聚酰亚胺-2014 -
- 格式:ppt
- 大小:3.16 MB
- 文档页数:37
聚酰亚胺100吨/年聚酰亚胺2004年5月20日聚酰亚胺(Polyimides简称PI)是一大类主链上含有酞酰亚胺或丁二酰亚胺环的耐高温聚合物,通常由二酐和二胺合成。
是目前已经工业化的聚合物中使用温度最高的材料,其分解温度达到550~600℃,长期使用温度可达200~380℃,短期在400℃以上。
此外还具有优良的尺寸和氧化稳定性、耐辐照性能,绝缘性能、耐化学腐蚀、耐磨损、强度高等特点。
广泛应用于航空/航天、电子/电气、机车/汽车、精密机械、仪表、石油化工、计量和自动办公机械等领域,已成为世界火箭、宇航等尖端科技领域不可缺少的材料之一。
国内外市场情况:到目前为止,世界PI树脂已有20多个大品种,世界生产厂家在50家以上。
2001年世界PI树脂总生产能力约4.5万吨/年,产量约2.5万吨,PI生产主要集中在美国、西欧和日本。
Du Pont公司是美国PI树脂最大的生产商,AMOCO和Kanefuchi依次紧随其后。
随着航空航天、汽车,特别是电子工业的持续快速的发展,迫切要求电子设备小型化、轻量化、高功能和高可靠性。
性能优异的聚酰亚胺在这些领域中将大有作为,目前的增长速度一直保持在10%左右,具有很好的发展前景。
目前全球聚酰亚胺消费量约2.5万吨,消费主要集中在美国、西欧和日本国家和地区,其中美国约1.43万吨,西欧约0.36万吨、日本约0.378万吨。
预计世界对聚酰亚胺的需求将以7%/年均增长速度递增,到2006年总需求量将达3.5万吨。
目前我国聚酰亚胺开发的品种很多,已基本形成开发研究格局,涉及均酐型、偏酐型、联苯二酐型、双酚A二酐型、醚酐和酮酐型等。
但与国外发达国家相比,我国目前的聚酰亚胺树脂及薄膜的生产规模较小,价格和成本较高,产品的质量也有一定差距。
2002年国内聚酰亚胺生产能力已超过800吨/年,其中PI薄膜生产能力已达750吨/年,薄膜产量450吨。
随着我国航空、航天、电器、电子工业和汽车工业的发展,聚酰亚胺行业也会有大的发展。
聚酰亚胺泡沫提供更安全、更轻的绝缘材料氧气占地球大气的五分之一以上,具有高度反应性,能够与几乎所有其他元素形成化合物。
热量促进了这些反应。
一旦材料被充分加热以与氧气结合,该反应就会释放出更多的热量,通常会引发连锁反应,这种反应可能变得难以停止甚至控制 - 火灾。
为了避免火灾,诀窍通常是从抗氧化的材料开始,即使在高温下也是如此。
但在 1970 年代,航空业发现没有适合用于飞机机舱的足够防火材料。
美国宇航局提出了一种解决方案,该解决方案从未完全进入机舱,但仍然可以在当今飞行的大多数飞机的其他部分找到,现在还有许多其他应用。
1979年的国会证词表明,在1969年至1978年期间,有419人死亡死于坠机后的火灾。
如果有更多的时间撤离,死亡几乎肯定是可以避免的。
杀死乘客的往往不是火灾,而是它释放的烟雾和有毒气体。
到那时,工业界已经找到了将阻燃添加剂加入材料中的方法,例如飞机座椅中使用的泡沫,但随后发现,一旦这些添加剂足够热以点燃,它们就会产生大量烟雾和失能的有毒气体。
到1960年代后期,美国宇航局为阿波罗计划和天空实验室提出了一些防火材料,并推荐它们供公众使用,但工业界认为它们太脆弱,制造成本太高。
因此,在 1970 年代中期,美国联邦航空管理局和美国宇航局以及行业参与者发起了一项合作努力,以改善航空消防安全。
在NASA,这项工作被称为耐火材料工程(FIREMEN)项目,在1976年至1981年期间涉及该机构的一些现场中心。
该计划下的材料研究最终导致约翰逊航天中心与一家名为Solar Turbines International的公司签订合同,该公司是International Harvester的一个部门,以Solar Turbines,波音和其他公司以前的工作为基础,主要在约翰逊和艾姆斯研究中心。
目标雄心勃勃:采用早期工作中确定的一种聚酰亚胺泡沫,并将其优化为座椅缓冲、低密度墙板、高强度地板和隔热/隔音;找出制造所有四种产品的最佳方法;并使其在经济上可行——这是工业界实际使用的东西。
聚酰亚胺:高分子材料金字塔的顶端聚酰亚胺(PI)是分子结构含有酰亚胺基链节的芳杂环高分子化合物,是目前工程塑料中耐热性最好的品种之一,广泛应用在航空、航天、微电子、纳米、液晶、激光等领域。
近来,各国都在将PI的研究、开发及利用列入21世纪化工新材料的发展重点之一。
聚酰亚胺,因其在性能和合成方面的突出特点,不论是作为结构材料或是作为功能性材料,都有着巨大的应用前景。
聚酰亚胺被誉为高分子材料金字塔的顶端材料,也被称为'解决问题的能手',甚至有业内人士认为“没有聚酰亚胺就不会有今天的微电子技术。
高分子材料金字塔聚酰亚胺由于性能优异,可应用于多种领域,也可分为多种类型,包括工程塑料、纤维、光敏性聚酰亚胺、泡沫材料、涂料、胶粘剂、薄膜、气凝胶、复合材料等。
聚酰亚胺用途广泛在众多的聚合物中,聚酰亚胺是唯一具有广泛应用领域并且在每一个应用领域都显示出突出性能的聚合物。
下面,小编就带您了解一下聚酰亚胺各个品种的主要用途。
1.工程塑料聚酰亚胺工程塑料可分为既有热固性也有热塑性,可分为聚均苯四甲酰亚胺 (PMMI) 、聚醚酰亚胺 (PEI) 、聚酰胺一酰亚胺 (PAI)等,在不同领域有着各自的用途。
PMMI在1.8MPa的负荷下热变形温度达360℃,电性能优良,可用于特种条件下的精密零件,耐高温自润滑轴承、密封圈、鼓风机叶轮等,还可用于与液氨接触的阀门零件,喷气发动机燃料供应系统零件。
PEI具有优良的机械性能、电绝缘性能、耐辐照性能、耐高温和耐磨性能,熔融流动性好,成型收缩率为0.5%~0.7%,可用注射和挤出成型,后处理较容易,还可用焊接法与其他材料结合,在电子电器、航空、汽车、医疗器械等产业得到广泛应用。
PAI的强度是当前非增强塑料中最高的,拉伸强度为190MPa,弯曲强度为 250MPa,在1.8MPa负荷下热变形温度高达274℃。
PAI具有良好的耐烧蚀性和高温、高频下的电磁性,对金属和其他材料有很好的粘接性能,主要用于齿轮、轴承和复印机分离爪等,还可用于飞行器的烧蚀材料、透磁材料和结构材料。
聚酰亚胺(英文名Polyimide,简称PI)泡沫,是聚酰亚胺树脂原材料与发泡剂、泡沫稳定剂等助剂通过聚合发泡反应而成的泡沫材料。
PI泡沫种类多,密度(5~400kg/m3),具有可设计,绝缘性突出,特别是具有优异的耐高低温(-250~450℃)、耐辐射、难燃、低发烟,以及无有害气体释放等性能,这些独特的性能是传统泡沫塑料所无法比拟的。
因此,PI 泡沫材料是一种具有极大应用价值和开发潜力的新型材料,越来越多地用做航空航天、国防军工、微电子等高新技术领域的隔热、减震降噪和绝缘等关键材料。
目前,全球只有美国、日本等少数几个国家可以生产聚酰亚胺高分子材料,其高端产品由于应用领域的特殊性(主要运用于航天、超高速飞机制造等军工领域),其技术和产品基本不对中国出口。
主要研发机构,生产商聚酰亚胺泡沫最早出现于1966年,由杜邦(Dupont)公司利用添加了发泡剂的聚酰胺酸溶液涂膜发泡制得。
上世纪70年代,美国NASA 兰利(Langley)研究中心与Unitika America公司合作开发、研究出用于航天飞船绝热保温的聚酰亚胺泡沫材料。
美国、日本、中国等国家的科研院所、企业经过半个世纪的研究发展,已经有一定的性能稳定的商品化产品和实际应用,如美国的Boyd Corporation的Solimide PI泡沫、Monsanto的Skybond PI泡沫、陶氏公司的Rohacell 聚甲基丙烯酰亚胺泡沫都已满足美国DOD-F24 688 军标,被美国防部指定为海军船舶的绝热保温材料,并在民用船舶,如豪华游船、快艇、液化天然气船上也得到广泛的应用。
国内的研发科研机构和生产企业有上海合成树脂研究所、中科院长春应用化学研究所、天晟新材(PI泡沫系列)、中科院宁波材料所(PI微发泡粒子)等。
应用领域航空航空飞行器要求所采用的材料在满足其他性能的基础上应尽可能的轻质,以节省燃油,提高载重量。
一种海绵状的、轻的PI泡沫材料耐燃温度达800°F,而且即使在该温度下,PI泡沫材料也仅仅是炭化、分解,可使飞行中的事故减少。
《材料物理》课程论文学生姓名:梁东学号:20140530学院:材料科学与工程学院专业年级:2014级材料化学2班题目:热塑性聚酰亚胺及其改性材料的热性能研究指导教师:梁金老师评阅教师:梁金老师2016年6月摘要聚酰亚胺(PI)是一种高性能聚合物材料,具有优异的机械性能、电性能、耐辐射性能和耐热性能,广泛应用于航空航天、微电子和通讯等高技术领域,成为很有发展前景的材料之一。
但多数 PI 具有不溶不熔的特性,加工成型十分困难,一定程度上限制了其应用范围,因此热塑性聚酰亚胺(TPI)成为发展方向之一。
TPI 不仅具有优异的综合性能,而且更易于加工,生产效率更高,在经济效益和环保方面都优于传统的热固性聚酰亚胺,成为人们开发研制的热点。
TPI 可通过添加纤维提高力学性能,添加润滑剂提高耐磨性能,亦可与其它聚合物共混,使改性材料具有更优异的性能,应用于高科技领域。
目前,对 PI 及其改性材料性能的研究,大多数是关于力学性能和摩擦磨损性能,很少具体研究其热性能。
而聚酰亚胺的热性能,如玻璃化转变温度 Tg、热膨胀系数α是其应用于工业各领域重要的评价指标。
针对以上背景,本文首先测定了一种自主研发的 TPI 的玻璃化转变温度并通过改变分子量大小考察玻璃化转变温度与分子量的关系,及热处理温度和热处理时间对玻璃化转变温度的影响。
结果表明:玻璃化转变温度随数均分子量的增大而增加,采用 Kanig-Ueberreiter 方程关联玻璃化转变温度与数均分子量,其线性拟合度高;由于聚酰亚胺的结构特点——存在自由端基,在高温可发生固相热环化反应,相应其分子量随处理温度的升高和处理时间的延长而增大,表现为聚合物的玻璃化转变温度有所升高。
为了进一步提高 TPI 的性能,扩大其应用范围,使其能在更加苛刻的环境下使用,TPI 的改性研究主要包括纤维增强的 TPI 树脂基复合材料及聚合物共混改性 TPI。
但由于高分子材料的热膨胀系数比纤维、陶瓷等无机材料要大得多,两者复合后,随温度的变化,热应力不仅使高分子和基材剥离,还会产生龟裂和翘曲,模压塑料则产生裂纹等。
聚酰亚胺聚合物
聚酰亚胺是一种综合性能最佳的有机高分子材料之一,也是特种工程材料。
它属于聚合物材料,主链上含有酰亚胺环(-CO-NR-CO-)。
根据重复单元的化学结构,聚酰亚胺可以分为脂肪族、半芳香族和芳香族聚酰亚胺三种。
在某些应用中,聚酰亚胺可以取代玻璃、金属甚至钢等材料,并以其非常高的热稳定性(>500°C)而闻名,具有出色的介电性能和固有的低热膨胀系数。
它广泛用于电子、航空航天和汽车领域,满足了对在高温等恶劣条件下表现良好的材料的日益增长的需求。
此外,聚酰亚胺由于其高温稳定性、机械性能和优异的耐化学性而成为一类重要的逐步增长聚合物。
它的机械性能、热性能和电性能等都得到了广泛的应用。
需要注意的是,尽管聚酰亚胺具有许多优良的性能,但它的成本相对较高,并且在加工过程中存在一些困难。
因此,在选择使用聚酰亚胺时,需要根据实际应用场景和需求进行综合考虑。
一、聚酰亚胺材料及其应用(一)、聚酰亚胺材料概述聚酰亚胺是指分子主链中含有酰亚胺环的一类聚合物,刚性酰亚胺结构赋予了聚酰亚胺独特的性能,使他具有了很好的耐热性及优异的力学、电学等性能,且耐辐照、耐溶剂。
在高温下具备的卓越性能够与某些金属相媲美。
此外,它还具有优良的化学稳定性、坚韧性、耐磨性、阻燃性、电绝缘性以及其他机械性能。
(二、)聚酰亚胺材料的重要性聚酰亚胺(简称PI)是综合性能最佳的有机高分子材料之一,已被广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。
今年来,各国都将聚酰亚胺列为21世纪最有希望的工程塑料之一。
聚酰亚胺,因其在合成和性能方面的突出特点,不论是作为结构材料或是作为功能性材料,其巨大的应用前景已经得到了充分的认可,并认为没有聚酰亚胺就不会有今天的微电子技术。
(三)、聚酰亚胺材料的性能简介(1)、对于全芳聚酰亚胺,其分解温度一般都在500℃左右。
由联苯二酐和对笨二胺合成的聚酰亚胺,其热分解度达到600℃,是迄今聚合物中热稳定性最高的品种之一。
(2)、聚酰亚胺可耐极低温,如在—269℃液态氮中仍不会脆裂。
(3)、聚酰亚胺还具有很好的机械性能,抗张度均在100MPa以上,均苯型聚酰亚胺薄膜的抗张力强度为170MPa,而联苯型聚酰亚胺薄膜的抗张力度达到400MPa。
作为工程塑料,其弹性模量通常为3~4GMPa,而纤维的可达200GMPa。
(4)、一些聚酰亚胺品种不溶于有机溶剂,对烯酸稳定,一般的品种也不大耐水解,但可以利用碱性水解回收原料二酐和二胺。
(5)、聚酰亚胺的热膨胀系数非常高。
(6)、聚酰亚胺具有很高的耐辐照性能。
(7)、聚酰亚胺具有很好的介电性能。
(8)、聚酰亚胺为自熄性聚合物,发烟率低。
(9)、聚酰亚胺无毒。
一些聚酰亚胺还具有很好的生物相容性。
二、聚酰亚胺纤维芳香族聚酰亚胺(PI)纤维主要指由聚酰胺酸(PAA)或PI溶液纺制而成的高性能纤维。
PI纤维与PPTA纤维相比有更高的热稳定性、更高的弹性模量、低的吸水性、耐低温性能和辐射性能等。