小学五年级下册数学最大公因数
- 格式:doc
- 大小:92.00 KB
- 文档页数:7
五年级最大公因数教案【精选5篇】求最大公因数的过程中,我们可以使用欧几里得算法,又称辗转相除法。
两个数的最大公因数等于其中较小的数与两数的差的最大公因数。
这里给大家分享一些关于五年级最大公因数教案,供大家参考学习。
五年级最大公因数教案(篇1)目标①使学生理解公因数、最大公因数、互质数的概念。
②使学生初步掌握求两个数最大公因数的一般方法。
③培养学生抽象、概括的能力和动手实际操作的能力。
教学及训练重点教学重点理解公因数、最大公因数、互质数的概念。
教学难点理解并掌握求两个数的最大公因数的一般方法。
仪器教具投影仪等。
教学内容和过程教学札记一、创设情境填空:①12÷3=4,所以12能被4()。
4能()12,12是3的(),3是12的()。
②把18和30分解质因数是18=30=它们公有的质因数是()。
③10的约数有()。
二、揭示课题我们已经学会求一个数的约数,现在来看两个数的约数。
三、探索研究1、小组合作学习(1)找出8、12的约数来。
(2)观察并回答。
①有无相同的约数?各是几?②1、2、4是8和12的什么?③其中最大的一个是几?知道叫什么吗?(3)归纳并板书①8和12公有的约数是:1、2、4,其中最大的一个是4。
②还可以用下图来表示。
813246128和12的公因数(4)抽象、概括。
①你能说说什么是公因数、最大公因数吗?②指导学生看教材第66页里有关公因数、最大公因数的概念。
(5)尝试练习。
做教材第67页上面的“做一做”的第1题。
2、学习互质数的概念(1)找出下列各组数的公因数来:5和78和912和251和9(2)这几组数的公因数有什么特点?(3)这几组数中的两个数叫做什么?(看书67页)(4)质数和互质数有什么不同?(使学生明确:质数是一个数,而互质数是两个数的关系)3、学习例2(1)出示例2并说明:我们通常用分解质因数的方法来求两个数的最大公因数。
(2)复习的第2题,我们已将18和30分解质因数(如后)18=2×3×330=2×3×5(3)观察、分析。
《最大公因数》(第一课时)教学设计教学设计 1教学内容人教版义务教育课程标准实验教科书《小学数学》五年级下册第79 页至 80 页内容。
(例 1:公因数、最大公因数及做一做)教材分析公因数、最大公因数概念的建立是以因数(第二单元)的概念为基础的,也是为后面学习约分(需要尽快找出分子、分母的公因数)做准备的,在整个知识链中起着承上启下的作用。
这个内容可以集中编排在第二单元,也可以分散编排在约分的前面。
考虑到第二单元概念较多,抽象程度高,本套教材把这部分内容分散编排在本单元(第四单元),也更加突出了它的应用性。
学情分析学生在第二单元已学过因数的概念,为学习本课公因数、最大公因数概念具有一定的知识基础。
学生在日常生活中经常可以看到用方砖铺地的情境,但一般很少参与这类劳动,并无直接的体验。
为此,学习例 1 时,要让学生先回忆、教师模拟讲解,再让学生通过画图操作,画一画、摆一摆,看看能在长方形纸上画、摆出多少个正方形。
学生在解决问题的过程中获得了感悟,就能为抽象出概念提供感性认识基础。
教学目标1、结合解决现实问题理解公因数和最大公因数的意义。
2、在探索公因数和最大公因数意义的过程中,经历观察、猜测、归纳等数学活动,发展初步的推理能力。
在解决问题的过程中,能进行有条理、有根据地进行思考。
3、学会用公因数、最大公因数的知识解决简单的现实问题,体验数学与生活的密切联系。
4、在学生探索新知的过程中,培养学生学好数学的信心以及小组成员之间互相合作的精神。
教学重点理解公因数与最大公因数的意义。
教学难点运用公因数与最大公因数的意义解决现实问题。
教学课型概念教学新授课。
教学准备教师准备:课内练习题、检测题,学号是8 和 12 的因数卡片各一张。
学生准备:一张长 16 厘米,宽 12 厘米的长方形纸;边长 1、2、教学设计 2教学教学内容教师引导学生活动设计意图过程1、写一个回忆一下,怎学生寻找 10 和 16数的因数样找出一个的因数。
小学数学五年级下册:《最大公因数》教案授课人:步文新教学目标1.理解两个数的公因数和最大公因数的意义。
2.通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。
3.培养学生抽象、概括的能力。
教学重点理解公因数和最大公因数的概念。
教学难点理解并掌握两个数的最大公因数的方法。
教学准备ppt、学案、前置研究部分的练习(每人一张)教学基本过程(一)复习导入1.提问:什么是因数?什么是倍数师:将之前准备好的前置研究部分练习发给大家,学生回顾前面的知识,在小组中交流汇报(在除法算式中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。
)2.写出8和12 的所有因数。
说一说你是怎么写的?学生独立练习,然后交流检查(师板书例1)师提问:你是怎样找一个数的因数的?组织学生在小组中交流,相互说一说。
方法一:用除数:8÷1=8,8÷2=4,8÷8=1。
方法二:用乘法:1×8=8,2×4=8。
因此,8的因数有1,2,4,8。
8的倍数有1,2,3,4,6,12。
(二)探究新知1.教学公因数和最大公因数(1)出示例1 。
(2)引导学生审题,理解题意。
在8的因数中,12的因数中找出公有因数的问题的答案。
(指出:1,2,4是8和12公有的因数,其中,4是最大公因数。
)2.巩固小练习(1)完成教材61页做一做第1,2题。
(填在书上)(2)完成教材63页练习十五第1题。
(填在书上)3.教学求两个数的最大公因数的方法。
师:什么叫公因数?什么叫最大公因数?师:出示例2。
怎样求18 和27 的最大公因数?(l)学生先独立思考,用自己想到的方法试着找出18 和27 的最大公因数。
(2)小组讨论,互相启发,再在全班交流。
方法一:先分别写出18 和27 的因数,再圈出公有的因数,从中找到最大公因数。
方法二:先找出18 的因数:①,2 ,③,6 ,⑨,18。
五年级教学设计《最大公因数》五年级教学设计《最大公因数》(精选5篇)作为一位杰出的教职工,总归要编写教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。
那么教学设计应该怎么写才合适呢?以下是店铺整理的五年级教学设计《最大公因数》,仅供参考,欢迎大家阅读。
五年级教学设计《最大公因数》篇1教学目标:1、通过游戏和动手操作理解两个数的公因数与最大公因数的意义,并能用集合图表示两个数的因数和公因数。
2、通过解决实际问题,初步了解两个数的公因数和最大公因数在现实生活中的应用。
3、渗透集合思想,培养学生的分析,归纳能力和解决问题能力。
教学重点:理解公因数和最大公因数的意义。
教学难点:灵活找两个数的公因数的方法。
教具准备:课件、实物展示台教学过程:一、复习旧知,导入新课师:同学们,我们已经学过找一个数的因数的方法,如果老师现在给你一个数(12),你能很快找出它的因数吗?(生回答师板书) 师:你们真棒!照这样的方法,你能很快说出18的全部因数吗?(生回答师板书)师:哪几个数既是12的因数又是18的因数?生:1、2、3、6师:能不能简单的说说它们是12和18的什么数吗?生:公因数师:在这些公因数里面,哪个数最大?生:6最大师:6就是12和18的最大公因数。
这就是我们这节课要学习的内容———找最大公因数(师板书课题)二、探究新知:1、学生当裁判,玩游戏:(1)请学号是12因数的同学到前面来。
(左)(2)请学号是18因数的同学到前面来。
(右)(个别同学站位出现问题,请全体同学做裁判,1、2、3、6号应该站在什么位置?为什么?)2、学习集合图:生:让1、2、3、6号站在中间。
因为1、2、3、6既是12的因数又是18的因数,它们是12和18的公因数。
可以用集合圈来表示。
(课件出示)(1)师:两个集合圈交叉重合的部分表示什么?填什么数?(生:填公因数)(2)师:那圈里的左边、右边填什么数?(同桌交流,汇报结果)3、得出结论:1、2、3、6既是12的因数又是18的因数,它们是12和18的公因数。
人教版五年级下册数学《最大公因数和最小公倍数》知识点及重点题分析最大公因数一、基础知识(1)定义:几个数公有的因数中,其中最大的公因数叫做它们的最大公因数。
,(2)求最大公因数的方法①列举法:②短除法:把各个数公有的质因数从小到大依次作为除数,连续去除这几个数,一直除到各个商是互质数为止,(也可以用较大的合数质公因数去除)然后把左半圈所有除数相乘,所得的积就是这几个数的最大公因数。
3 2 4此时3与2,4都互质,这三个数的公因数只有1,停止短除。
(即用短除法求最大公因数时,要使所有的数最后所得的商没有公因数就可,如果其中几个商有公因数,也不再除)。
因此,36,24,48的最大公因数是2×2×3=12。
(3)求两个数最大公因数的特殊情况:①当两个数成倍数关系时,较小数就是这两个数的最大公因数。
②互质的两个数最大公因数是1。
(如连续的非零自然数、不同的质数等)(4)最大公因数和公因数的关系:所有的公因数都是这两个数的因数,最大公因数是这些公因数中最大的。
二、求最大公因数在计算中的应用作用:最大公因数在计算中的最重要的作用是约分,即把分数的分子和分母约成最大公因数为1的最简分数。
化最简分数最简捷的方法:①短除法求出最大公因数②用划线法分别约去分子分母的最大公因数,分别写出分子、分母被最大公因数除的商。
③练习:(1)填空:A α,b 都是非0自然数,如果a ÷b=10 ,那么α,b 的最大公因数是( ),最小公倍数是( )。
解题分析:由题可知,α是b 的倍数,此时两数的最大公因数是其中的较小数b ,最小公倍数是其中的较大数α。
B 甲=2×3×5,乙=2×3×7,甲和乙的最大公因数是( )。
(2)化最简分数6318、9824、7545、5036 (3)判断: A 6318比216的分数单位小,所以6318比216小.( ) B 分子分母是不同的质数,分子、分母的最大公因数一定是1。
找最大公因数和最小公倍数的几种方法(质数又叫做素数,公因数又叫做公约数)一、找最小公倍数的方法1、列举法方法1、先分别写各自的(倍数),再找它们的(公倍数),然后在公倍数里找它 们的(最小公数)。
方法2: 先找较大数的(倍数),再找其中哪些是(较小)的倍数,最后找它们 的(最小公倍数)这种方法是分解质因数后,找出二个数相同的(质因数) ,及二个数各自 独有的(质因数),然后把二个数相同的(质因数,只取一个。
)和二个数各自 独有的(质因数),全部乘进去,所得的积就是这两个数的最小公倍数。
6862、60 禾口 42的最小公倍数=2X 3 X 2X 5X 7=420。
3、短除法。
用短除法求两个数的最小公倍数,一般用这两个数除以它们的(公因数)一直除到所得的两个商(只有公因数 1)为止。
把所有的(除数)和最后的两个4、特殊方法(观察法)1)两个数具有倍数关系的,它们的最小公倍数就是其中(较大)的数。
2)两个数是互质数的(互质数就是两个数只有公因数 1),它们的最小公倍数是 二个数的(乘积)。
2 1为 18和24的最小公倍数是 2X 3X 3X 4=72(商)连乘起来,就得到这两个数的 (最小公倍二、找最大公因数的方法1、列举法先找出两个数的(因数),再找出两个数的(公因数),最后找出二个数的(最大公因数)2、分解质因数法。
用分解质因数方法找二个数的最大公因数,是分解质因数后,找出相同的(质因数),把相同的(质因数)相乘,所得的积就是这两个数的最大公因数。
3、短除法。
用短除法求二个数的最大公因数,一般用这两个数除以它们的(公因数),一直除到所得的两个商(只有公因数1)为止。
然后把最后所有的(除数)连乘,就得到了二个数最大公因数。
例题9:用短除法求16和24的最大公因数:2 16 24 .2 8 12 .2 4 62 3最后所有的除数有2、2、2.所以16和24的最大公因数是2^2X2=84、观察法1)两个数具有倍数关系的,它们的最大公因数就是其中(较小)的数。
新人教版小学五年级下册数学《最大公因数》精品教案
课题:最大公因数
课型:新授课
教学内容:人教版小学五年级数学下册79例1—— 81例2及相应的练习题。
教学目标:1、使学生理解两个数的公因数和最大公因数的意义。
2、通过解决实际问题,引导学生初步了解两个数的公因
数和最大公因数在显示生活中的应用,并掌握求两个
数的最大公因数的方法。
3、培养学生分析、归纳等思维能力。
教学重难点:1、理解公因数和最大公因数的含义。
2、求两个数的最大公因数的方法。
教具准备:多媒体课件,方格纸。
教学过程:
一、创设情境,生成问题。
1、提问:什么是因数?
2、说一说6和8的因数有哪些?你是怎样找一个数的因数的?
3、创设情境:老师最近买了一套新房,现在正在装修。
瞧,这是
客厅的地面。
(电脑展现)我打算铺上地砖,假如请你们来铺
设,要选边长为几分米(整分米数)的地面砖,才能不用锯又
能整齐地铺满地面砖呢?
二、探索交流,解决问题。
1、动手操作。
老师给大家准备给大家准备了一张长16厘米,宽12厘米的长方形纸,那我们现在就用这张纸代替客厅的地面,利用手中的小正方形摆一摆,也可以画一画,或者算一算,看谁的方法多。
学生动手操作,教师指导。
2、探索交流:
哪个小组愿意把你们的结果告诉大家?
学生说出:用边长1分米的正方形地面砖铺地。
师:怎么铺?
学生说出:每行铺16快,铺12行,刚好铺满。
师:有没有其它铺的方法?
学生说出:我用边长2 分米的正方形地面砖铺。
师:怎么铺?
学生说出:每行铺8快,铺6行。
师:有没有其它铺的方法?
学生说出:我用边长4分米的正方形地面砖铺,每行4块,铺3行,也正好。
(课件随着学生说的,一步一步演示铺的过程)
师:还有别的铺法吗?用边长3分米的正方形地面砖可不可以?
让学生小组讨论:按要求能不能铺?让学生明确要锯分铺了。
同时让学生动手操作,并课件显示铺的结果,让学生进行比较!
3、观察发现,形成概念。
思考:“为什么边长是1、2、4分米的方砖才符合铺设要求?其它的都不行。
这里面有什么规律吗?那“1、2、4”与16和12到底有着什么特殊关系呢?”
生:因为1cm既是16的因数,又是12的因数。
2cm既是16的因数,又是12的因数。
4cm既是16的因数,又是12的因数。
1、2、4不仅是16的因数又是12的因数。
而3cm只是12的因数,却不是16的因数。
师小结:只有当既是12的因数,又是16的因数,才能符合标准。
那我们就用以前的方法找找16、12的因数。
板书:16的因数有:1、2、4、8、16
12的因数有:1、2、3、4、6、12
你发现什么?(我发现1、2、4既是12的因数又是16的因数。
)圈出1、2、4能不能简单的说说,它们是12和6的什么数码?
(1、2、4是12和16公有的因数,1、2、4是12和16的公因数)板书“公因数”
谁能说一说什么是公因数?
生概括,师板书:几个数共有的因数,就是这几个数的公因数
那16和12的公因数有:1、2、4
4、用集合圈表示
我们可以用集合圈来表示两个数的公因数
因数填入椭圆中。
(一个同学黑板上贴,其他同学自己纸上)
(出示两个用硬纸板剪成的椭圆,分开贴在黑板上。
)
师:(再出示2个椭圆,按照集合图的形式放)如果把2个椭圆按照这样放,那这些因数应该怎么填?在你自己的纸上填一填。
(一个同学黑板上贴)
师:为什么这么填,你是怎么想的?
生:相交部分填1、2、4,表示12和16的公因数,另两个部分表示它们剩余的因数。
师:因此,我们把1、2、4叫做16和12的公因数;其中,4是最大的公因数,叫做最大公因数。
揭示课题:这就是我们今天学习的公因数和最大公因数。
并板书师:黑板上的这图画,叫做集合图,用它来表示。
提问:如果我想选一种地面砖铺起来既快又方便,应该选择哪种铺法比较好?
让学生说出选择边长是4分米的正方形地面砖。
从而进一步感受4是12和16的最大公因数。
5、教学例2:怎么求18和27的最大公因数?
师:我们来找一下18和27的最大公因数,你准备怎样找,
在小组中交流,列举可能会有以下方法:
①:分别列出两个数的因数,再找最大公因数
②:先找出18的因数,再从18的因数中找出27的因数
③:先找出27的因数,再从27的因数中找出18的因数
④:利用分解质因数找最大公因数
学生汇报,教师板书:
18的因数有:1、2、3、6、9、18
27的因数有:1、3、9、27
公因数有:1、3、9
最大公因数是:9
请同学们仔细观察,两个数的公因数和最大公因数有什么关系? 通过讨论得出:所有的公因数都是最大公因数的因数。
三、巩固应用,内化提高。
1、请同学们很快说出下列每组数的最大公因数:(口答)
4和6 16 和32 1和7 8和9
2、在18
”,在
30
18和30的公因数有 ,最大公因数
是 。
提问:什么叫18和30 的公因数?
3、把15和20的因数、公因数分别填在下面的圈里,再找出它们的最大公因数。
15的因数 20的因数 15的因数 20的因数
提问:你是怎样理解这些集合圈的? 15和20的公因数
4、下面的每组数,有没有公因数2,有没有公因数3,有没有公因数5?
6和27 10和35 24和42 30和40
提问:每组公因数中各有公因数几?
设计意图:练习形式多样,层次分明,在概念的反复内化中,让学生扎扎实实地掌握基础知识和基本技能。
同时也让学生体会到数学的综合性,注重认知结构的深化和发展,有效地培养学生的思维和理解能力。
四、回顾整理,反思提升。
(1)因数、公因数和最大公因数有什么区别和联系?
(2)、你有哪些收获?
板书设计:最大公因数
16的因数有:1、2、4、8、16
12的因数有:1、2、3、4、6、12
几个数共有的因数,叫做这几个数的公因数
16和12的公因数有:1、2、4。
其中,4是最大的公
因数,叫做最大公因数。
例2:18的因数有:1、2、3、6、9、18
27的因数有:1、3、9、27
公因数有:1、3、9 最大公因数是:9。