matlab中不等式组的解法
- 格式:pdf
- 大小:91.32 KB
- 文档页数:7
数学建模常用方法MATLAB求解数学建模是通过数学方法对实际问题进行数学描述、分析和求解的过程。
MATLAB是一款功能强大的数学软件,广泛用于数学建模中的问题求解。
在数学建模中,常用的方法有数值求解、优化求解和符号计算。
下面将介绍MATLAB在数学建模中常用的方法和求解示例。
1.数值求解方法:数值求解是利用数值计算方法来近似求解实际问题的数学模型。
MATLAB提供了许多数值求解函数,如方程求根、解线性方程组、曲线拟合、积分和微分等。
以方程求根为例,可以使用fsolve函数来求解非线性方程。
示例:求解非线性方程sin(x)=0.5```matlabx0=0;%初始点x = fsolve(fun,x0);```2.优化求解方法:优化求解是在给定约束条件下,寻找使目标函数取得最优值的变量值。
MATLAB提供了许多优化求解函数,如线性规划、二次规划、非线性规划、整数规划等。
以线性规划为例,可以使用linprog函数来求解线性规划问题。
示例:求解线性规划问题,目标函数为max(3*x1+4*x2),约束条件为x1>=0、x2>=0和2*x1+3*x2<=6```matlabf=[-3,-4];%目标函数系数A=[2,3];%不等式约束的系数矩阵b=6;%不等式约束的右端向量lb = zeros(2,1); % 变量下界ub = []; % 变量上界x = linprog(f,A,b,[],[],lb,ub);```3.符号计算方法:符号计算是研究数学符号的计算方法,以推导或计算数学表达式为主要任务。
MATLAB提供了符号计算工具箱,可以进行符号计算、微积分、代数运算、求解方程等。
以符号计算为例,可以使用syms函数来定义符号变量,并使用solve函数求解方程。
示例:求解二次方程ax^2+bx+c=0的根。
```matlabsyms x a b c;eqn = a*x^2 + b*x + c == 0;sol = solve(eqn, x);```以上是MATLAB在数学建模中常用的方法和求解示例,通过数值求解、优化求解和符号计算等方法,MATLAB可以高效地解决各种数学建模问题。
求解线性方程组solve,linsolve例:A=[5 0 4 2;1 -1 2 1;4 1 2 0;1 1 1 1];%矩阵的行之间用分号隔开,元素之间用逗号或空格B=[3;1;1;0]X=zeros(4,1);%建立一个4元列向量X=linsolve(A,B)diff(fun,var,n):对表达式fun中的变量var求n阶导数。
例如:F=sym('u(x,y)*v(x,y)'); %sym()用来定义一个符号表达式diff(F); %matlab区分大小写pretty(ans) %pretty():用习惯书写方式显示变量;ans是答案表达式非线性方程求解fsolve(fun,x0,options)其中fun为待解方程或方程组的文件名;x0位求解方程的初始向量或矩阵;option为设置命令参数建立文件fun.m:function y=fun(x)y=[x(1)-0.5*sin(x(1))-0.3*cos(x(2)), ...x(2) - 0.5*cos(x(1))+0.3*sin(x(2))];>>clear;x0=[0.1,0.1];fsolve(fun,x0,optimset('fsolve'))注:...为续行符m文件必须以function为文件头,调用符为;文件名必须与定义的函数名相同;fsolve()主要求解复杂非线性方程和方程组,求解过程是一个逼近过程。
Matlab求解线性方程组AX=B或XA=B在MATLAB中,求解线性方程组时,主要采用前面章节介绍的除法运算符“/”和“\”。
如:X=A\B表示求矩阵方程AX=B的解;X=B/A表示矩阵方程XA=B的解。
对方程组X=A\B,要求A和B用相同的行数,X和B有相同的列数,它的行数等于矩阵A的列数,方程X=B/A同理。
如果矩阵A不是方阵,其维数是m×n,则有:m=n 恰定方程,求解精确解;m>n 超定方程,寻求最小二乘解;m<n 不定方程,寻求基本解,其中至多有m个非零元素。
Matlab如何解不等式方程介绍在数学中,不等式方程是一种包含不等式(如大于、小于、大于等于、小于等于等)的方程。
解不等式方程是找到满足不等式条件的变量的取值范围。
Matlab是一种功能强大的数值计算软件,可以用于解决各种数学问题,包括解不等式方程。
本文将详细介绍如何使用Matlab解不等式方程。
解不等式方程的基本步骤解不等式方程的基本步骤如下: 1. 将不等式方程转化为Matlab可识别的形式。
2. 使用Matlab的求解函数来求解不等式方程。
3. 根据求解结果得到不等式方程的解。
下面将详细介绍每个步骤。
步骤一:将不等式方程转化为Matlab可识别的形式在使用Matlab求解不等式方程之前,我们需要将不等式方程转化为Matlab可识别的形式。
Matlab中常用的不等式符号包括:“>”(大于)、“<”(小于)、“>=”(大于等于)和”<=“(小于等于)。
例如,我们有一个不等式方程:2x + 3 > 7。
我们可以将其转化为Matlab可识别的形式:2*x + 3 > 7。
步骤二:使用Matlab的求解函数求解不等式方程Matlab提供了一些专门用于求解不等式方程的函数,如solve和fsolve。
这些函数可以帮助我们求解不等式方程,并得到满足不等式条件的变量的取值范围。
使用solve函数求解不等式方程solve函数是Matlab中常用的求解方程的函数,它可以用于求解不等式方程。
solve函数的基本用法如下:syms xeqn = 2*x + 3 > 7;sol = solve(eqn, x);上述代码中,我们首先定义了一个符号变量x,然后定义了不等式方程2*x + 3 > 7,最后使用solve函数求解该不等式方程,并将结果存储在变量sol中。
使用fsolve函数求解不等式方程fsolve函数是Matlab中用于数值求解方程的函数,它也可以用于求解不等式方程。
matlab常用解方程及方程组函数matlab常用解方程及方程组函数1、roots求解多项式的根r=roots(c)注意:c为一维向量,者返回指定多项式的所有根(包括复根),poly与roots就是互为反运算,还有就就是roots只能求解多项式的解还有下面几个函数poly2sym、sym2poly、eig>>syms x>>y=x^5+3*x^3+3;>>c=sym2poly(y);%求解多项式系数 >>r=roots(c); >>poly(r)2、residue求留数[r, p, k] = residue(b,a) >>b = [ 5 3 -2 7] >>a = [-4 0 8 3]>>[r, p, k] = residue(b,a)3、solve符号解方程(组)——使用最多的g = solve(eq1,eq2,、、、,eqn,var1,var2,、、、,varn)注意:eqn与varn可以就是符号表达式,也可以就是字符串表达式,但就是使用符号表达式时不能有“=”号,假如说varn没有给出,使用findsym函数找出默认的求解变量。
返回的g就是一个结构体,以varn 为字段。
由于符号求解的局限性,好多情况下可能得到空矩阵,此时只能用数值解法解方程A=solve('a*x^2 + b*x + c')解方程组B=solve('a*u^2 + v^2', 'u - v = 1', 'a^2 - 5*a + 6')4、fzero数值求零点[x,fval,exitflag,output]=fzero(fun,x0,options,p1,p2、、、)fun就是目标函数,可以就是句柄(@)、inline函数或M文件名x0就是初值,可以就是标量也可以就是长度为2的向量,前者给定一个位置,后者就是给定一个范围options就是优化参数,通过optimset设置,optimget获取,一般使用默认的就可以了,具体参照帮助p1,p2、、、为需要传递的其它参数假如说(x/1446)^2+p/504、1+(t/330、9)*(log(1-x/1446)+(1-1/5、3)*x/1446)=0的根,其中p,t就是已知参数,但就是每次都改变那么目标函数如下三种书写格式,效果完全等效。
Matlab中不等式组的解法不等式组的解法线性规划(LP,Linear Programming)是优化问题的一种工具Matlab中最优化工具箱中线性规划函数——linprogLinprog函数的用法Linprog 函数的用法提出问题Finds the minimum of a problem specified by ,min ,,T A x b f x such that Aeq x beq lb x ub ⋅≤ ⋅= ≤≤ are vectors, A and Aeq are matrices,,,,,f x b beq lb ubLinpro函数的用法分析问题主要形式:x = linprog(f,A,b)x = linprog(f,A,b,Aeq,beq)x = linprog(f,A,b,Aeq,beq,lb,ub)x = linprog(f,A,b,Aeq,beq,lb,ub,x0)x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options) x = linprog(problem)[x,fval] = linprog(...)[x,fval,exitflag] = linprog(...)[x,fval,exitflag,output] = linprog(...)[x,fval,exitflag,output,lambda] = linprog(...)Linpro 函数的用法x = linprog(f,A,b) solves min f*x such that A*x ≤b.x = linprog(f,A,b,Aeq,beq) solves the problem above while additionally satisfying the equality constraints Aeq*x =beq. Set A =[ ] and b =[ ] if no inequalities exist.x = linprog(f,A,b,Aeq,beq,lb,ub) defines a set of lower and upper bounds on the design variables, x, so that the solution is always in the range lb ≤x ≤ub. Set Aeq =[ ] and beq =[ ] if no equalities exist.x = linprog(f,A,b,Aeq,beq,lb,ub,x0) sets the starting point to x0. This option is only available with the medium-scale algorithm (the LargeScale option is set to 'off' using optimset). The default large-scale algorithm and the simplex algorithm ignore any starting point. x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options) minimizes with the optimization options specified in the structure options. Use optimset to set these options.分析问题问题的描述Linpro 函数的用法解决问题Example :Find x that minimizes 目标函数subject to约束条件12312312123203244232300, 0, 0x x x x x x x x x x x −+≤++≤+≤≤≤≤123()546f x x x x =−−−Linpro函数的用法输入下列指令:>> f = [-5; -4; -6];>> A = [1 -1 13 2 43 2 0];>> b = [20; 42; 30];>> lb = zeros(3,1);x= linprog(f,A,b,[],[],lb);输出结果:x =0.000015.00003.0000。
matlab解方程组lnx表示成log(x)而lgx表示成log10(x)1-exp(((log(y))/x^0.5)/(x-1))1、解方程最近有多人问如何用matlab解方程组的问题,其实在matlab中解方程组还是很方便的,例如,对于代数方程组Ax=b(A为系数矩阵,非奇异)的求解,MATLAB 中有两种方法:(1)x=inv(A)*b —采用求逆运算解方程组;(2)x=A\B —采用左除运算解方程组PS:使用左除的运算效率要比求逆矩阵的效率高很多~例:x1+2x2=82x1+3x2=13>>A=[1,2;2,3];b=[8;13];>>x=inv(A)*bx =2.003.00>>x=A\Bx =2.003.00;即二元一次方程组的解x1和x2分别是2和3。
对于同学问到的用matlab解多次的方程组,有符号解法,方法是:先解出符号解,然后用vpa(F,n)求出n位有效数字的数值解.具体步骤如下:第一步:定义变量syms x y z ...;第二步:求解[x,y,z,...]=solve('eqn1','eqn2',...,'eqnN','var1','var2',...'varN');第三步:求出n位有效数字的数值解x=vpa(x,n);y=vpa(y,n);z=vpa(z,n);...。
如:解二(多)元二(高)次方程组:x^2+3*y+1=0y^2+4*x+1=0解法如下:>>syms x y;>>[x,y]=solve('x^2+3*y+1=0','y^2+4*x+1=0');>>x=vpa(x,4);>>y=vpa(y,4);结果是:x =1.635+3.029*i1.635-3.029*i-.283-2.987y =1.834-3.301*i1.834+3.301*i-.3600-3.307。
用MATLAB解方程的三个实例作者:周兆安1、对于多项式p(x)=x3-6x2-72x-27,求多项式p(x)=0的根,可用多项式求根函数roots(p),其中p为多项式系数向量,即>>p =[1,-6,-72,-27]p =1.00 -6.00 -72.00 -27.00p是多项式的MATLAB描述方法,我们可用poly2str(p,'x')函数,来显示多项式的形式:>>px=poly2str(p,'x')px =x^3 - 6 x^2 - 72 x - 27多项式的根解法如下:>> format rat %以有理数显示>> r=roots(p)r =2170/179?-648/113?-769/1980?2、在MATLAB中,求解用符号表达式表示的代数方程可由函数solve实现,其调用格式为:solve(s,v):求解符号表达式s的代数方程,求解变量为v。
例如,求方程(x+2)x=2的解,解法如下:>> x=solve('(x+2)^x=2','x')x =.69829942170241042826920133106081得到符号解,具有缺省精度。
如果需要指定精度的解,则:>> x=vpa(x,3)x =.6983、使用fzero或fsolve函数,可以求解指定位置(如x0)的一个根,格式为:x=fzero(fun, x0)或x=fsolve(fun,x0)。
例如,求方程0.8x+atan(x)-p=0在x0=2附近一个根,解法如下:>> fu=@(x)0.8*x+atan(x)-pi;>> x=fzero(fu,2)x =2.4482?或>> x=fsolve('0.8*x+atan(x)-pi',2)x =2.4482当然了,对于该方程也可以用第二种方法求解:?>> x=solve('0.8*x+atan(x)-pi','x')x =2.4482183943587910343011460497668对于第一个例子,也可以用第三种方法求解:>> F=@(x)x^3-6*x^2-72*x-27F =?@(x)x^3-6*x^2-72*x-27>> x=fzero(F,10)x =12.1229对于第二个例子,也可以用第三种方法:>> FUN=@(x)(x+2)^x-2FUN =?@(x)(x+2)^x-2>> x=fzero(FUN,1)x =0.6983最近有多人问如何用matlab解方程组的问题,其实在matlab中解方程组还是很方便的,例如,对于代数方程组Ax=b(A为系数矩阵,非奇异)的求解,MATLAB中有两种方法:(1)x=inv(A)*b —?采用求逆运算解方程组;(2)x=A\b —?采用左除运算解方程组。
Matlab方程组解1. 引言方程组是数学中一个重要的概念,它描述了多个未知数之间的关系。
解方程组的过程在科学、工程和计算机科学等领域中有着广泛的应用。
Matlab作为一种高级数值计算环境,提供了丰富的工具和函数来解决方程组的求解问题。
本文将介绍如何使用Matlab解方程组,包括线性方程组和非线性方程组的求解方法。
2. 线性方程组的求解2.1 利用矩阵求解线性方程组可以表示为矩阵形式,例如:Ax = b,其中A是系数矩阵,x是未知数向量,b是常数向量。
在Matlab中,可以使用线性代数工具箱中的函数来求解线性方程组。
2.1.1 使用inv函数求解如果系数矩阵A是可逆的,可以使用inv函数求解线性方程组。
具体步骤如下: 1. 计算A的逆矩阵:A_inv = inv(A) 2. 计算解向量:x = A_inv * b2.1.2 使用linsolve函数求解linsolve函数可以直接求解线性方程组,无需计算逆矩阵。
具体步骤如下: 1. 调用linsolve函数:x = linsolve(A, b)2.2 利用高斯消元法求解高斯消元法是一种常用的求解线性方程组的方法,它通过矩阵的行变换将方程组转化为上三角矩阵,然后通过回代得到解。
在Matlab中,可以使用lu函数来进行高斯消元法求解。
2.2.1 使用lu函数求解lu函数可以将方程组的系数矩阵A分解为一个下三角矩阵L和一个上三角矩阵U,即A = LU。
具体步骤如下: 1. 调用lu函数:[L, U] = lu(A) 2. 解得方程组:x = U \ (L \ b)3. 非线性方程组的求解非线性方程组是指未知数与其函数之间存在非线性关系的方程组。
与线性方程组不同,非线性方程组的求解通常需要借助数值方法。
Matlab提供了多种函数和工具箱来解决非线性方程组的求解问题。
3.1 利用fsolve函数求解fsolve函数是Matlab中用于求解非线性方程组的函数,它通过迭代的方式逼近方程组的解。
Matlab中不等式组的解法
不等式组的解法
线性规划(LP,Linear Programming)是优化问题的一种工具
Matlab中最优化工具箱中线性规划函数——linprog
Linprog函数的用法
Linprog 函数的用法提出问题
Finds the minimum of a problem specified by ,
min ,,
T A x b f x such that Aeq x beq lb x ub ⋅≤ ⋅= ≤≤ are vectors, A and Aeq are matrices
,,,,,f x b beq lb ub
Linpro函数的用法
分析问题
主要形式:
x = linprog(f,A,b)
x = linprog(f,A,b,Aeq,beq)
x = linprog(f,A,b,Aeq,beq,lb,ub)
x = linprog(f,A,b,Aeq,beq,lb,ub,x0)
x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options) x = linprog(problem)
[x,fval] = linprog(...)
[x,fval,exitflag] = linprog(...)
[x,fval,exitflag,output] = linprog(...)
[x,fval,exitflag,output,lambda] = linprog(...)
Linpro 函数的用法
x = linprog(f,A,b) solves min f*x such that A*x ≤b.
x = linprog(f,A,b,Aeq,beq) solves the problem above while additionally satisfying the equality constraints Aeq*x =beq. Set A =[ ] and b =[ ] if no inequalities exist.
x = linprog(f,A,b,Aeq,beq,lb,ub) defines a set of lower and upper bounds on the design variables, x, so that the solution is always in the range lb ≤x ≤ub. Set Aeq =[ ] and beq =[ ] if no equalities exist.
x = linprog(f,A,b,Aeq,beq,lb,ub,x0) sets the starting point to x0. This option is only available with the medium-scale algorithm (the LargeScale option is set to 'off' using optimset). The default large-scale algorithm and the simplex algorithm ignore any starting point. x = linprog(f,A,b,Aeq,beq,lb,ub,x0,options) minimizes with the optimization options specified in the structure options. Use optimset to set these options.
分析问题
问题的描述
Linpro 函数的用法解决问题
Example :
Find x that minimizes 目标函数subject to
约束条件
12312312123
20
324423230
0, 0, 0x x x x x x x x x x x −+≤++≤+≤≤≤≤123()546f x x x x =−−−
Linpro函数的用法输入下列指令:
>> f = [-5; -4; -6];
>> A = [1 -1 1
3 2 4
3 2 0];
>> b = [20; 42; 30];
>> lb = zeros(3,1);
x= linprog(f,A,b,[],[],lb);
输出结果:
x =
0.0000
15.0000
3.0000。