1111////P B D m m B D BD =∴,选项A ,11//,m B D m ⊄平面11B D Q ,11B D ⊂平面11B D Q ,//m 平面11B D Q ,选项A 结论正确;选项B ,分别取11,BD B D 中点1,O O ,连11,,OP O P OO ,设正方体的边长为2,设CP h =,则11BP DP B P D P ====,,PO BD PO m ∴⊥⊥,同理1PO m ⊥,1OPO ∴∠为平面PBD 与平面11B D P 的平面角,在1OO P △中,22222112,2(2),4OP h O P h OO =+=+-=,22211OP O P OO +>,1OPO ∴∠不是直角,所以平面PBD 与平面11B D P 不垂直,选项B 结论正确;选项C ,若P 为1CC 中点,取1BB 中点E 连1,C E QE ,则1//C E BP ,又Q 为棱1AA 的中点,1111//,QE C D QE C D ∴=,四边形11C D QE 为平行四边形,1111//,//,D Q C E D Q BP D Q ∴∴⊄面PBD ,BP ⊂平面PBD ,1//D Q ∴平面PBD ,同理11//B D 平面PBD ,1111111,,B D D Q D B D D Q =⊂平面11B D Q ,∴平面//PBD 平面11B D Q ,选项C 结论正确;选项D ,在正方体中,平面//ABCD 平面1111D C B A ,平面ABCD 平面11B D Q n =,平面1111A B C D 平面1111B Q D B D =11//,//n B D n m ∴∴,选项D 结论不正确.故选:D .【点睛】本题考查空间线、面位置关系,涉及到线线平行、线面平行、面面平行、面面垂直的判定,掌握平行、垂直的判定定理和性质定理是解题的关键,属于中档题.6.D解析:D【分析】首先通过作平行的辅助线确定异面直线PB 与CE 所成角的平面角,在PCD ∆中利用余弦定理求出cos DPC ∠进而求出CE ,再在GFH ∆中利用余弦定理即可得解.【详解】如图,取PA 的中点F ,AB 的中点G ,BC 的中点H ,连接FG ,FH ,GH ,EF ,则//EF CH ,EF CH =,从而四边形EFHC 是平行四边形,则//EC FH , 且EC FH =.因为F 是PA 的中点,G 是AB 的中点,所以FG 为ABP ∆的中位线,所以//FG PB ,则GFH ∠是异面直线PB 与CE 所成的角.由题意可得3FG =,1222HG AC ==. 在PCD ∆中,由余弦定理可得2223636167cos 22669PD PC CD DPC PD PC +-+-∠===⋅⨯⨯, 则2222cos 17CE PC PE PC PE DPC =+-⋅∠=,即17CE =在GFH ∆中,由余弦定理可得222cos 2FG FH GH GFH FG FH +-∠=⋅3172317==⨯⨯. 故选:D【点睛】本题考查异面直线所成的角,余弦定理解三角形,属于中档题.7.C解析:C【分析】根据已知,任意转动这个正四面体,则水面在容器中的形状即为作一截面将正四面体截成体积相等的两部分,根据截面性质作图即可得到答案.【详解】解:根据已知,任意转动这个正四面体,则水面在容器中的形状即为作一截面将正四面体截成体积相等的两部分,根据对称性和截面性质作图如下:观察可知截面不可能出现直角三角形.故选:C【点睛】本题考查的知识点是棱锥的结构特征,本题是一道以截面的概念、性质和截面图形的作法等基础知识为依托,反映现实生活的一道综合能力题.解答本题须具备较强的空间想图、识图、作图能力.8.C解析:C【分析】作出三棱锥P ABC -的图象,逐一判断各命题,即可求解.【详解】作出三棱锥P ABC -的图象,如图所示:.对于①,根据题意可知,PD ⊥平面ABC ,且1DP DC ==,所以PA PB PC ===①正确;对于②,在PAB △中,PA PB ==02AB <<,所以cos 0,22AB PAB PA ⎛∠== ⎝⎭, 即PAB ∠的取值范围是,42ππ⎛⎫⎪⎝⎭,②正确; 对于③,因为DP DA DB DC ===,所以三棱锥P ABC -外接球的球心为D ,半径为1,其体积为43π,③不正确;对于④,当AB BC =时,BD AC ⊥,所以BC =将平面PBC 沿翻折到平面PAC 上,则DE BE +的最小值为线段BD 的长,在展开后的DCB 中,6045105DCB ∠=+=,根据余弦定理可得6BD == ④正确.故选:C .【点睛】 本题主要考查棱锥的结构特征,三棱锥外接球的体积求法,以及通过展开图求线段和的最小值,意在考查学生的直观想象能力和数学运算能力,属于中档题.9.A解析:A【分析】取A 1D 1中点E ,取DD 1中点F ,连接EF 、C 1E 、C 1F ,则平面CM N ∥平面C 1EF ,推导出P ∈线段EF ,当P 与EF 的中点O 重合时,线段C 1P 长度取最小值PO ,当P 与点E 或点F 重合时,线段C 1P 长度取最大值PE 或PF ,由此能求出线段C 1P 长度的取值范围.【详解】解:取A 1D 1中点E ,取DD 1中点F ,连接EF 、C 1E 、C 1F ,则//,EF MN EF ⊄面MNC ,MN ⊂面MNC ,所以//EF 面MNC ,同理1//EC 面MNC ,又1EFEC E =,则平面MNC ∥平面C 1EF ,∵P 是侧面四边形内一动点(含边界),C 1P ∥平面MNC ,∴P ∈线段EF ,∵在长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=8,AB =3,AD =8,则115C E C F ===,所以1EC F ∆为等腰三角形,∴当P 与EF 的中点O 重合时,线段C 1P 长度取最小值PO ,当P 与点E 或点F 重合时,线段C 1P 长度取最大值PE 或PF ,∴1max 115C P C E C F ===,224442EF =+=,()222min 111252217C P C O C E EO ==-=-=.∴线段C 1P 长度的取值范围是17,5⎡⎤⎣⎦.故选:A .【点睛】 本题考查线段的取值范围的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力与运算求解能力,属于中档题.10.B解析:B【分析】根据所给三视图,还原出空间几何体,即可求得几何体的表面积.【详解】根据三视图,还原空间几何体如下图所示:在正方体中,去掉三棱锥111B A C M -,正方体的棱长为2,M 为1BB 的中点,则111111111B MC A B C A B M A C M S S S S S S =---+正方体()()22211116212221222522222=⨯-⨯⨯-⨯⨯-⨯⨯+⨯-20=+故选:B.【点睛】本题考查了空间几何体三视图的简单应用,关键是能够正确还原出空间几何体,属于中档题.11.C解析:C【分析】利用线面平行、面面平行、线面垂直、面面垂直的判定定理和性质定理进行逐项判断即可.【详解】对于选项A: 若//,//m ααβ,则//m β或m β⊂,故选项A 错误;对于选项B: 若,,m αβα⊥⊥则//m β或m β⊂,故选项B 错误;对于选项C: 若,//,m ααβ⊥由面面平行的性质和线面垂直的判定知m β⊥成立, 故选项C 正确;对于选项D: 若//,,m ααβ⊥则//m β或m β⊂或m 与β相交,故选项D 错误; 故选:C【点睛】本题考查利用线面平行、面面平行、线面垂直、面面垂直的判定定理和性质定理,判断空间中直线与平面的位置关系;考查学生的逻辑思维能力和空间想象能力;属于中档题、常考题型.12.B解析:B【分析】如图所示,设四棱锥P ABCD -中,球的半径为R ,底面中心为O '且球心为O ,可得OP ⊥底面ABCD .3AO '=,4PO '=,在Rt AOO ∆'中,利用勾股定理解得R ,即可得出球的表面积.【详解】如图所示,设球的半径为R ,底面中心为O '且球心为O .∵四棱锥P ABCD -中,AB =∴3AO '=.∵4PO '=,∴Rt AOO ∆'中,|4|OO R '=-,222AO AO OO ''=+,∴2223(4)R R =+-,解得258R =, ∴该球的表面积为222562544816R πππ⎛⎫=⨯= ⎪⎝⎭.故选:B .【点睛】本题考查几何体的外接球问题,此类问题常常构造直角三角形利用勾股定理进行求解,属于中等题.13.D解析:D【分析】利用空间线线、线面、面面的位置关系对选项进行逐一判断,即可得到答案.【详解】A.若//l α,//l β,则α与β可能平行,也可能相交,所以不正确.B.若αβ⊥,//l α,则l 与β可能的位置关系有相交、平行或l β⊆,所以不正确.C.若αβ⊥,l α⊥,则可能l β⊆,所以不正确.D.若//l α,l β⊥,由线面平行的性质过l 的平面与α相交于l ',则ll ',又l β⊥.所以l β'⊥,所以有αβ⊥,所以正确.故选:D【点睛】本题考查面面平行、垂直的判断,线面平行和垂直的判断,属于基础题. 14.A解析:A【分析】计算得到12:1:4r r =,根据相似得到3134l =+,计算得到答案. 【详解】圆台上、下底面的面积之比为1:16,则12:1:4r r =.设圆台母线长为l ,根据相似得到:3134l =+,故9l =. 故选:A .【点睛】本题考查了圆台的母线长,意在考查学生的计算能力和空间想象能力. 二、解答题15.(1)证明见解析;(2)43. 【分析】 (1)由ABCD 为矩形,易得G 是AC 的中点,又BF ⊥平面ACE ,BC =BE ,则F 是EC 的中点,从而FG ∥AE ,再利用线面平行的判定定理证明.(2)根据AD ⊥平面ABE ,易得AE ⊥BC ,再由BF ⊥平面ACE ,得到AE ⊥BF ,进而得到AE ⊥平面BCE ,然后由C AEB A BCE V V --=求解.【详解】(1)如图所示:因为底面ABCD 为矩形,所以AC ,BD 的交点G 是AC 的中点,连接FG ,∵BF ⊥平面ACE ,则CE ⊥BF ,而BC =BE , ∴F 是EC 的中点,∴FG ∥AE .又AE ⊄平面BFD ,FG ⊂平面BFD ,∴AE ∥平面BFD .(2)∵AD ⊥平面ABE ,AD ∥BC ,∴BC ⊥平面ABE ,则AE ⊥BC .又BF ⊥平面ACE ,则AE ⊥BF ,∴AE ⊥平面BCE .∴三棱锥C -AEB 的体积11142223323C AEB A BCE BCE V V S AE --⎛⎫==⋅=⨯⨯⨯⨯= ⎪⎝⎭△. 【点睛】 方法点睛:1、判断或证明线面平行的常用方法:(1)利用线面平行的定义,一般用反证法;(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意用符号语言的叙述;(3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β);(4)利用面面平行的性质(α∥β,a ⊄β,a ∥α⇒a ∥β).16.(1)证明见解析;(2)55. 【分析】(1)证明四边形AEFG 为平行四边形即可得直线//EF 平面PAD ;(2)将EF 与平面ABCD 所成角转化为AG 与平面ABCD 所成角,进而得GAD ∠为AG 与平面ABCD 所成角,即可求解.【详解】证明:(1)F 为PC 的中点,//FG CD ∴,且12FG CD =, 又//AE CD ,且12AE CD =, ∴四边形AEFG 为平行四边形,∴//EF AG , 又EF ⊄ 平面PAD ,AG ⊂平面PAD ,//EF ∴平面PAD .(2)由(1)知,//EF AG ,又因为PD ⊥面ABCD ,所以,AG 在平面ABCD 内的射影为AD ,则GAD ∠为AG 与平面ABCD 所成角,2AD PD ==,1GD =,在RT ADG 中,AG ==,sinGD GAD AG ∠===,∴EF 与平面ABCD 所成角的正弦值为5. 【点睛】本题考查线面平行与线面角的求解,考查空间思维能力与运算求解能力,是中档题.常见的线面平行的证明方法有:①通过面面平行得线面平行;②通过线线平行得线面平行,再证明线线平行中,经常用到中位线定理或平行四边形性质;常见的线面角的求解方法有:①几何法——即找出线面角的平面角,再根据几何关系求解;②利用空间向量求解.17.(1)证明见解析;(2)点E 位于线段AD 的中点或线段BD 的中点;3. 【分析】(1)易得CD AB ⊥,再根据VC ⊥底面ABC ,得到 VC AB ⊥,进而AB ⊥平面VCD ,再利用面面垂直的判定定理证明.(2)过点D 在平面ABC 内作DF CE ⊥于F ,DF ⊥平面VCE ,则DVF ∠就是直线VD 与平面VCE 所成的角,在Rt VFD 中,由sin 15DF DVF VD ∠==,求得DF ,然后在Rt DCE 中,求出1DE =,然后由三棱锥C-VDE 的体积为13CDE V S VC =⋅⋅求解. 【详解】(1)因为AC BC =,D 是AB 的中点,所以CD AB ⊥.又VC ⊥底面ABC ,AB平面ABC , 所以VC AB ⊥,而VC CD C ⋂=,所以AB ⊥平面VCD .又AB 平面VAB ,所以平面VAB ⊥平面VCD .(2)过点D 在平面ABC 内作DF CE ⊥于F ,则由题意知DF ⊥平面VCE .,连接VF ,于是DVF ∠就是直线VD 与平面VCE 所成的角.在Rt VFD 中,15DF VD =. 又因为3VD =55DF =. 在Rt DCE 中,1DE =. 故知点E 位于线段AD 的中点或线段BD 的中点,三棱锥C-VDE 的体积为1112221223323CDE S VC ⋅⋅=⨯⨯⨯⨯=. 【点睛】方法点睛:(1)证明平面和平面垂直的方法:①面面垂直的定义;②面面垂直的判定定理(a ⊥β,a ⊂α⇒α⊥β).(2)已知两平面垂直时,一般要用性质定理进行转化,在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.18.(1)证明见解析;(2)823π. 【分析】(1)由已知条件知AD ⊥面DPC ,即有AD CE ⊥,由PDC △为等边三角形有CE DP ⊥,结合线面垂直的判定有CE ⊥平面PAD .(2)由勾股定理可证AEC 为直角三角形,且ABC 为等腰直角三角形,即可知AC 的中点O 为外接球的球心,进而得到半径求球的体积.【详解】(1)由90ADP ∠=知:AD DP ⊥,底面ABCD 是正方形有AD DC ⊥,又DP DC D =,∴AD ⊥面DPC ,而CE ⊂面DPC ,即AD CE ⊥,∵PD AD DC ==,60PDC ∠=,∴PDC △为等边三角形,E 为PD 的中点,故CE DP ⊥,∵DP AD D ⋂=,∴CE ⊥平面PAD .(2)由(1)知:ABC 为等腰直角三角形且2AB BC == ,有22AC =, 在AEC 中3,5CE AE ==,即222AC CE AE =+,故AE CE ⊥,∴由上知:ABC 、AEC 都是以AC 为斜边的直角三角形,由直角三角形斜边中点O 到三顶点距离相等知:OE OC OA OB ===,即O 为三棱锥E ABC -外接球的球心, ∴外接球的半径为22AC =, 所以三棱锥E ABC -外接球的体积为3482(2)33V ππ=⨯=. 【点睛】关键点点睛:(1)由90°及正方形有线面垂直:AD ⊥面DPC ,再由等边三角形的性质和线面垂直的判定证明CE ⊥平面PAD ;(2)由勾股定理说明AEC 是以AC 为斜边的直角三角形,同样ABC 也是AC 为斜边的直角三角形,即可确定三棱锥E ABC -外接球的球心,进而求体积.19.(1)详见解析;(2233【分析】(1)要证明线线垂直,需证明线面垂直,根据题中所给的垂直关系,证明AF ⊥平面DEB ;(2)首先确定点E 的位置,再根据等体积转化求点到平面的距离.【详解】(1)由圆柱性质可知,DA ⊥平面ABE ,EB ⊂平面AEB ,DA EB ∴⊥,AB 是圆柱底面的直径,点E 在圆周上,AE EB ∴⊥,又AE DA A ⋂=,BE ∴⊥平面DAE ,AF ⊂平面DAE ,EB AF ∴⊥,又AF DE ⊥,且EB DE E =,AF ∴⊥平面DEB ,DB ⊂平面DEB ,AF DB ∴⊥;(2)13D AEB AEB V S DA -=⨯⨯,3DA =, 当D AEB V -最大时,即AEB S 最大,即AEB △是等腰直角三角形时,2DA AB ==∵,BE ∴=DE ==,并且点E 到平面ABCD 的距离就是点E 到直线AB 的距离112AB =, 设点C 到平面EBD 的距离为h ,则11112213232C DBE E CBD V V h --==⨯=⨯⨯⨯⨯,解得:h =【点睛】方法点睛:本题重点考查垂直关系,不管证明面面垂直还是证明线面垂直,关键都需转化为证明线线垂直,一般证明线线垂直的方法包含1.矩形,直角三角形等,2.等腰三角形,底边中线,高重合,3.菱形对角线互相垂直,4.线面垂直,线线垂直.20.(Ⅰ)证明见解析;(Ⅱ;(Ⅲ. 【分析】(Ⅰ)根据PA ⊥底面ABCD ,PA ⊥CD ,再由底面ABCD 为正方形,利用线面垂直的判定定理证得CD PAD ⊥面即可.(Ⅱ)以点A 为原点建立空间直角坐标系,不妨设2AB AP ==,求得向量AE 的坐标,和平面PBD 的一个法向量(,,)n x yz =, 由cos ,AE nAE n AE n ⋅=⋅求解. (Ⅲ)利用空间向量法,由AE n d n ⋅=求解.【详解】 (Ⅰ)证明:因为PA ⊥底面ABCD ,所以PA ⊥CD ,因为AD CD ⊥,PA AD A ⋂=所以CD PAD ⊥面.因为AE PAD ⊂面,所以CD AE ⊥.(Ⅱ)依题意,以点A 为原点建立空间直角坐标系(如图),不妨设2AB AP ==,可得()()()()2,0,0,2,2,0,0,2,0,0,0,2B C D P ,由E 为棱PD 的中点,得(0,1,1)E . (0,1,1)AE =,向量(2,2,0)BD =-,(2,0,2)PB =-.设平面PBD 的一个法向量(,,)n x y z =,则00n BD n PB ⎧⋅=⎨⋅=⎩,即220220x y x z -+=⎧⎨-=⎩, 令y=1,可得n =(1,1,1),所以 6cos ,AE nAE n AE n ⋅==⋅ 所以直线AE 与平面PBD 6. (Ⅲ)由(Ⅱ)知:(0,1,1)AE =,平面PBD 的一个法向量n =(1,1,1), 所以点A 到平面PBD 的距离 2333AE n d n ⋅===. 【点睛】方法点睛:利用向量求线面角的方法:(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.21.(1)证明见解析;(2)105. 【分析】 (1)证明,BD AC BD AD ⊥⊥后得BD ⊥平面ADC ,然后可得面面垂直;(2)连结OD ,作OE BC ⊥于E ,连结DE ,证得OED ∠为二面角A BC D --的平面角,在三角形中可得其余弦值.【详解】证明:(1)∵CA ⊥平面ADB ,BD ⊂平面ADB ,∴CA BD ⊥,.又D 是圆周上一点,AB 是圆O 的直径,DA DB ⊥,又CA ⊂平面CAD ,DA ⊂平面CAD ,ADCA A =,∴BD ⊥平面CAD ,而BD ⊂平面ACD ,∴平面ADC ⊥平面CDB ;(2)连结OD ,作OE BC ⊥于E ,连结DE ,∵CA ⊥平面ADB ,CA ⊂平面ABC ,∵平面ABC ⊥平面ADB ,∵BD AD =,∴⊥OD AB ,又∵OD ⊂平面ADB ,∵平面ABC平面ADB AB =, ∴OD ⊥平面ABC ,∵BC ⊂面ABC ,∴BC OD ⊥.又∵BC OE ⊥,OE DE E =,∴BC ⊥平面ODE ,∴BC DE ⊥,∴OED ∠为二面角A BC D --的平面角.又1AC =,12AD =,BD AD =, ∴2OD =,3OE =,30DE =,所以cos OE OED DE ∠==10所以二面角A BC D --的余弦值为105. 【点睛】方法点睛:本题考查证明面面垂直,求二面角.求二面角的方法:(1)定义法:根据定义作出二面角的平面角(并证明)然后在相应三角形中求角.(2)向量法:建立空间直角坐标系,用二面角的两个面的法向量的夹角与二面角相等或互补计算.22.(1)证明见解析;(2)证明见解析.【分析】本题考查线面平行与线面垂直的判定,难度不大.(1)利用线面平行的判定定理证得//EF 平面BCD ,进而利用线面平行的性质定理证得; (2)利用线面垂直的判定定理证得CD ⊥平面ADB ,进而证得AB ⊥平面CDH ,然后由面面垂直判定定理证得结论.【详解】证明:(1)因为点E 、F 分别为线段AC 、AD 的中点,EF ∴为ACD △的中位线,则//EF CD ,CD ⊂平面BCD ,EF ⊄平面BCD ,//EF ∴平面BCD ,又EF ⊂平面EFNM ,平面EFNM ⋂平面BCD MN =,//EF MN ∴;(2)90CDA CDB ∠=∠=︒,CD DA ∴⊥,CD DB ⊥,DA DB D ⋂=,DA ⊂平面ADB ,DB ⊂平面ADB , CD 平面ADB ,CD AB ∴⊥又DH AB ⊥,DH CD D ⋂=,DC ⊂平面DCH ,DH ⊂平面DCH ,AB ∴⊥平面CDH ,AB ⊂平面ABC ,∴平面CDH ⊥平面ABC.【点睛】要证线线平行,常常先证线面平行,综合利用线面平行的判定与性质进行证明;要证面面垂直,常常先证线面垂直,而要证线面垂直,又常常先证另一个线面垂直.23.(1)证明见解析;(2)45;(3)3. 【分析】(1)取CD 的中点E ,连接PE 、EM 、EA ,根据面面垂直的性质可知PE ⊥平面ABCD ,从而AM PE ⊥,由勾股定理可求得AM EM ⊥,又PE EM E =,满足线面垂直的判定定理则AM ⊥平面PEM ,根据线面垂直的性质可知AM PM ⊥;(2)由(Ⅰ)可知EM AM ⊥,PM AM ⊥,根据二面角平面角的定义可知PME ∠是二面角P AM D --的平面角,然后在三角形PME 中求出此角即可;(3)设D 点到平面PAM 的距离为d ,连接DM ,则根据等体积得P ADM D PAM V V --=,建立关于d 的等式解之即可得到点D 到平面PAM 的距离.【详解】(1)取CD 的中点E ,连接PE 、EM 、EA .PCD 为正三角形,PE CD ∴⊥,平面PCD ⊥平面ABCD ,PE ∴⊥平面ABCDAM PE ∴⊥四边形ABCD 是矩形ADE ∴、ECM 、ABM 均为直角三角形 由勾股定理可求得:3EM =,6AM =3AE =222EM AM AE ∴+=AM EM ∴⊥又PE EM E AM =∴⊥平面PEMAM PM ∴⊥(2)由(1)可知EM AM ⊥,PM AM ⊥PME ∴∠是二面角P AM D --的平面角3tan 13PE PME EM ∴∠=== 45PME ∴∠=︒∴二面角P AM D --为45︒(3)设D 点到平面PAM 的距离为d ,连接DM ,则P ADM D PAM V V --=,∴11··33ADM PAM S PE S d = 而1·222ADM S AD CD == 在Rt PEM 中,由勾股定理可求得6PM =1·32PAM S AM PM ∴==,所以:11223333d ⨯=⨯⨯ 26d ∴即点D 到平面PAM 26. 【点睛】 方法点睛:求点到平面的距离常用的方法有:(1)几何法:找→作→证→指→求;(2)向量法:利用向量中点到平面的距离公式求解;(3)等体积法:根据体积相等求出点到平面的距离.24.(1)证明见解析;(2)证明见解析;(3)23. 【分析】(1)证明DE AC ⊥,AC BD ⊥,AC ⊥平面BDE 即得证;(2)设AC BD O =,取BE 中点G ,连接FG ,OG ,证明//AO 平面BEF ,即证//AC 平面BEF ;(3)先求出四面体BDEF 的体积43V =,再根据12BOEF BDEF V V =求解. 【详解】(1)证明:平面ABCD ⊥平面ADEF ,90ADE ∠=︒, DE ∴⊥平面ABCD ,DE AC ∴⊥.ABCD 是正方形,AC BD ∴⊥,因为,BD DE ⊂平面BDE ,BD DE D ⋂=,AC ∴⊥平面BDE .(2)证明:设AC BD O =,取BE 中点G ,连接FG ,OG ,OG 为BDE 的中位线1//2OG DE ∴ //AF DE ,2DE AF =,//AF OG ∴,∴四边形AFGO 是平行四边形,//FG AO ∴.FG ⊂平面BEF ,AO ⊂/平面BEF ,//AO ∴平面BEF ,即//AC 平面BEF .3()平面ABCD ⊥平面ADEF ,AB AD ⊥,AB ∴⊥平面.ADEF 因为//9022AF DE ADE DE DA AF ∠=︒===,,,DEF ∴的面积为122DEF S ED AD =⨯⨯=,∴四面体BDEF 的体积1433DEF V S AB =⋅⨯= 又因为O 是BD 中点,所以1223BOEF BDEF V V == 2.3BOEF V ∴= 【点睛】方法点睛:求几何体的体积的方法:方法一:对于规则的几何体一般用公式法.方法二:对于非规则的几何体一般用割补法.方法三:对于某些三棱锥有时可以利用转换的方法. 25.(1)证明见解析;(2)证明见解析.【分析】(1)取DA 的中点G ,连接FG ,GE ,推导出四边形BFGE 为平行四边形,从而BF //EG ,由此能证明BF //平面ADE.(2)取DE 的中点H ,连AH ,CH ,推导出AH ⊥DE ,AH ⊥HC ,从而AH ⊥平面BCDE ,由此能证明平面ADE ⊥BCDE .【详解】(1)如图所示,取DA 的中点G ,连接FG ,GE.∵F 为AC 的中点,∴GF //DC ,且GF =12DC .又DC //BE ,CD =2BE =4, ∴EB //GF ,且EB =GF∴四边形BFGE 是平行四边形,∴BF //EG .∵EG ⊂平面ADE ,BF ⊄平面ADE ,∴BF //平面ADE .(2)取DE 的中点H ,连接AH ,CH .∵△ADE 是边长为2的等边三角形,∴AH ⊥DE ,且AH 3.在△DHC 中,DH =1,DC =4,∠HDC =60°根据余弦定理可得HC 2=DH 2+DC 2-2DH ·DCcos 60°=12+42-2×1×4×12=13,即HC 13在△AHC 中,AH =3,HC =13,AC =4.所以AC 2=AH 2+HC 2,即AH ⊥HC .因为AH DE ⊥,AH HC ⊥,DE HC H ⋂=AH ∴⊥平面BCDE∵AH ⊂平面ADE ,∴平面ADE ⊥平面BCDE .【点睛】方法点睛:要证线面平行,一般需要证明(1)线线平行(2)面面平行两种方法,在平行的证明中,线线平行一般需要考虑中位线、平行四边形,平行线分线段成比例的逆定理.26.(Ⅰ)证明见解析;(Ⅱ)26. 【分析】(Ⅰ)通过1B C AB ⊥和AB AC ⊥可得AB ⊥平面1AB C ,即得证;(Ⅱ)设11BC B C O =,作1OE AB ⊥于E ,连结BE ,可得EBO ∠为1BC 与平面11ABB A 所成角,求出相关长度即可求解.【详解】(Ⅰ)证明:∵1B C ⊥平面ABC ,∴1B C AB ⊥,又AB AC ⊥,1AC B C C ⋂=,所以AB ⊥平面1AB C ,AB ⊂平面11ABB A ,所以平面1AB C ⊥平面11ABB A ;(Ⅱ)设11BC B C O =,作1OE AB ⊥于E ,连结BE ,∵平面1AB C ⊥平面11ABB A 于1AB ,∴OE ⊥平面11ABB A ,∴EBO ∠为1BC 与平面11ABB A 所成角,由已知2AB AC ==,123BB =12B C =,122B A =∴3BO ==,在等腰直角1AB C 中,OE =,所以sin 6OE EBO OB ∠==,即1BC 与平面11ABB A 所成角的正弦值为6. 【点睛】 方法点睛:求线面角或面面角的常用方法,根据图形结构常用建立坐标系利用向量法求解或直接用几何法求解,向量法的往往更简单有效.。
1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年内蒙古高中数学人教A 版 必修二第八章 立体几何同步测试(7)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)0个1个2个3个1. 设a , b 是两条不同的直线, 是两个不同的平面.有下列四个命题:①若 ,则 且 ;②若 ,则 ;③若 ,则 ;④若 ,则 其中正确的命题有( )A. B. C. D. 242. 在轴截面顶角为直角的圆锥内,作一内接圆柱,若圆柱的表面积等于圆锥的侧面积,则圆锥的底面半径与圆柱的底面半径之比为( )A.B. C.D. 3. 某几何体的三视图如图所示,其正视图和侧视图是全等的正三角形,其俯视图中,半圆的直径是等腰直角三角形的斜边,若半圆的直径为2,则该几何体的体积等于( )A. B. C. D.4. 如图,在正方体中,M 、N 分别为棱C 1D 1、C 1C 的中点,有以下四个结论:①直线AM 与CC 1是相交直线;②直线BN 与MB 1是异面直线;③直线AM 与BN 是平行直线; ④直线AM 与DD 1是异面直线.③④①②①③②④其中正确的结论为( )A. B. C. D. 相交异面平行异面或相交5. 若a ,b 是异面直线,直线c ∥a ,则c 与b 的位置关系是 ( )A. B. C. D. 充分不必要条件必要不充分条件充要条件既不充分也不必要条件6. 设,是两条直线,是平面,已知,则是的( )A. B. C. D. -5-3177. 设平面的法向量为 , 平面的法向量为 , 若, 则的值为( )A. B. C. D. ①④①③②③②④8. 设,是不同的直线,,,是不同的平面,有以下四个命题其中正确的命题是( )A. B. C. D. 9. 某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为().A. B. C. D.10. 在圆柱内有一个球,球分别与圆柱的上、下底面及母线均有且只有一个公共点.若,则圆柱的表面积为( ).A.B.C.D.44或64或6或8 4或6或7或811. 三个不重合的平面可把空间分成n 部分,则n 的所有可能取值为( )A. B. C. D. 12.正四棱锥(底面为正方形,顶点在底面上的射影是底面的中心)的底面边长为2,高为2,为边的中点,动点在表面上运动,并且总保持,则动点的轨迹的周长为()A. B. C. D.13. 已知球O是正三棱锥的外接球,,,点E是线段AB的中点,过点E作球O的截面,则截面面积的最小值是 .14. 过两平行平面α、β外的点P两条直线AB与CD,它们分别交α于A、C两点,交β于B、D两点,若PA=6,AC=9,PB=8,则BD的长为15. 已知半径为的球面上有、、、四点,满足,,,则球心到平面的距离为,三棱锥体积的最大值为 .16. 已知长方体的顶点都在球的表面上,且,则球的表面积为 .若与所成的角为,则与所成角的余弦值为 .17. 如图,已知四棱锥,且,,,,的面积等于,E是PD是中点.(1) 求四棱锥 P-ABCD 体积的最大值;(2) 若PB=4, tan∠PAD= .(i)求证:AD⊥PC ;(ii)求直线CE与平面PBC所成角的正弦值.18. 如图所示,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上不同于A,B的任意一点,求证:平面PAC⊥平面PBC.19. 如图,在五面体中,四边形为正方形,平面平面,,,.(1) 若,求二面角的正弦值;(2) 若平面平面,求的长.20. 如图,P是矩形ABCD所在平面外一点,PA⊥平面ABCD,E,F分别是AB、PD的中点,又二面角P-CD-B为45°.(1) 求证:AF//平面PEC;(2) 求证:平面PEC⊥平面PCD.21. 如图,在四面体P﹣ABCD中,△ABD是边长为2的正三角形,PC⊥底面ABCD,AB⊥BP,BC= .(1) 求证:PA⊥BD;(2) 已知E是PA上一点,且BE∥平面PCD.若PC=2,求点E到平面ABCD的距离.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.(1)(2)18.19.(1)(2)(1)(2)21.(1)(2)。
一、选择题1.设m ,n 是两条不同直线,α,β是两个不同的平面,下列命题正确的是( ) A .//m α,//n β且//αβ,则//m nB .m α⊂,n α⊂,//m β,//n β,则//αβ C .m α⊥,n β⊂,m n ⊥,则αβ⊥D .m α⊥,n β⊥且αβ⊥,则m n ⊥2.某几何体的三视图如图所示(单位:cm ),则该几何体的侧面积(单位:2cm )是( )A .10B .1025+C .1625+D .1325+ 3.如图所示,在正方体1111ABCD A B C D -中,O 是11B D 的中点,直线1A C 交平面11AB D 于点M ,则下列结论正确的是( )A .,,A M O 三点共线B .1,,,A M O A 不共面C .,,,A M C O 不共面D .1,,,B B O M 共面4.如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 为正方形,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A .15B .25C .35D .455.将表面积为36π的圆锥沿母线将其侧面展开,得到一个圆心角为23π的扇形,则该圆锥的轴截面的面积为( )A .183B .182C .123D .243 6.如图,三棱柱111ABC A B C -中,侧棱1AA ⊥底面111A B C ,底面三角形111A B C 是正三角形,E 是BC 中点,则下列叙述正确的是( )A .1CC 与1B E 是异面直线B .AC ⊥平面11ABB A C .AE ,11B C 为异面直线,且11AE B C ⊥D .11//A C 平面1AB E7.如图,在底面边长为4,侧棱长为6的正四棱锥P ABCD -中,E 为侧棱PD 的中点,则异面直线PB 与CE 所成角的余弦值是( )A .3417B .23417C .51717D .317178.如图为水平放置的ΔOAB 的直观图,则原三角形的面积为( )A .3B .32C .6D .129.在三棱锥P ABC -中,AB BC ⊥,P 在底面ABC 上的投影为AC 的中点D ,1DP DC ==.有下列结论:①三棱锥P ABC -的三条侧棱长均相等;②PAB ∠的取值范围是,42ππ⎛⎫ ⎪⎝⎭; ③若三棱锥的四个顶点都在球O 的表面上,则球O 的体积为23π; ④若AB BC =,E 是线段PC 上一动点,则DE BE +的最小值为62+. 其中正确结论的个数是( )A .1B .2C .3D .410.如图,正方体1111ABCD A B C D -的棱长为2,点O 为底面ABCD 的中心,点P 在侧面11BB C C 的边界及其内部运动.若1D O OP ⊥,则11D C P △面积的最大值为( )A 25B 45C 5D .2511.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是( )A .13cmB .61cmC 61cmD .234cm12.αβ、是两个不同的平面,mn 、是平面α及β之外的两条不同直线,给出四个论断:①m n ⊥;②αβ⊥;③n β⊥;④.m α⊥以其中三个论断作为条件,余下一个作为结论,其中正确命题的个数是( ) A .1个 B .2个 C .3个 D .4个13.在正方体1111ABCD A B C D -中,E ,F 分别为1CC ,1DD 的中点,则异面直线AF ,DE 所成角的余弦值为( )A .14B .154C .65D .1514.已知,m n 是两条不同的直线,,αβ为两个不同的平面,有下列四个命题: ①若m α⊥,n β⊥,m n ⊥,则a β⊥;②若//m α,//n β,m n ⊥,则//a β;③若m α⊥,//n β,m n ⊥,则//αβ;④若m α⊥,//n β,//αβ,则m n ⊥.其中所有正确的命题是( )A .①④B .②④C .①D .④二、解答题15.如图,在正四棱柱1111ABCD A B C D -中(底面是正方形的直四棱柱),底面正方形ABCD 的边长为1,侧棱1AA 的长为2,E 、M 、N 分别为11A B 、11B C 、1BB 的中点.AD平面EMN;(1)求证:1//AD与BE所成角的余弦值.(2)求异面直线1⊥,D是棱AB的中点,且16.如图,在三棱锥V-ABC中,VC⊥底面ABC,AC BC==.AC BC VC(1)证明:平面VAB⊥平面VCD;(2)若22AC=,且棱AB上有一点E,使得线VD与平面VCE所成角的正弦值为15,试确定点E的位置,并求三棱锥C-VDE的体积.15-中,底面ABCD是边长为2的正方形,17.在四棱锥P ABCD∠==∠=,E为PD的中点.ADP PD AD PDC90,,60(1)证明:CE⊥平面PAD.-外接球的体积.(2)求三棱锥E ABC18.如图甲,平面四边形ABCD中,已知45∠=,90︒A︒∠=,ADC︒∠=C,1052AB BD ==,现将四边形ABCD 沿BD 折起,使得平面ABD ⊥平面BDC (如图乙),设点E ,F 分别是棱AC ,AD 的中点.(1)求证:DC ⊥平面ABC ;(2)求三棱锥A BEF -的体积.19.在四棱锥P ABCD -中,//AD BC ,BC CD ⊥,120ABC ∠=︒,4=AD ,3BC =,=2AB ,3=CD CE ,⊥AP ED .(1)求证:DE ⊥面PEA ;(2)已知点F 为AB 中点,点P 在底面ABCD 上的射影为点Q ,直线AP 与平面ABCD 所成角的余弦值为3,当三棱锥-P QDE 的体积最大时,求异面直线PB 与QF 所成角的余弦值.20.如图,已知AF ⊥平面ABCD ,四边形ABEF 为矩形,四边形ABCD 为直角梯形,90DAB ∠=︒,//AB CD ,2AD AF CD ===,4AB =.(1)求证:AC ⊥平面BCE ;(2)求三棱锥E BCF -的体积.21.如图,在长方形ABCD 中,4AB =,2AD =,点E 是DC 的中点.将ADE 沿AE 折起,使平面ADE ⊥平面ABCE ,连结DB 、DC 、EB(1)求证:AD ⊥平面BDE ;(2)求平面ADE 与平面BDC 所成锐二面角的余弦值.22.如图,在直三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 是CC 1上的中点,且BC =1,BB 1=2.(1)证明:B 1E ⊥平面ABE ;(2)若三棱锥A -BEA 1的体积是33,求异面直线AB 和A 1C 1所成角的大小. 23.如图,棱长为2的正方体ABCD —A 1B 1C 1D 1,E 、F 分别为棱B 1C 1、BB 1中点,G 在A 1D 上且DG =3GA 1,过E 、F 、G 三点的平面α截正方体.(1)作出截面图形并求出截面图形面积(保留作图痕迹);(2)求A 1C 1与平面α所成角的正弦值. (注意:本题用向量法求解不得分)24.如图,在五面体ABCDEF 中,FA ⊥平面ABCD ,AD //BC //FE ,AB ⊥AD ,M 为EC 的中点,AF =AB =BC =FE =12AD .(I )证明:平面AMD ⊥平面CDE ;(II )求二面角A ﹣CD ﹣E 的余弦值.25.已知四棱锥P ABCD -的底面ABCD 是菱形,PD ⊥平面ABCD ,2AD PD ==,60DAB ∠=,F ,G 分别为PD ,BC 中点,AC BD O =.(Ⅰ)求证:FG ∥平面PAB ;(Ⅱ)求三棱锥A PFB -的体积;26.在如图所示的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD ,//PD MA ,E 、G 、F 分别为MB 、PB 、PC 的中点.(1)求证:平面EFG ⊥平面PDC ;(2)求证:平面//EFG 平面PM A .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】对每一个命题逐一判断得解.【详解】对于A ,若m ∥α,n ∥β且α∥β,说明m 、n 是分别在平行平面内的直线,它们的位置关 系应该是平行或异面或相交,故A 不正确;对于B ,若“m ⊂α,n ⊂α,m ∥β,n ∥β”,则“α∥β”也可能α∩β=l ,所以B 不成立. 对于C ,根据面面垂直的性质,可知m ⊥α,n ⊂β,m ⊥n ,∴n ∥α,∴α∥β也可能α∩β=l ,也可能α⊥β,故C 不正确;对于D ,由m ⊥α,n ⊥β且α⊥β,则m 与n 一定不平行,否则有α∥β,与已知α⊥β矛盾,通过平移使得m 与n 相交,且设m 与n 确定的平面为γ,则γ与α和β的交线所成的角即 为α与β所成的角,因为α⊥β,所以m 与n 所成的角为90°,故命题D 正确. 故答案为D【点睛】本题考查直线与平面平行与垂直,面面垂直的性质和判断的应用,考查逻辑推理能力和空间想象能力.2.B解析:B【分析】由三视图可知,该几何体的直观图为直四棱柱1111ABCD A B C D -,由矩形的面积公式得出该几何体的侧面积.【详解】由三视图可知,该几何体的直观图为直四棱柱1111ABCD A B C D -,如下图所示2211125AD A D ==+=∴该几何体的侧面积为122222521025⨯+⨯+⨯+⨯=+故选:B【点睛】本题主要考查了由三视图计算几何体的侧面积,属于中档题.3.A解析:A【分析】连接11,A C AC ,利用两个平面的公共点在一条直线上可判断点共线.【详解】连接11,A C AC ,则11//A C AC ,11,,,A C C A ∴四点共面,1A C ∴⊂平面11ACC A ,1M AC ∈,M ∴∈平面11ACC A ,M ∈平面11AB D ,∴点M 在平面11ACC A 与平面11AB D 的交线上,同理点O 在平面11ACC A 与平面11AB D 的交线上,,,A M O ∴三点共线,故A 正确;,,A M O 三点共线,且直线与直线外一点可确定一个平面,1,,,A M O A ∴四点共面,,,,A M C O 四点共面,故B ,C 错误;1BB 平面11AB D ,OM ⊂平面11AB D ,1B ∈平面11AB D 且1B OM ,1BB ∴和OM 是异面直线,1,,,B B O M ∴四点不共面,故D 错误.故选:A.【点睛】本题主要考查空间中点的共线问题,此类题一般证明这些点同在两个不同的平面内,根据两平面的公共点在一条直线上即可判断.4.D解析:D【分析】本题先通过平移确定异面直线1A B 与1AD 所成角11A BC ∠,再在11A BC 中通过余弦定理求该角的余弦值即可.【详解】解:连接11A C 、1BC (如图),设12=2AA AB k =(0k >),则11=5A BC B k=,112AC k=, 在直四棱柱1111ABCD A B C D -中,∵11//BC AD ,∴ 异面直线1A B 与1AD 所成角可以表示为11A BC ∠,在11A BC 中,222222*********cos 25255A B BC AC A BC A B BC k k+-∠===⋅⋅⨯⨯, 故选:D.【点睛】本题考查了异面直线所成的角,余弦定理,是中档题.5.B解析:B【分析】如图所示,设此圆锥的底面半径为r ,高为h ,母线长为l .可得πr 2+πrl =36π,2πr =l •23π,联立解得:r ,l ,h 22l r =-即可得出该圆锥的轴截面的面积S 12=•2r •h =rh . 【详解】如图所示,设此圆锥的底面半径为r ,高为h ,母线长为l .则πr 2+πrl =36π,化为:r 2+rl =36,2πr =l •23π,可得l =3r . 解得:r =3,l =9,h 22l r =-=2.该圆锥的轴截面的面积S 12=•2r •h =rh =2=2. 故选:B.【点睛】本题考查了圆锥的表面积、弧长的计算公式,考查了推理能力与计算能力,属于中档题. 6.C解析:C【分析】根据异面直线定义可判断A ;由线面垂直的性质即可判断B ;由异面直线的位置关系并得11AE B C ⊥可判断C ;根据线面平行的判定定理可判断D.【详解】对于A 项,1CC 与1B E 在同一个侧面中,故不是异面直线,所以A 错;对于B 项,由题意知,上底面是一个正三角形,故AC ⊥平面11ABB A 不可能,所以B 错;对于C 项,因为AE ,11B C 为在两个平行平面中且不平行的两条直线,故它们是异面直线,由底面111A B C 是正三角形,E 是BC 中点,根据等腰三角形三线合一可知AE BC ⊥,结合棱柱性质可知11//B C BC ,则11AE B C ⊥,所以C 正确;对于D 项,因为11A C 所在的平面与平面1AB E 相交,且11A C 与交线有公共点,故11//A C 平面1AB E 不正确,所以D 项不正确.故选C.【点睛】该题考查的是有关立体几何中空间关系的问题,在解题的过程中,需要对其相关的判定定理和性质定理的条件和结论熟练掌握,注意理清其关系,属于中档题7.D解析:D【分析】首先通过作平行的辅助线确定异面直线PB 与CE 所成角的平面角,在PCD ∆中利用余弦定理求出cos DPC ∠进而求出CE ,再在GFH ∆中利用余弦定理即可得解.【详解】如图,取PA 的中点F ,AB 的中点G ,BC 的中点H ,连接FG ,FH ,GH ,EF ,则//EF CH ,EF CH =,从而四边形EFHC 是平行四边形,则//EC FH , 且EC FH =.因为F 是PA 的中点,G 是AB 的中点,所以FG 为ABP ∆的中位线,所以//FG PB ,则GFH ∠是异面直线PB 与CE 所成的角.由题意可得3FG =,1222HG AC ==. 在PCD ∆中,由余弦定理可得2223636167cos 22669PD PC CD DPC PD PC +-+-∠===⋅⨯⨯, 则2222cos 17CE PC PE PC PE DPC =+-⋅∠=,即17CE =在GFH ∆中,由余弦定理可得222cos 2FG FH GH GFH FG FH +-∠=⋅317172317==⨯⨯. 故选:D【点睛】本题考查异面直线所成的角,余弦定理解三角形,属于中档题.8.C解析:C【分析】根据直观图的画法,可以得到直角坐标系下3014A B (,),(,),还原三角形的图象,求得面积.【详解】根据直观图的画法,可以得到直角坐标系下3014A B (,),(,),如图所示:故原三角形面积为:13462S =⨯⨯= 故选:C【点睛】 本题考查了还原直观图为直角坐标系的图像问题,考查了学生概念理解,直观想象,数学运算的能力,属于基础题.9.C解析:C【分析】作出三棱锥P ABC -的图象,逐一判断各命题,即可求解.【详解】作出三棱锥P ABC -的图象,如图所示:.对于①,根据题意可知,PD ⊥平面ABC ,且1DP DC ==,所以2PA PB PC ===①正确;对于②,在PAB △中,2PA PB ==02AB <<,所以2cos 222AB PAB PA ⎛∠== ⎝⎭, 即PAB ∠的取值范围是,42ππ⎛⎫⎪⎝⎭,②正确; 对于③,因为DP DA DB DC ===,所以三棱锥P ABC -外接球的球心为D ,半径为1,其体积为43π,③不正确; 对于④,当AB BC =时,BD AC ⊥,所以2BC =将平面PBC 沿翻折到平面PAC 上,则DE BE +的最小值为线段BD 的长,在展开后的DCB 中,6045105DCB ∠=+=, 根据余弦定理可得6221221cos1052BD +=+-⨯⨯⨯=, ④正确.故选:C . 【点睛】本题主要考查棱锥的结构特征,三棱锥外接球的体积求法,以及通过展开图求线段和的最小值,意在考查学生的直观想象能力和数学运算能力,属于中档题. 10.C解析:C【分析】 取1BB 的中点F ,由题意结合正方体的几何特征及平面几何的知识可得1OD OC ⊥,1OD OF ⊥,由线面垂直的判定与性质可得1OD CF ⊥,进而可得点P 的轨迹为线段CF ,找到1C P 的最大值即可得解.【详解】取1BB 的中点F ,连接OF 、1D F 、CF 、1C F ,连接DO 、BO 、OC 、11D B 、1D C ,如图:因为正方体1111ABCD A B C D -的棱长为2,所以11B F BF ==,2DO BO OC ===11122D B DC ==1BB ⊥平面ABCD ,1BB ⊥平面1111D C B A ,11C D ⊥平面11BB C C ,所以22116OD OD DD =+=223OF OB BF =+=2211113D F D B B F =+=,所以22211OD OF D F +=,22211OD OC D C +=,所以1OD OC ⊥,1OD OF ⊥,由OC OF O =可得1OD ⊥平面OCF ,所以1OD CF ⊥,所以点P 的轨迹为线段CF , 又221111152C F B C B F C C =+=>=,所以11D C P △面积的最大值1111125522S C F D C =⋅=⨯⨯=. 故选:C.【点睛】本题考查了正方体几何特征的应用,考查了线面垂直的判定与性质,关键是找到点P 的轨迹,属于中档题.11.A解析:A【分析】如图所示:图像为圆柱的侧面展开图,A 关于EF 的对称点为'A ,则AE BE +的最小值为'A B ,计算得到答案.【详解】如图所示:图像为圆柱的侧面展开图,A 关于EF 的对称点为'A ,则AE BE +的最小值为'A B ,易知5BC =,'12A C =,故'13A B =.故选:A .【点睛】本题考查了立体几何中的最短距离问题,意在考查学生的计算能力和空间想象能力. 12.B解析:B【分析】分别以①②③④作为结论,另外三个作条件,根据线面垂直和面面垂直的判定定理依次判断真假.【详解】若m n ⊥,αβ⊥,n β⊥,则m 与α可能平行可能相交,即①②③不能推出④; 同理①②④不能推出③;若m n ⊥,n β⊥,m α⊥,两个平面的垂线互相垂直则这两个平面垂直,则αβ⊥,即①③④能够推出②;若αβ⊥,n β⊥,m α⊥,两个平面互相垂直,则这两个平面的垂线互相垂直,即m n ⊥,所以②③④能够推出①.所以一共两个命题正确.故选:B【点睛】此题考查空间直线与平面位置关系的辨析,根据选择的条件推出结论,关键在于熟练掌握空间垂直关系的判定和证明.13.D解析:D【分析】连接BE ,BD ,因为//BE AF ,所以BED ∠为异面直线AF 与DE 所成的角(或补角),不妨设正方体的棱长为2,取BD 的中点为G ,连接EG ,在等腰BED ∆中,求出cosEG BEG BE ∠==cos BED ∠,即可得出答案. 【详解】 连接BE ,BD ,因为//BE AF ,所以BED ∠为异面直线AF 与DE 所成的角(或补角),不妨设正方体的棱长为2,则BE DE ==BD =,在等腰BED ∆中,取BD 的中点为G ,连接EG ,则EG ==cos EG BEG BE ∠== 所以2cos cos 22cos 1BED BEG BEG ∠=∠=∠-, 即:31cos 2155BED ∠=⨯-=, 所以异面直线AF ,DE 所成角的余弦值为15. 故选:D.【点睛】本题考查空间异面直线的夹角余弦值,利用了正方体的性质和二倍角公式,还考查空间思维和计算能力.14.A解析:A【分析】①若m α⊥,m n ⊥,∴n ⊂α或//n α再由面面垂直的判定定理得到结论.②根据面面平行的判定定理判断.③若m α⊥,m n ⊥,则n ⊂α或//n α,再由面面平行的判定定理判断.④若m α⊥,//αβ,由面面平行的性质定理可得m β⊥,再由//n β得到结论.【详解】①若m α⊥,m n ⊥,∴n ⊂α或//n α,又∵n β⊥,∴a β⊥,故正确. ②若//m α,//n β,由面面平行的判定定理可知,若m 与n 相交才平行,故不正确. ③若m α⊥,m n ⊥,则n ⊂α或//n α,又//n β,两平面不一定平行,故不正确. ④若m α⊥,//αβ,则m β⊥,又∵//n β,则m n ⊥.故正确.故选:A【点睛】本题主要考查线与线,线与面,面与面的位置关系及垂直与平行的判定定理和性质定理,综合性强,方法灵活,属中档题.二、解答题15.(1)证明见解析(2)8585【分析】(1)通过证明1//AD MN 可证1//AD 平面EMN ;(2)由(1)知11//AD BC ,所以1EBC ∠(或其补角)为异面直线1AD 与BE 所成的角,根据余弦定理计算可得结果.【详解】(1)连1BC ,1EC ,如图:因为//AB CD ,AB CD =,且11//CD C D ,11CD C D =,所以11//AB C D ,11AB C D =,所以四边形11ABC D 为平行四边形,所以11//AD BC ,因为M 、N 分别为11B C 、1BB 的中点,所以1//MN BC ,所以1//AD MN , 因为1AD ⊄平面EMN ,MN ⊄平面EMN ,所以1//AD 平面EMN .(2)由(1)知11//AD BC ,所以1EBC ∠(或其补角)为异面直线1AD 与BE 所成的角,依题意知12BB =,112EB =,111B C =, 所以22211117444BE BB EB =+=+=,2221111415BC BB B C =+=+=,222111115144EC EB B C =+=+=, 所以2221111cos 2BE BC EC EBC BE BC +-∠==⋅175********+-⨯⨯88585=. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.16.(1)证明见解析;(2)点E 位于线段AD 的中点或线段BD 的中点;223.【分析】(1)易得CD AB ⊥,再根据VC ⊥底面ABC ,得到 VC AB ⊥,进而AB ⊥平面VCD ,再利用面面垂直的判定定理证明.(2)过点D 在平面ABC 内作DF CE ⊥于F ,DF ⊥平面VCE ,则DVF ∠就是直线VD 与平面VCE 所成的角,在Rt VFD 中,由15sin DF DVF VD ∠==,求得DF ,然后在Rt DCE 中,求出1DE =,然后由三棱锥C-VDE 的体积为13CDE V S VC =⋅⋅求解. 【详解】(1)因为AC BC =,D 是AB 的中点,所以CD AB ⊥.又VC ⊥底面ABC ,AB平面ABC , 所以VC AB ⊥,而VC CD C ⋂=,所以AB ⊥平面VCD .又AB 平面VAB ,所以平面VAB ⊥平面VCD .(2)过点D 在平面ABC 内作DF CE ⊥于F ,则由题意知DF ⊥平面VCE .,连接VF ,于是DVF ∠就是直线VD 与平面VCE 所成的角.在Rt VFD 中,1515DF VD =. 又因为3VD =55DF =. 在Rt DCE 中,1DE =.故知点E 位于线段AD 的中点或线段BD 的中点,三棱锥C-VDE 的体积为1112221223323CDE S VC ⋅⋅=⨯⨯⨯⨯=. 【点睛】方法点睛:(1)证明平面和平面垂直的方法:①面面垂直的定义;②面面垂直的判定定理(a ⊥β,a ⊂α⇒α⊥β).(2)已知两平面垂直时,一般要用性质定理进行转化,在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.17.(1)证明见解析;(2)82π. 【分析】 (1)由已知条件知AD ⊥面DPC ,即有AD CE ⊥,由PDC △为等边三角形有CE DP ⊥,结合线面垂直的判定有CE ⊥平面PAD .(2)由勾股定理可证AEC 为直角三角形,且ABC 为等腰直角三角形,即可知AC 的中点O 为外接球的球心,进而得到半径求球的体积.【详解】 (1)由90ADP ∠=知:AD DP ⊥,底面ABCD 是正方形有AD DC ⊥,又DP DC D =,∴AD ⊥面DPC ,而CE ⊂面DPC ,即AD CE ⊥,∵PD AD DC ==,60PDC ∠=,∴PDC △为等边三角形,E 为PD 的中点,故CE DP ⊥,∵DP AD D ⋂=,∴CE ⊥平面PAD .(2)由(1)知:ABC 为等腰直角三角形且2AB BC == ,有22AC =, 在AEC 中3,5CE AE ==,即222AC CE AE =+,故AE CE ⊥,∴由上知:ABC 、AEC 都是以AC 为斜边的直角三角形,由直角三角形斜边中点O 到三顶点距离相等知:OE OC OA OB ===,即O 为三棱锥E ABC -外接球的球心, ∴外接球的半径为22AC =, 所以三棱锥E ABC -外接球的体积为3482(2)33V ππ=⨯=. 【点睛】关键点点睛:(1)由90°及正方形有线面垂直:AD ⊥面DPC ,再由等边三角形的性质和线面垂直的判定证明CE ⊥平面PAD ;(2)由勾股定理说明AEC 是以AC 为斜边的直角三角形,同样ABC 也是AC 为斜边的直角三角形,即可确定三棱锥E ABC -外接球的球心,进而求体积.18.(1)证明见解析;(2. 【分析】 (1)在图甲中先证AB BD ⊥,在图乙中由面面垂直的性质定理先证AB CD ⊥,由条件可得DC BC ⊥,进而可判定DC ⊥平面AB C ;(2)利用等体积法进行转化计算即可.【详解】(1)图甲中,∵AB BD =且45A ︒∠=,45ADB ︒∴∠=,()()180180454590ABD ADB A ︒︒︒︒︒∴∠=-∠+∠=-+=,即AB BD ⊥, 图乙中,∵平面ABD ⊥平面BDC ,且平面ABD 平面BDC BD =,∴AB ⊥平面BDC ,又CD ⊂平面BDC ,∴AB CD ⊥,又90DCB ︒∠=,∴DC BC ⊥,且AB BC B ⋂=,又AB ,BC ⊂平面AB C ,∴DC ⊥平面AB C ;(2)因为点E ,F 分别是棱AC ,AD 的中点,所以//EF DC ,且12EF DC =,所以EF ⊥平面ABC , 由(1)知,AB ⊥平面BDC ,又BC ⊂平面BDC ,所以AB BC ⊥,105ADC ︒∠=,45ADB ︒∠=,1054560CDB ADC ADB ︒︒︒∴∠=∠-∠=-=, 90906030CBD CDB ︒︒︒︒∴∠=-∠=-=,cos3022BC BD ︒∴=⋅=⨯=1sin 30212DC BD ︒=⋅=⨯=,所以12ABC S AB BC =⨯⨯△12ABE ABC S S ==△△1122EF DC ==,所以111332A BEF F ABE ABE V V EF S --==⋅⋅=⋅=△ 【点睛】方法点睛:计算三棱锥体积时,常用等体积法进行转化,具体的方法为:①换顶点,换底面;②换顶点,不换底面;③不换顶点,换底面.19.(1)证明见解析;(2)14. 【分析】(1)在直角梯形ABCD 中先求出,,CD CE BE ,然后可求得,DE AE ,从而可证明DE AE ⊥,由线面垂直判定定理证明线面垂直;(2)由(1)得面面垂直,知Q 在AE 上,PAQ ∠为直线AP 与平面ABCD 所成的角,cos 3AQ PAQ AP ∠==,设AQ x =(0x <≤-P QDE 的体积,由二次函数知识求得最大值,及此时x 的值,得Q 为AE 中点,从而有//FQ BE ,PBE ∠为异面直线PB 与QF 所成角(或补角),由余弦定理可得.【详解】(1)证明://AD BC ,BC CD ⊥,120ABC ∠=︒,4=AD ,3BC =,=2AB ,∴CD ===CD ,∴1CE =,CD =2BE =, 由余弦定理得AE ===又2DE ===,∴222DE AE AD ,∴AD DE ⊥,∵AP DE ⊥,又AP AE A =,AP AE ⊂、平面APE ,∴DE ⊥平面APE .(2)由(1)DE ⊥平面APE .DE ⊂平面ABCD ,∴平面ABCD ⊥平面PAE ,∴Q 点在AE 上,PAQ ∠为直线AP 与平面ABCD 所成的角,cos 3AQ PAQ AP ∠==,设AQ x =(0x <≤PQ =,QE x =, 12)2QDE S x x =⨯⨯=△,21)33P QDE QDE V PQ S x -=⋅=--△2(3x =--+≤x =则当P QDE V -最大时,AQ =∴Q 为AE 中点,∵F 为AB 中点,∴//FQ BC ,∴PBE ∠为异面直线PB 与QF 所成角(或补角),1,QB QE ==PQ ⊥平面ABCD 得3,PE PB ==2BE =,则222cos 2PB BE PE PBE PB BE +-∠==⋅,∴异面直线PB 与QF 所成角的余弦值为14.【点睛】本题考查线面垂直的判定定理,考查直线与平面所成的角,异面直线所成的角,三棱锥的体积等,旨在考查学生的空间想象能力,运算求解能力,逻辑推理能力.属于中档题. 20.(1)证明见解析;(2)83. 【分析】(1)先证明AC ⊥BE ,再取AB 的中点M ,连接CM ,经计算,利用勾股定理逆定理得到AC ⊥BC ,然后利用线面垂直的判定定理证得结论;(2)利用线面垂直的判定定理证得CM ⊥平面BEF ,即为所求三棱锥的高,进而计算得到其体积.【详解】解:(1)证明:∵四边形ABEF 为矩形∴//AF BE∵AF ⊥平面ABCD ∴BE ⊥平面ABCD∵AC ⊂平面ABCD ∴AC BE ⊥.如图,取AB 的中点M ,连接CM ,∴122AM AB DC === ∵//AM DC ,90MAD ∠=︒,2AM DC AD ===∴四边形ADCM 是正方形.∴90ADC ∠=︒∴222448C AD DC =+=+=,222448BC CM BM =+=+= ∵4AB =∴222AC BC AB +=∴ABC 是直角三角形∴AC BC ⊥. ∵BCBE B =,BC 、BE ⊂平面BCE∴AC ⊥平面BCE(2)由(1)知:CM AB ⊥∵AF ⊥平面ABCD ,CM ⊂平面ABCD ∴AF CM ⊥∵AF AB A ⋂=,AF 、AB 平面ABEF∴CM ⊥平面ABEF ,∴CM ⊥平面BEF即:CM 是三棱锥C BEF -的高 ∴11182243323E BCF C BEF BEF V V CM S --==⋅=⨯⨯⨯⨯=△ 【点睛】本题考查线面垂直的证明,棱锥的体积的计算,属基础题.在利用线面垂直的判定定理证明线面垂直时一定要将条件表述全面,“两个垂直,一个相交”不可缺少.21.(1)证明见解析;(2)1111. 【分析】(1)计算出AE BE =得证AE BE ⊥,从而由面面垂直性质定理得线面垂直中,又得线线垂直AD BE ⊥,再由已知线线垂直AD AE ⊥可证得结论线面垂直;(2)取AE 的中点O ,连结DO , 可证DO ⊥平面ABCE ,过E 作直线//EF DO ,以EA 、EB 、EF 分别为x 轴,y 轴,z 轴建立空间直角坐标系,用空间向量法求二面角的余弦.【详解】 (1)证明:∵2AD DE ==,90ADE ∠=︒ ∴22AE BE ==,4AB =,∴222AE BE AB +=,∴AE BE ⊥ 又平面ADE ⊥平面ABCE ,平面ADE 平面ABCE AE =, ∴BE ⊥平面ADE ,又AD ⊂平面ADE ,所以AD BE ⊥, 又AD DE ⊥,DE BE E ⋂=,所以AD ⊥平面BDE.(2)取AE 的中点O ,连结DO ,∵DA DE =,∴DO AE ⊥,又平面ADE ⊥平面ABCE ,∴DO ⊥平面ABCE ,过E 作直线//EF DO ,以EA 、EB 、EF 分别为为x 轴,y 轴,z 轴建立空间直角坐标系:则(0,0,0),(22,0,0),(0,22,0),(2,0,2)E A B D ,(2,2,0)C -平面ADE 的法向量1//n EB ,∴1(0,1,0)n =又(2,2,0)CB =,(2,22,2)DB =-,设平面BDC 的法向量为()2,,n x y z =,2200n CB n DB ⎧⋅=⎪∴⎨⋅=⎪⎩,0220x +=∴-+=⎪⎩,即020x y x y z +=⎧⎨-+-=⎩ ∴平面BDC 的法向量2(1,1,3)n =--121212cos ,1111n n n n n n ⋅∴===⋅⨯ ∴平面ADE 与平面BDC 【点睛】方法点睛:本题考查证明线面垂直,考查求二面角.证明线面垂直的方法是:根据线面垂直的判定定理先证线线垂直,当然证明线线垂直又根据面面垂直的性质定理得线面垂直,从而得线线垂直.三个垂直相互转化可证结论; 求二面角(空间角)常用方法是建立空间直角坐标系,用空间向量法求空间角,用计算代替证明.22.(1)证明见解析;(2)30.【分析】(1)由AB ⊥侧面BB 1C 1C 可得1AB B E ⊥,由勾股定理可得1BE B E ⊥,即可证明; (2)由11//A B AB 可得111C A B ∠即为异面直线AB 和A 1C 1所成角,由等体积法可求得AB 长度,即可求出角的大小.【详解】(1)AB ⊥侧面BB 1C 1C ,1B E ⊂侧面BB 1C 1C ,1AB B E ∴⊥,BC =1,BB 1=2,E 是CC 1上的中点,1BE B E ∴=22211BE B E BB +=,1BE B E ∴⊥,AB BE B ⋂=, ∴B 1E ⊥平面ABE ; (2)11//A B AB ,111C A B ∴∠即为异面直线AB 和A 1C 1所成角,且1A 到平面ABE 的距离等于1B 到平面ABE 的距离,由(1)B 1E ⊥平面ABE ,故B 1E 的长度即为1B 到平面ABE 的距离,由AB ⊥侧面BB 1C 1C 可得AB ⊥BE ,则1111113323A BEA A ABE ABE V V SB EAB --==⋅=⨯⨯=,解得AB = 则11A B AB == 在111Rt A B C △中,1111111tan 3B C C A B A B ∠===,11130A C B ∴∠=,即异面直线AB 和A 1C 1所成角为30.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤ ⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.23.(1)截面见解析,面积为22;(2)12. 【分析】(1)先根据线面平行的性质定理确定出,EF MN 的位置关系,再根据,EF MN 的长度关系确定出,M N 的位置,从而截面的形状可确定以及截面面积可求;(2)记11ME AC H =,通过线面垂直证明1A HG ∠即为所求的线面角,从而计算出11A C 与平面α所成角的正弦值.【详解】(1)如图截面为矩形EFNM :因为//EF 平面11ADD A ,且平面EFNM平面11ADD A MN =,所以//EF MN , 又因为111111////,==22EF BC AD EF BC AD ,且3DG GA =,所以可知111//,2MN AD MN AD =, 所以//,MN EF MN EF =,所以可知,M N 为棱111,AA A D 的中点, 所以四边形EFNM 为矩形,且112,2EF ME =+==,所以截面EFNM 的面积为2;(2)记11ME AC H =,连接GH ,如图所示:因为//NF AB ,AB ⊥平面11AA D D ,所以NF ⊥平面11AA D D ,又1AG ⊂平面11AA D D ,所以1NF A G ⊥, 由(1)知1//MN AD 且11A D AD ⊥,所以1MN A D ⊥,所以1MN AG ⊥,且MN NF N =,1A G ⊥平面EFNM ,所以11A C 与平面α所成角为1A HG ∠, 因为111222442AG A D ===,111122A H AC ==1111sin 2A G A HG A H ∠==, 所以11A C 与平面α所成角的正弦值为12. 【点睛】方法点睛:求解线面角的正弦值的两种方法:(1)几何法:通过线面垂直的证明,找到线面角,通过长度的比值即可计算线面角的正弦值;(2)向量法:求解出直线的方向向量和平面的法向量,根据直线的方向向量与平面法向量夹角的余弦值的绝对值等于线面角的正弦值求解出结果.24.(I)证明见解析;(II)33 . 【分析】(I )取AD 的中点P ,连结EP PC ,,MP ,利用平行四边形及线面垂直的性质定理证明,,PE PC AD 相互垂直,从而可证明EC 与,MP MD 垂直,然后可得线面垂直,面面垂直;(II )取Q CD 为的中点,连结,PQ EQ ,可得EQP ∠为二面角A CD E --的平面角,在Rt EPQ △中求得其余弦值.【详解】(Ⅰ)证明:取AD 的中点P ,连结EP PC ,.则EFAP =,∵//FE AP =,∴四边形FAPE 是平行四边形,∴//FA EP =,同理,//AB PC =.又∵FA ⊥平面ABCD ,∴EP ⊥平面ABCD ,而PC AD ,都在平面ABCD 内,∴.EP PC EP AD ⊥⊥,由AB AD ⊥,可得PC AD ⊥,设FA a =,则2.EP PC PD a CD DE EC a ======,所以△ECD 为正三角形.∵DC DE =且M 为CE 的中点,∴DM CE ⊥.连结MP ,则.MP CE ⊥PM ∩MD =M ,而PM ,MD 在平面AMD 内 ,∴CE ⊥平面AMD而CE ⊂平面CDE ,所以平面AMD ⊥CDE .(Ⅱ)解:取Q CD 为的中点,连结,PQ EQ ,∵CE DE =,∴.EQ CD ⊥∵PC PD =,∴PQ CD ⊥∴EQP ∠为二面角A CD E --的平面角.由(Ⅰ)可得, 6222EP PQ EQ a PQ a ==⊥,,. 于是在Rt EPQ △中,3cos PQ EQP EQ ∠==. ∴二面角A CD E --的余弦值为33. 【点睛】 方法点睛:本题考查证明面面垂直,考查求二面角.求二面角的几何方法:一作二证三计算,一作:作出二面角的平面角;二证:证明所作的角是二面角的平面角;三计算:在三角形中求出这个角(这个角的余弦值).25.(Ⅰ)证明见解析;(Ⅱ3 【分析】(Ⅰ)通过证明平面//OFG 平面PAB ,进一步得出结论;(Ⅱ)利用等体积法即1124A PFB A PDB P ABCD V V V ---==,进一步求出答案. 【详解】(Ⅰ)如图,连接OF ,OG ∵O 是BD 中点,F 是PD 中点,∴//OF PB ,而OF ⊂/平面PAB ,PB ⊂平面PAB ,∴//OF 平面PAB ,又∵O 是AC 中点,G 是BC 中点,∴//OG AB ,而OG ⊂/平面PAB ,AB平面PAB ,∴//OG 平面PAB ,又OG OF O =∴平面//OFG 平面PAB ,即//FG 平面PAB . (Ⅱ)∵PD ⊥底面ABCD ,∴PD AO ⊥,又四边形ABCD 为菱形,∴BD AO ⊥,又ADDB D =,∴AO ⊥平面PDB ,而F 为PD 的中点, ∴1111322sin 60224433A PFB A PDB P ABCD V V V ︒---===⨯⨯⨯⨯⨯=. 【点睛】本题主要考查立体几何的知识点,属于中档题. 立体几何常用的三种解题方法为: (1)分割法;(2)补形法;(3)等体积法.26.(1)证明见解析;(2)证明见解析.【分析】(1)先证明BC ⊥平面PDC ,再利用线线平行证明GF ⊥平面PDC ,即证面面垂直; (2)先利用中位线证明//EG PM ,////GF BC AD ,再由此证明面面平行即可.【详解】(1)证明:由已知MA ⊥平面ABCD ,//PD MA ,∴PD ⊥平面ABCD .又BC ⊂平面ABCD ,∴PD BC ⊥.∵四边形ABCD 为正方形,∴BC DC ⊥, 又PD DC D ⋂=,∴BC ⊥平面PDC ,在PBC 中,∵G 、F 分别为PB 、PC 的中点,∴//GF BC ,∴GF ⊥平面PDC .又GF ⊂平面EFG ,∴平面EFG ⊥平面PDC .(2)∵E 、G 、F 分别为MB 、PB 、PC 的中点,∴//EG PM ,//GF BC ,又∵四边形ABCD 是正方形,∴//BC AD ,∴//GF AD ,∵EG 、GF 在平面PM A 外,PM 、AD 在平面PM A 内, ∴//EG 平面PM A ,//GF 平面PM A ,又∵EG 、GF 都在平面EFG 内且相交,∴平面//EFG 平面PM A .【点睛】本题考查了线线、线面、面面之间平行与垂直关系的转化,属于中档题.。
1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年湖北省十堰市高中数学人教A 版 必修二第八章立体几何章节测试(2)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)43211. 在四棱柱中,四边形是边长为2的菱形, , , , 则下列结论中正确的个数为( )①;②;③平面;④四棱柱的体积为.A. B. C. D. 任意四边形都可以确定唯一一个平面若 , 则直线m与平面内的任意一条直线都垂直若, 则直线m与平面内的任意一条直线都平行若直线m上有无数个点不在平面内,则2. 下列命题正确的是( )A. B. C.D. 12343. 在正方体 中,分别为棱 的中点,P 是线段上的动点(含端点),则下列结论正确的个数( )① ② 平面③与平面所成角正切值的最大值为④当P 位于时,三棱锥的外接球体积最小A. B. C. D. 54π48π42π36π4. 在三棱锥中,平面平面ABC ,,, 则该三棱锥外接球的表面积为( )A. B. C. D.平面平面与平面所成角的余弦值为与所成的角为与所成的角为5.将正方形沿对角线折成直二面角,得到如图所示的三棱锥 , 其中为的中点,则下列结论错误的是()A. B. C. D. B 1C AA 1ADA 1C 16. 如图,O 为正方体ABCD ﹣A 1B 1C 1D 1底面ABCD 的中心,则下列直线中与D 1O 垂直的是()A. B. C. D. 3.003.143.163.207. 《算数书》是已知最早的中国数学著作,于上世纪八十年代出土,大约比现有传本的《九章算术》还要早近二百年.《算数书》内容丰富,有学者称之为“中国数学史上的重大发现”.在《算数书》成书的时代,人们对圆周率的认识不多,用于计算的近似数与真实值相比误差较大.如书中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一.此术相当于给出了圆锥的体积V 的计算公式为 , 其中L 和h 分别为圆锥的底面周长和高.这说明,该书的作者是将圆周率近似地取为( )A. B. C. D. 若两条直线与同一个平面所成的角相等,则这两条直线平行若一条直线垂直于一个平面内的两条直线,则这条直线垂直于这个平面若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行若两个平面都垂直于第三个平面,则这两个平面平行8. 下列命题正确的是( )A. B. C. D. 1-19. 将边长为的正方形ABCD 沿对角线AC 折成一个直二面角B ﹣AC ﹣D .则四面体ABCD 的内切球的半径为( )A. B.C.D.10.已知 ,是两条不重合直线, ,是两个不重合平面,则下列说法正确的是( )若 , , 则若 , , 则若 , , , 则若 , , , 则A. B. C. D. 11. 若一个长方体共一顶点的三个面的面积分别是 , , ,则这个长方体外接球的体积为( )A.B.C.D.2112. 以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于( )A.B.C. D. 13. 如图,已知六棱锥P-ABCDEF 的底面是正六边形,PA ⊥平面ABC ,PA=2AB ,则下列结论中:①PB ⊥AE ;②平面ABC ⊥平面PBC ;③直线BC ∥平面PAE ;④∠PDA=45°.其中正确的有 (把所有正确的序号都填上).14. 2021年9月,我国三星堆遗址出土国宝级文物“神树纹玉琮”,如图所示,该玉琮由整块灰白色玉料加工而成,外方内圆,中空贯通,形状对称.为计算玉琮的密度,需要获得其体积等数据.已知玉琮内壁空心圆柱的高为h ,且其底面直径为d ,正方体(四个面与外侧圆柱均相切)的棱长为a ,且d <a <h ,则玉琮的体积为 .(忽略表面磨损等)15. 已知关于空间两条不同直线m ,n ,两个不同平面α,β,有下列四个命题:①若m ∥α且n ∥α,则m ∥n ;②若m ⊥β且m ⊥n ,则n ∥β;③若m ⊥α且m ∥β,则α⊥β;④若n ⊂α且m 不垂直于α,则m 不垂直于n .其中正确命题的序号为 .16. 已知直三棱柱中,,点在棱上且满足则三棱锥的外接球的表面积为 .阅卷人得分三、解答17. 如图,四棱锥中, , , 底面中, , ,, 是线段上一点,设.(1) 若,求证:平面;(2) 是否存在点,使直线与平面所成角为,若存在,求出;若不存在,请说明理由.18. 如图所示,在四棱锥中,底面四边形ABCD是菱形,是边长为2的等边三角形,, .(Ⅰ)求证:底面ABCD;(Ⅱ)求直线CP与平面BDF所成角的大小;(Ⅲ)在线段PB上是否存在一点M,使得平面BDF?如果存在,求的值,如果不存在,请说明理由.19. 如图,三棱锥中,的边长为2的正三角形,是以为直角顶点的等腰直角三角形.补充条件:①;②点在平面内的射影是的外心.(1) 从补充条件①,②任选一个(只能选一个)结合已知条件,证明:平面⊥平面;(2) 在(1)成立的情况下,过的平面交于点,若平面把三棱锥分成体积相等的两部分,求锐二面角的余弦值.20. 如图,在三棱锥中,底面,,,分别是的中点,F在SE上,且 .(1) 求证:平面;(2) 在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.21. 如图,点分别为圆柱下底面圆周上的三个等分点,,,分别为圆柱的三条母线,点分别为母线,上的点,且,点M是的中点.(1) 证明:BM⊥平面.(2) 求平面与平面所成锐二面角的余弦值.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.(1)(2)18.19.(1)(2)20.(1)(2)21.(1)(2)第 21 页 共 21 页。
人教版高中数学必修第二册第八章立体几何初步单元测试A 卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.棱柱的侧面一定是()A .平行四边形B .矩形C .正方形D .菱形2.下列四个说法中正确的是()A .两两相交的三条直线必在同一平面内B .若四点不共面,则其中任意三点都不共线C .在空间中,四边相等的四边形是菱形D .在空间中,有三个角是直角的四边形是矩形3.设m ,n 为两条不重合的直线,α,β为两个不重合的平面,m ,n 既不在α内,也不在β内,则下列结论正确的是()A .若m ∥α,n ∥α,则m ∥nB .若m ∥n ,n ∥α,则m ∥αC .若m ⊥α,n ⊥α,则m ⊥nD .若m ⊥α,m ⊥β,则α⊥β4.已知表面积为12π的圆柱的上、下底面的中心分别为O 1,O 2,若过直线O 1O 2的平面截该圆柱所得的截面是正方形,则O 1O 2=()A .23B .22C.3D.25.若在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面去截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是()A.23B.76C.45D.566.在四棱锥P-ABCD中,底面ABCD是边长为3的正方形,PA⊥平面ABCD,且PA=6,则PC与平面ABCD所成角的大小为()A.30°B.45°C.60°D.75°7.如图C3A-1,空间四边形ABCD的对角线AC=8,BD=6,M,N分别为AB,CD的中点,MN=5,则异面直线AC与BD所成的角为()图C3A-1A.90°B.45°C.60°D.30°8.如图C3A-2所示是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为自豪的发现.则圆柱的体积与球的体积的比值和圆柱的表面积与球的表面积的比值分别为()图C3A-2A.32,1B.23,1C.32,32D.23,32二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,至少有两项是符合题目要求的)9.如图C3A-3所示,观察所给四个几何体,其中判断正确的是()图C3A-3A.①是棱台B.②是圆台C.③是棱锥D.④是棱柱10.下列命题中为真命题的是()A.若两个平面有无数个公共点,则这两个平面重合B.若一个平面经过另一个平面的垂线,那么这两个平面相互垂直C.垂直于同一条直线的两条直线相互平行D.若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面不垂直11.如图C3A-4是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,下列命题正确的是()图C3A-4A.GH与EF平行B.BD与MN为异面直线C.GH与MN成60°角D.DE与MN垂直12.已知等腰直角三角形的直角边长为1,现将该三角形绕其某一边所在直线旋转一周,则所形成的几何体的表面积可以为()A .2πB .(1+2)πC .22πD .(2+2)π请将选择题答案填入下表:题号12345678总分答案题号9101112答案第Ⅱ卷(非选择题共90分)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为.14.已知直线m ∥平面β,P ∈β,那么在平面β内过点P 与直线m 平行的直线有条.15.有一根高为3π,底面半径为1的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为(结果用π表示).16.如图C3A -5,在直三棱柱ABC-A 1B 1C 1中,底面是等腰直角三角形,∠ABC 为直角,AC=2a ,BB 1=3a ,D 是A 1C 1的中点,点F 在线段AA 1上,当AF=时,CF ⊥平面B 1DF.图C3A -5四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知正四棱锥的侧棱长为2cm,底面边长为2cm,求该正四棱锥的表面积.18.(12分)如图C3A-6,已知圆柱的底面半径为2,高为4.(1)求从下底面A出发环绕圆柱侧面一周到达上底面D的最短路径长;ABCD将底面圆周截去四分之一,求圆柱被截得较小部分的体积.(2)若平行于轴OO1的截面图C3A-619.(12分)如图C3A-7所示,在四棱锥E-ABCD中,底面ABCD是边长为2的正方形,平面AEC ⊥平面CDE,∠AEC=90°,F为DE的中点,且DE=1.(1)证明:CD⊥DE;(2)求FC与平面ABCD所成角的正弦值.图C3A-720.(12分)如图C3A -8,在多面体ABCDFE 中,四边形ABCD 是矩形,AB ∥EF ,AB=2EF ,∠EAB=90°,平面ABFE ⊥平面ABCD.(1)若点G 是DC 的中点,求证:FG ∥平面AED ;(2)求证:平面DAF ⊥平面ABFE ;(3)若AE=AD=1,AB=2,求三棱锥D-AFC 的体积.图C3A -821.(12分)如图C3A -9,在平行六面体ABCD-A 1B 1C 1D 1中,AA 1=A 1D ,AB=BC ,∠ABC=120°.(1)证明:AD ⊥BA 1;(2)若平面ADD 1A 1⊥平面ABCD ,且A 1D=AB=2,求点A 到平面A 1BD 的距离.图C3A -922.(12分)如图C3A -10所示,在三棱锥D-ABC 中,已知△BCD 是正三角形,AB ⊥平面BCD ,AB=BC=a ,E 为BC 的中点,F 在棱AC 上,且AF=3FC.(1)求三棱锥D-ABC 的表面积.(2)求证:AC ⊥平面DEF.(3)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.图C3A-10答案全解全析1.A [解析]根据棱柱的性质可得,其侧面一定是平行四边形,故选A .2.B[解析]对于选项A,如果三条直线交于一点,则此时三条直线不一定在同一平面内,故A 不正确;对选项B,若四点不共面,则一定不存在三点共线,若有三点共线,则第四点与此线确定一个平面,这样就会出现四点共面,与已知条件不符合,故B 正确;对于选项C,在空间中四边相等的四边形可能是空间四边形,故C 不正确;对于选项D,空间四边形中也存在三个角是直角的情况,故D 不正确.故选B .3.B[解析]若m ∥α,n ∥α,m ,n 可能相交、平行或异面,故A 错误;若m ∥n ,n ∥α,m ⊄α,则m ∥α,故B 正确;若m ⊥α,n ⊥α,则m ∥n ,故C 错误;若m ⊥α,m ⊥β,则α∥β,故D 错误.故选B .4.B[解析]设圆柱的底面半径为r ,则母线长为2r ,所以圆柱的表面积为2πr 2+2πr ·2r=12π,解得r=2,所以O 1O 2=2r=22,故选B .5.D[解析]易知所求体积V=1-8×13×12×12×12×12=56.6.A [解析]如图所示,连接AC.∵PA ⊥平面ABCD ,∴∠PCA 或其补角即为PC 与平面ABCD 所成的角.∵四边形ABCD 是边长为3的正方形,∴AC=32.∴tan∠PCA==∠PCA=30°.故选A .7.A [解析]如图,取AD 的中点Q ,连接MQ ,NQ.∵M ,N 分别是AB ,CD 的中点,∴MQ ∥BD ,NQ ∥AC ,且MQ=12BD ,NQ=12AC ,∴∠MQN 或其补角为异面直线AC 与BD 所成的角.∵AC=8,BD=6,MN=5,∴在△MQN 中,MQ=3,NQ=4,MN=5,则MQ 2+NQ 2=MN 2,即△MQN 为直角三角形且∠MQN=90°,因此,异面直线AC 与BD 所成的角为90°.8.C[解析]设球的半径为R,则圆柱的底面半径为R,高为2R.∴V圆柱=πR2·2R=2πR3,V球=43πR3,∴ 圆柱 球=2π 343π 3=32.S圆柱=2πR·2R+2πR2=6πR2,S球=4πR2,∴ 圆柱 球=6π 24π 2=32.故选C.9.CD[解析]题图①中的几何体不是由棱锥被一个平面所截得到的,且上、下底面不是相似的图形,所以不是棱台;题图②中的几何体上、下两个面不平行,所以②不是圆台;题图③中的几何体是三棱锥;题图④中的几何体前、后两个面平行,其他面都是平行四边形,且每相邻两个平行四边形的公共边都互相平行,所以④是棱柱.故选CD.10.BD[解析]两个平面相交时,也有无数个公共点,故A为假命题;B选项就是面面垂直的判定定理,故B为真命题;在C中,若a⊥α,b⊂α,c⊂α,则显然有a⊥b,a⊥c,但b与c也可能相交,故C为假命题;在D中,假设这条直线与另一个平面垂直,则这条直线垂直于另一个平面内的任何一条直线,当然就垂直于这条交线,与已知条件矛盾,所以D为真命题.故选BD.11.BCD[解析]把平面展开图还原成正四面体,如图所示.对于A,易知GH与EF为异面直线,故A不正确;对于B,易知BD与MN为异面直线,故B正确;对于C,由GH∥AD,MN∥AF,且∠DAF=60°,知∠GHM=60°,∴GH与MN成60°角,故C正确;对于D,连接AG,FG,则AG⊥DE,FG ⊥DE,∴DE⊥平面AFG,∴DE⊥AF,又MN∥AF,∴DE与MN垂直,故D正确.故选BCD.12.AB[解析]如果绕直角边所在直线旋转,则形成圆锥,可知圆锥的底面半径为1,高为1,母线长为2,所以所形成的几何体的表面积S1=π×1×2+π×12=(2+1)π.如果绕斜边所在直线旋转,则形成的是两个同底面的圆锥,可知圆锥的底面半径是2,两个圆锥的母线长都是1,所以所形成的几何体的表面积S 2=2×π1=2π.综上可知形成的几何体的表面积是(2+1)π或2π.故选AB .13.7[解析]设圆台较小底面的半径为r ,则另一底面半径为3r ,所以圆台的侧面积S=π(r+3r )·3=84π,解得r=7.14.1[解析]过直线m 与点P 可确定一个平面α,由于P 为公共点,所以两平面相交,不妨设交线为l.因为m ∥β,m ⊂α,α∩β=l ,所以m ∥l.其他过点P 的直线都与l 相交,所以与m 也不会平行,所以过点P 且平行于m 的直线只有1条.15.5π[解析]∵圆柱形铁管的高为3π,底面半径为1,铁丝在铁管上缠绕2圈,且铁丝的两个端点落在圆柱的同一母线的两端,∴我们可以得到如图所示的平面图形,其中每一个小矩形的宽为圆柱底面的周长,长为圆柱的高,则大矩形对角线的长度即为铁丝长度的最小值,根据题意知铁丝长度的最小值为9π2+16π2=5π.16.a 或2a[解析]由已知得△A 1B 1C 1是等腰直角三角形,A 1B 1=B 1C 1,D 是A 1C 1的中点,∴B 1D ⊥A 1C 1.∵平面A 1B 1C 1⊥平面A 1ACC 1,平面A 1B 1C 1∩平面A 1ACC 1=A 1C 1,B 1D ⊂平面A 1B 1C 1,∴B 1D ⊥平面A 1ACC 1.又∵CF ⊂平面A 1ACC 1,∴B 1D ⊥CF.若CF ⊥平面B 1DF ,则CF ⊥DF.设AF=x (0≤x ≤3a ),则CF 2=x 2+4a 2,DF 2=a 2+(3a-x )2,CD 2=a 2+9a 2=10a 2,∴10a 2=x 2+4a 2+a 2+(3a-x )2,解得x=a 或2a.17.解:如图所示,∵正四棱锥P-ABCD 的底面边长为2,∴S 底=2×2=2(cm 2).过点P 作PE ⊥CD ,垂足为E ,则CE=12CD=∵PC=2cm,∴PE= 2- 2=∴S △PCD =12××2=2),∴S 侧=423(cm 2),∴该正四棱锥的表面积S=S 侧+S 底=23+2(cm 2).18.解:(1)将侧面沿AD 剪开铺平得到一个矩形,则矩形相邻两边的长分别是4π和4,则从下底面A 出发环绕侧面一周到达上底面D 的最短路径长即为此矩形的对角线长41+π2.(2)连接OA ,OB ,O 1C ,O 1D (图略),因为截面ABCD 将底面圆周截去14,所以∠AOB=90°.依题知V 圆柱=Sh=16π,三棱柱AOB-DO 1C 的体积是8.设所求几何体的体积为V ,则V+8=14V 圆柱=4π,所以V=4π-8.19.解:(1)证明:因为平面AEC ⊥平面CDE ,平面AEC ∩平面CDE=CE ,∠AEC=90°,∴AE ⊥平面CDE ,又CD ⊂平面CDE ,∴AE ⊥CD.∵四边形ABCD 为正方形,∴CD ⊥AD ,又AE ∩AD=A ,∴CD ⊥平面DAE ,∴CD ⊥DE.(2)如图,过F 作FM ⊥AD 于M ,连接CM.由(1)得CD ⊥平面DAE ,∴CD ⊥FM ,又CD ∩AD=D ,所以FM ⊥平面ABCD ,∴∠FCM 即为FC 与平面ABCD 所成的角.∵AD=CD=2,DE=1,DF=12,∴FC=32,AE= 2- 2=1,由△DFM ∽△DAE ,可得= ,∴FM= · =2,∴sin∠FCM= =2.20.解:(1)证明:∵点G 是DC 的中点,AB=CD=2EF ,AB ∥EF ,AB ∥CD ,∴EF ∥DG 且EF=DG ,∴四边形DEFG 是平行四边形,∴FG ∥DE ,又FG ⊄平面AED ,ED ⊂平面AED ,∴FG ∥平面AED.(2)证明:∵平面ABFE ⊥平面ABCD ,平面ABFE ∩平面ABCD=AB ,AD ⊥AB ,∴AD ⊥平面ABFE.又AD ⊂平面DAF ,∴平面DAF ⊥平面ABFE.(3)∵平面ABFE ⊥平面ABCD ,平面ABFE ∩平面ABCD=AB ,∠EAB=90°,EA ⊂平面ABFE ,∴EA ⊥平面ABCD.∵EF ∥AB ,EF ⊄平面ABCD ,AB ⊂平面ABCD ,∴EF ∥平面ABCD ,∴F 到平面ABCD 的距离等于E 到平面ABCD 的距离EA ,∴V 三棱锥D-AFC =V 三棱锥F-ADC =13·S △ADC ·EA=13×12×1×2×1=13.21.解:(1)证明:如图所示,取AD 的中点O ,连接OB ,OA 1,∵AA 1=A 1D ,∴AD ⊥OA 1.∵∠ABC=120°,四边形ABCD 是平行四边形,BC=AB ,∴△ABD 是等边三角形,∴AD ⊥OB.又A 1O ∩OB=O ,∴AD ⊥平面A 1OB ,∵A 1B ⊂平面A 1OB ,∴AD ⊥BA 1.(2)∵平面ADD 1A 1⊥平面ABCD ,平面ADD 1A 1∩平面ABCD=AD ,A 1O ⊥AD ,A 1O ⊂平面ADD 1A 1,∴A 1O ⊥平面ABCD ,由A 1D=AB=2知,△A 1AD ,△ABD 都是边长为2的等边三角形,∴A 1O=BO=3.在Rt△A 1OB 中,由勾股定理得,A 1B= 1 2+ 2=3+3=6,∴S △ABD =3, △ 1 =12×6×设点A 到平面A 1BD 的距离为d ,由三棱锥 - 1 = 三棱锥 1- ,得1· △ 1 ·d=13·A 1O ·S △ABD ,即13×d=13×3×3,解得所以点A 到平面A 1BD 22.解:(1)∵AB ⊥平面BCD ,∴AB ⊥BC ,AB ⊥BD.∵△BCD 是正三角形,且AB=BC=a ,∴AD=AC=2a.取CD 的中点G ,连接AG ,则CG=1a ,∴S △ABC =S △ABD =12a 2,S △BCD 2,S △ACD 2.∴三棱锥D-ABC 的表面积S=S △ABC +S △ABD +△BCD +S △ACD 2.(2)证明:取AC 的中点H ,连接BH ,∵AB=BC ,∴BH ⊥AC.∵AF=3FC ,∴F 为CH 的中点.∵E 为BC 的中点,∴EF ∥BH ,∴EF ⊥AC.∵△BCD 是正三角形,∴DE ⊥BC.∵AB ⊥平面BCD ,∴AB ⊥DE ,又AB ∩BC=B ,∴DE ⊥平面ABC ,∴DE ⊥AC.又DE ∩EF=E ,∴AC ⊥平面DEF.(3)存在这样的点N ,当CN=38CA 时,MN ∥平面DEF.连接CM ,与DE 交于点O ,连接OF.由条件知,O 为△BCD 的重心,CO=23CM.当CF=23CN时,MN∥OF,可得MN∥平面DEF,此时CN=32×14CA=38CA.。
人教A版高一数学必修第二册第八章《立体几何初步》章末练习题卷(共22题)一、选择题(共10题)1.棱锥的侧面和底面可以都是( )A.三角形B.四边形C.五边形D.六边形2.分别在两个平面内的两条直线间的位置关系是( )A.异面B.平行C.相交D.以上都有可能3.一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样,已知长方体的长、宽、高分别为20m,5m,10m,四棱锥的高为8m,若按1:500的比例画出它的直观图,那么直观图中,长方体的长、宽、高和棱锥的高应分别为( )A.4cm,1cm,2cm,1.6cm B.4cm,0.5cm,2cm,0.8cmC.4cm,0.5cm,2cm,1.6cm D.2cm,0.5cm,1cm,0.8cm4.一个棱柱是正四棱柱的条件是( )A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱5.下列三个命题中错误的个数是( )①经过球面上任意两点,可以作且只可以作一个球的大圆;②球面积是它大圆面积的四倍;③球面上两点的球面距离,是这两点所在截面圆上以这两点为端点的劣弧的长.A.0B.1C.2D.36.已知圆柱的侧面展开图是一个边长为4π的正方形,则这个圆柱的表面积是( )A.8π+16π2B.2π+4π2C.4π+16π2D.8π+4π27.某几何体的三视图如图所示,其中俯视图是正方形,那么该几何体的表面积是( )A.32B.24C.4+12√2D.12√28.如图,下列表示该平面错误的是( )A.平面αB.平面AB C.平面AC D.平面ABCD9.半径为2的球的表面积为( )A.4πB.8πC.12πD.16π10.下面空间图形的画法中错误的是( )A.B.C.D.二、填空题(共6题)11.棱柱的概念12.平面的概念几何中所说的“平面”,是从课桌面、黑板面、平静的水面等,这样的一些物体中抽象出来的.类似于直线向两端无限延伸,几何中的平面是向四周的.13.若圆锥的母线长l=5(cm),高ℎ=4(cm),则这个圆锥的体积等于(cm3).14.空间两个平面的位置关系有.15.判断正误.两两相交的三条直线最多可以确定三个平面.( )16.思考辨析,判断正误.在几何体的直观图中,原来平行的直线仍然平行.( )三、解答题(共6题)17.如图,正方体ABCD−A1B1C1D1的棱长为2.(1) 求证:AC⊥B1D;(2) 求三棱锥C−BDB1的体积.18.几何中的“平面”有边界吗?用什么图形表示平面?19.请回答下列问题:(1) 已知:l⫋α,D∈α,A∈l,B∈l,C∈l,D∉l.求证:直线AD,BD,CD共面于α.(2) 将一个苹果切3刀,最多可以切成x块,最少可切成y块,求x+y的值.20.如图,在四棱锥P−ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,DC=6,AD=8,BC=10,PD=9,E为PA的中点.(1) 求证:DE∥平面BPC.(2) 在线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出此时三棱锥B−PCF的体积;若不存在,请说明理由.21.若两个平面平行,那么两个平面内的所有直线都相互平行吗?22.观察(1),(2),(3)三个图形,说明它们的位置关系有什么不同,并用字母表示各个平面.答案一、选择题(共10题) 1. 【答案】A【解析】三棱锥的侧面和底面都是三角形.故选A . 【知识点】棱锥的结构特征2. 【答案】D【解析】分别在两个平面的两条直线平行、相交、异面都可能,可将两条直线放在长方体里进行研究.【知识点】直线与直线的位置关系3. 【答案】C【解析】由比例尺可知长方体的长、宽、高和四棱锥的高分别为 4cm ,1cm ,2cm 和 1.6cm ,再结合斜二测画法,可知直观图的相应尺寸应分别为 4cm ,0.5cm ,2cm ,1.6cm . 【知识点】直观图4. 【答案】C【知识点】棱柱的结构特征5. 【答案】C【知识点】球面距离、球的结构特征6. 【答案】A【解析】设圆柱的底面半径为 r ,母线长为 l , 因为侧面展开图是一个边长为 4π 的正方形, 所以 2πr =l =4π,可得 r =2,l =4π,所以圆柱的表面积为 S =2πr 2+2πrl =8π+16π2. 【知识点】圆柱的表面积与体积7. 【答案】C【解析】由三视图可知,该几何体是一个底面为正方形的长方体, 长方体的底面正方形的对角线长为 2,长方体的高是 3; 所以,底面正方形的边长为 √12+12=√2,该长方体的表面积为 2×(√2)2+4×3×√2=4+12√2. 【知识点】棱柱的表面积与体积、由三视图还原空间几何体8. 【答案】B【解析】该平面可用希腊字母 α,β,γ 表示,故A 正确;该平面可用平行四边形的对角线表示,故C正确;该平面可用平行四边形的四个顶点表示,故D正确;该平面不可用平行四边形的某条边表示,故B不正确.【知识点】平面的概念与基本性质9. 【答案】D【解析】因为球的半径为r=2,所以该球的表面积为S=4πr2=16π.【知识点】球的表面积与体积10. 【答案】D【解析】遮住的地方应该画成虚线或不画,故选项D中的图形画法有误.【知识点】平面的概念与基本性质二、填空题(共6题)11. 【答案】平行;四边形;平行;平行;公共边;公共顶点【知识点】棱柱的结构特征12. 【答案】无限延展【知识点】平面的概念与基本性质13. 【答案】12π【解析】设圆锥底面的半径为r,则r=√52−42=3,×π×9×4=12π,填12π.故V=13【知识点】圆锥的表面积与体积14. 【答案】平行、相交、重合【知识点】平面与平面的位置关系15. 【答案】√【知识点】平面的概念与基本性质16. 【答案】√【知识点】直观图三、解答题(共6题)17. 【答案】(1) 因为四棱柱ABCD−A1B1C1D1为正方体,所以BB1⊥平面ABCD.因为AC⊂平面ABCD,所以BB1⊥AC.因为底面ABCD为正方形,所以AC⊥BD.因为BB1∩BD=B,BB1,BD⊂平面BB1D,所以AC⊥平面BB1D.因为B1D⊂平面BB1D,所以AC⊥B1D.(2) 易知V C−BDB1=V B1−BDC.因为B1B⊥平面ABCD,所以B1B是三棱锥B1−BDC的高.因为V B1−BDC =13S△BDC⋅BB1=13×12×2×2×2=43,所以三棱锥C−BDB1的体积为43.【知识点】直线与平面垂直关系的判定、棱锥的表面积与体积18. 【答案】没有,平行四边形.【知识点】平面的概念与基本性质19. 【答案】(1) 因为l⫋α,A∈l,B∈l,C∈l,所以A,B,C∈α又D∈α,D∉l,所以AD⫋α,BD⫋α,CD⫋α,则直线AD,BD,CD共面.(2) x=8,y=3,x+y=11.【知识点】平面的概念与基本性质20. 【答案】(1) 取PB的中点M,连接EM,CM,过点C作CN⊥AB,垂足为N,如图所示.因为CN⊥AB,DA⊥AB,所以CN∥DA,又AB∥CD,所以四边形CDAN为矩形,所以CN=AD=8,DC=AN=6.在Rt△BNC中,BN=√BC2−CN2=√102−82=6,所以AB=12.因为E,M分别为PA,PB的中点,所以EM∥AB且EM=6,又DC∥AB,且CD=6,所以 EM ∥CD 且 EM =CD , 则四边形 CDEM 为平行四边形, 所以 DE ∥CM .因为 CM ⊂平面BPC ,DE ⊄平面BPC ,所以 DE ∥平面BPC .(2) 存在.理由如下:由题意可得 DA ,DC ,DP 两两互相垂直,故以 D 为原点,DA ,DC ,DP 所在直线分别为 x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系 Dxyz . 则 D (0,0,0),B (8,12,0),C (0,6,0),所以 DB⃗⃗⃗⃗⃗⃗ =(8,12,0). 假设 AB 上存在一点 F 使 CF ⊥BD ,设点 F 坐标为 (8,t,0)(0≤t ≤12), 则 CF⃗⃗⃗⃗⃗ =(8,t −6,0), 由 CF ⃗⃗⃗⃗⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =0,得 64+12(t −6)=12t −8=0, 所以 t =23,即 AF =23,故 BF =12−23=343.又 PD =9,所以 V 三棱锥B−PCF =V 三棱锥P−BCF =13×12×343×8×9=136.【知识点】直线与平面平行关系的判定、利用向量的坐标运算解决立体几何问题21. 【答案】不是.【知识点】平面与平面平行关系的性质22. 【答案】图(1)表示两个相交的半平面;图(2)表示开口向里的两个相交的半平面;图(3)表示开口向外的两个相交的半平面. 【知识点】平面的概念与基本性质。