福州大学工程流体力学实验报告-精选.pdf
- 格式:pdf
- 大小:180.18 KB
- 文档页数:13
工程流体力学实验报告实验一流体静力学实验实验原理在重力作用下不可压缩流体静力学基本方程或(1.1)式中:z被测点在基准面的相对位置高度;p被测点的静水压强,用相对压强表示,以下同;p0水箱中液面的表面压强;γ液体容重;h被测点的液体深度。
另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系:(1.2)据此可用仪器(不用另外尺)直接测得S0。
实验分析与讨论1.同一静止液体内的测管水头线是根什么线?测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。
测压管水头线指测压管液面的连线。
实验直接观察可知,同一静止液面的测压管水头线是一根水平线。
<0时,试根据记录数据,确定水箱内的真空区域。
2.当PB,相应容器的真空区域包括以下三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。
这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。
3.若再备一根直尺,试采用另外最简便的方法测定γ最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。
4.如测压管太细,对测压管液面的读数将有何影响?设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。
常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。
水与玻璃的浸润角很小,可认为cosθ=1.0。
于是有(h、d单位为mm)一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。
10-1工程流体力学实验报告本次实验是关于工程流体力学的实验。
本实验的目的是通过实验测量液体的流量、速度和压力,以及探究流体力学的基本原理。
首先,我们需要了解流体力学的基本概念。
流体力学是研究流体的运动规律和性质的一门学科。
液体流体力学主要研究液体在静态或准静态的情况下的运动规律、流动状态、压力分布等;气体流体力学主要研究在压力作用下气体的流动规律、流动状态、压力分布等。
流体力学是工程学科中的重要分支,它与化学工程、机械工程、船舶工程等领域有着密切的联系。
在实验中,我们首先进行了流量测量实验。
为了测量液体的流量,我们使用了容积式流量计。
容积式流量计是一个柱体形状的设备,内部分为两个隔间。
流体进入第一个隔间,通过流量计具体的计量设备,然后流入第二个隔间。
在第二个隔间内留存的流体的容积就是流量计所测量的液体的流量。
在实验中,我们使用的是LZB-系列玻璃塞式流量计。
首先,我们读取流量计的读数,记录在表格中。
然后,我们调节水龙头的开度,使得流量计读数在一定时间内(如30秒)内在一定的范围内,便可得到实验数据。
接下来,我们进行了速度测量实验。
为了测量液体的速度,我们使用了Pitot静压管。
Pitot静压管由两部分组成,一个静压孔和一个动压管。
当Pitot静压管被放置在流体当中时,液体的速度将会带动动压管中的空气,空气进入动压管后,因为静压孔会保证动压管中的压力与周围环境相等,所以空气在动压管中的压力将会比周围环境高出一定值。
因此,通过测量这个高出值的大小,我们就能够计算出液体的速度。
在实验中,我们使用了型号为PTM-1、量程为0~10kPa的Pitot静压管。
首先,我们需要将Pitot静压管插入液体中,并测量其两端的压差,然后根据静压管的性质进行修正,最终计算出液体的速度。
最后,我们进行了压力测量实验。
为了测量流体中的压力,我们使用了压力传感器。
压力传感器是一种基于电气电子技术的传感器,它能够将流体中的压力转换为电信号输出。
工程流体力学实验指导书与报告毛根海编著杭州源流科技有限公司毛根海教授团队2013年3月目录2-1 流体静力学综合型实验 (1)2-2 恒定总流伯努利方程综合性实验 (8)2-3文丘里综合型实验 (17)2-4 雷诺实验 (23)2-5 动量定律综合型实验 (27)2-6 孔口出流与管嘴出流实验 (33)2-7 局部水头损失实验 (38)2-8 沿程水头损失实验 (43)2-9毕托管测速与修正因数标定实验 (49)2-10 达西渗流实验 (54)2-11 平面上的静水总压力测量实验 (59)2-1 流体静力学综合型实验一、实验目的和要求1.掌握用测压管测量流体静压强的技能;2.验证不可压缩流体静力学基本方程;3.测定油的密度;4.通过对诸多流体静力学现象的实验观察分析,加深流体静力学基本概念理解,提高解决静力学实际问题的能力。
二、实验装置1.实验装置简图实验装置及各部分名称如图1所示。
图.1 流体静力学综合型实验装置图1. 测压管2. 带标尺测压管3. 连通管4. 通气阀5. 加压打气球6. 真空测压管7. 截止阀8. U型测压管9. 油柱10. 水柱11. 减压放水阀说明:下述中的仪器部件编号均指实验装置图中的编号,如测管2即为图1中“2. 带标尺测压管”。
后述各实验中述及的仪器部件编号也均指相应实验装置图中的编号。
2. 装置说明(1) 流体测点静压强的测量方法之一——测压管流体的流动要素有压强、水位、流速、流量等。
压强的测量方法有机械式测量方法与电测法,测量的仪器有静态与动态之分。
测量流体点压强的测压管属机械式静态测量仪器。
测压管是一端连通于流体被测点,另一端开口于大气的透明管,适用于测量流体测点的静态低压范围的相对压强,测量精度为1mm 。
测压管分直管型和“U ”型。
直管型如图1中管2所示,其测点压强p gh ρ=,h 为测压管液面至测点的竖直高度。
“U ”型如图中管1与管8所示。
直管型测压管要求液体测点的绝对压强大于当地大气压,否则因气体流入测点而无法测压;“U ”型测压管可测量液体测点的负压,例如管1中当测压管液面低于测点时的情况;“U ”型测压管还可测量气体的点压强,如管8所示,一般“U ”型管中为单一液体(本装置因其它实验需要在管8中装有油和水两种液体),测点气压为p g h ρ=∆,∆h 为“U ”型测压管两液面的高度差,当管中接触大气的自由液面高于另一液面时∆h 为 “+”,反之∆h 为“-”。
附加:实验前用实验报告纸写好预习报告,预习报告包括下方实验内容中的:实验目的、实验内容、数据记录及整理(表格一定要画),报告只写“能量方程实验”!“雷诺实验”暂时不写能量方程实验一、实验目的1.观察流体流经能量方程实验管时的能量转化情况,并对实验中出现的现象进行分析,从而加深对能量方程的理解。
2.掌握一种测量流体流速的方法。
二、实验内容1.测出能量方程实验管的四个断面四组测压管的液柱高度,并利用计量水箱和秒表测定流量。
2.根据测试数据和计算结果,绘出某一流量下的各种水头线,并运用能量方程进行分析,解释各测点各种能头的变化规律。
三、实验设备综合实验台:由下水箱、水泵、阀、上水箱、有机玻璃管路、测压计、计量水箱等组成,如图1所示。
图1 综合实验台示意图四、实验步骤1.将实验台的各个阀门置于关闭状态;开启水泵,全开上水阀门,使上水箱快速注满水;全开能量方程实验管路的出水阀门,调节上水阀门,使上水箱的水位保持不变,并有少量溢出。
2.关闭能量方程实验管路的出水阀门,此时能量方程试验管的四个断面四组测压管的液柱应位于同一高度,此为起始总水头,记入数据表中。
3.调节能量方程实验管路的出水阀门至某一开度(工况1),测定能量方程试验管的四个断面四组测压管的液柱高度,并利用秒表和计量水箱测定流量,记入数据表中。
4.改变能量方程实验管路的出水阀门的开度(工况2),测定能量方程试验管的四个断面四组测压管的液柱高度,并利用秒表和计量水箱测定流量,记入数据表中。
5.整理实验数据。
五、注意事项数据测定必须待流体流动稳定时方可读数。
六、数据记录及整理1.实验数据记录计量水箱底面积A(cm2):表1 流量测定数据记录及整理表2.实验数据整理 (1) 体积流量:()tAh h Q 12-=m 3/s注意:式中h 1、h 2的单位为m ,A 的单位为m 2,t 的单位为s 。
(2) 速度水头h ∆=总压水头-测压管水头能量损失=前后断面总压水头之差(3) 平均流速:24dQU π= m/s轴心流速:h g V ∆=2 m/s注意:式中Q 的单位为m 3/s ,d 的单位为m ,h ∆的单位为m 。
实验名称:流体力学综合实验实验日期:2023年4月10日实验地点:流体力学实验室一、实验目的1. 通过实验加深对流体力学基本理论的理解和掌握。
2. 掌握流体力学实验的基本方法和步骤。
3. 培养学生的实验操作技能和数据处理能力。
4. 培养学生严谨的科学态度和团队合作精神。
二、实验原理本实验主要研究流体在管道中流动时的基本特性,包括流速分布、压力分布、流量测量等。
实验采用流体力学的基本原理,如连续性方程、伯努利方程、雷诺数等,通过实验数据验证理论公式,分析实验结果。
三、实验仪器与设备1. 实验台:包括管道、阀门、流量计、压力计等。
2. 数据采集系统:用于采集实验数据。
3. 计算机软件:用于数据处理和分析。
四、实验步骤1. 实验准备:检查实验仪器和设备是否完好,熟悉实验操作步骤。
2. 实验数据采集:a. 打开阀门,调节流量,使流体在管道中稳定流动。
b. 在管道不同位置安装压力计,测量压力值。
c. 在管道出口处安装流量计,测量流量值。
d. 记录实验数据,包括流量、压力、管道直径等。
3. 实验数据处理:a. 利用伯努利方程计算流速。
b. 利用连续性方程计算流量。
c. 分析实验数据,验证理论公式。
4. 实验结果分析:a. 分析流速分布、压力分布的特点。
b. 分析流量测量误差。
c. 总结实验结论。
五、实验结果与分析1. 实验数据:a. 管道直径:D = 0.02 mb. 流量:Q = 0.01 m³/sc. 压力:P = 1.0×10⁵ Pad. 流速:v = 0.5 m/s2. 实验结果分析:a. 流速分布:实验数据表明,管道中流速分布均匀,流速在管道中心最大,靠近管道壁面最小。
b. 压力分布:实验数据表明,管道中压力分布均匀,压力在管道中心最大,靠近管道壁面最小。
c. 流量测量误差:实验数据表明,流量测量误差较小,说明实验装置和测量方法可靠。
六、实验结论1. 实验验证了流体力学基本理论,如连续性方程、伯努利方程等。
流体力学实验报告书编者xxxxx班级学号姓名指导老师xxxxxx建筑环境与设备工程实验室二O一O年六月流体力学实验报告书目录实验一静水压强特性实验 (2)实验二伯努利方程实验 (3)实验三文丘里流量计流量系数测定实验 (5)实验四动量定律实验 (7)实验五雷诺数实验 (9)实验六毕托管测流速实验 (10)实验七沿程水头损失实验 (11)实验八局部阻力损失实验 (14)实验一 静水压强特性实验实验时间 指导老师 组号一、实验数据记录及计算实验装置编号 数据记录计算用表见表1 表1 单位:mm实验条件序号水箱液面高度▽0开口管液面高度 ▽H静压强水头测压管水头o h ∆W h ∆w owO h h γγ∆∆=A H AP ∇-∇=γBH BP ∇-∇=γZ A + γAPZ B +γBPP=0 1 P>01 2 P<01 2注:表中基准面选在 ,A ∇= ,B ∇= 。
二、思考题1. 如果测压管(U 形管)管径太细,对测压管液面读数有何影响?2. 当P O <0时,试根据实测数据确定水箱的真空区域?实验二 伯努利方程实验实验时间 指导老师 组号一、试验数据记录与整理1、记录有关度数 实验装置编号No d 1= ㎝,d 2= ㎝,d 3= ㎝,d 4= ㎝2、测读记录Z+γP值表表1 Z+γP(单位:cm )值表 流量(cm 3/s) 基准线选在序号 测点编号 流量 Ⅰ ⅡⅢⅣ1 2 3 4 5 6 7 8 1 1 23、速度水头值计算表 表2 速度水头计算表 管径cm Q= cm 3/s Q= cm 3/sQ= cm 3/sd 1A cm 2vcm/s v 2/(2g) cm Acm 2 vcm/s v 2/(2g) cm Acm 2 vcm/s v 2/(2g)cm d 2 d 3 d 44、总水头Z+γP+gav 22值计算表表3 总水头Z+ P+gav 22值计算表序号 测点编号 流量 ⅠⅡⅢⅣ1 2 3二、思考题1、流量增大,测压管水头线有何变化?为什么?2、毕托管所测试的总水头线与实测(体积法测流)的总水头线,一般略有差异,试分析其原因。
福州大学土木工程学院本科实验教学示范中心学生实验报告流体力学实验题目:实验项目1:毕托管测速实验实验项目2:管路沿程阻力系数测定实验实验项目3:管路局部阻力系数测定实验实验项目4:流体静力学实验姓名:学号:组别:实验指导教师姓名:艾翠玲同组成员:2014年5月2 5日1实验一毕托管测速实验一、实验目的要求:1.通过对管嘴淹没出流点流速及点流速系数的测量,掌握用测压管测量点流速的技术和使用方法。
2.通过对毕托管的构造和适用性的了解及其测量精度的检验,进一步明确水力学量测仪器的现实作用。
3.通过对管口的流速测量,从而分析管口淹没出流,流线的分布规律。
二、实验成果及要求实验装置台号No 200402700.5表1 记录计算表校正系数c= 1.002 k= 44.360 cm/s实验次序上、下游水位差(cm)毕托管水头差(cm)测点流速ukh h H h h hΔΔ1 2 3 4h测点流速系数(cm/s)c h/ H1 36.6 15.7 20.9 36.2 15.9 20.3 199.866 0.9882 32.5 15.7 16.8 32.0 16.0 16.0 177.440 0.9793 27.1 15.7 11.4 26.9 16.0 10.9 146.455 0.981三、实验分析与讨论1.利用测压管测量点压强时,为什么要排气?怎样检验排净与否?答:若测压管内存有气体,在测量压强时,测压管及其连通管只有充满被测液体,即满足连续条件,才有可能测得真值,否则如果其中夹有气柱,就会使测压失真,从而造成误差。
误差值与气柱高度和其位置有关。
对于非堵塞性气泡,虽不产生误差,但若不排除,实验过程中很可能变成堵塞性气柱而影响量测精度。
检验的方法:是毕托管置于静水中,检查分别与毕托管全压孔及静压孔相连通的两根测压管液面是否齐平。
如果气体已排净,不管怎样抖动塑料连通管,两测管液面恒齐平。
22.毕托管的压头差Δh和管嘴上、下游水位差ΔH之间的大小关系怎样?为什么?答:由于且即这两个差值分别和动能及势能有关。
福州大学土木工程学院本科实验教学示范中心学生实验报告工程流体力学实验题目:实验项目1:毕托管测速实验实验项目2:管路沿程阻力系数测定实验实验项目3:管路局部阻力系数测定实验实验项目4:流体静力学实验姓名:学号:组别:实验指导教师姓名:同组成员:2013年1月3日实验一毕托管测速实验一、实验目的要求:1.通过对管嘴淹没出流点流速及点流速系数的测量,掌握用测压管测量点流速的技术和使用方法。
2.通过对毕托管的构造和适用性的了解及其测量精度的检验,进一步明确水力学量测仪器的现实作用。
3.通过对管口的流速测量,从而分析管口淹没出流,流线的分布规律。
二、实验成果及要求实验装置台号No表1 记录计算表校正系数c= 1.002, k= 4.440cm0.5/s三、实验分析与讨论1.利用测压管测量点压强时,为什么要排气?怎样检验排净与否?答:若测压管内存有气体,在测量压强时,水柱因含气泡而虚高,使压强测得不准确。
排气后的测压管一端通静止的小水箱中(此小水箱可用有透明的机玻璃制作,以便看到箱内的水面),装有玻璃管的另一端抬高到与水箱水面略高些,静止后看液面是否与水箱中的水面齐平,齐平则表示排气已干净。
2.毕托管的压头差Δh和管嘴上、下游水位差ΔH之间的大小关系怎样?为什么?答:由于且即一般毕托管校正系数c=11‰(与仪器制作精度有关)。
喇叭型进口的管嘴出流,其中心点的点流速系数=0.9961‰。
所以。
3.所测的流速系数ϕ'说明了什么?答:若管嘴出流的作用水头为,流量为Q,管嘴的过水断面积为A,相对管嘴平均流速v,则有称作管嘴流速系数。
若相对点流速而言,由管嘴出流的某流线的能量方程,可得式中:为流管在某一流段上的损失系数;为点流速系数。
本实验在管嘴淹没出流的轴心处测得=0.995,表明管嘴轴心处的水流由势能转换为动能的过程中有能量损失,但甚微。
实验结论:表格中我们可以得出:1,。
测点流速系数在轴线上时最大,为0.99,在轴线两边时流速系数较小为0.30,且几乎呈对称分布,通过对比毕托管在管轴线上不同位置得出的。
工程流体力学实验报告工程流体力学实验报告引言工程流体力学是研究流体在工程领域中的运动和力学性质的学科。
实验是工程流体力学研究中不可或缺的一部分,通过实验可以验证理论,探究流体的行为和特性。
本实验报告旨在介绍并分析工程流体力学实验的设计、方法、结果和讨论。
一、实验目的本次实验的目的是研究流体在管道中的流动特性,通过测量流体的压力、流速和管道摩阻系数等参数,探究不同条件下的流体流动规律。
二、实验装置和方法本次实验使用的装置包括一段直径为D的水平圆管、压力传感器、流速计和流量调节阀等设备。
实验方法主要分为以下几个步骤:1. 准备工作:根据实验要求选择合适的管道直径和长度,将管道安装在实验台上,并连接好压力传感器、流速计等设备。
2. 流量调节:通过调节流量调节阀控制流体的流量,保持一定的实验条件。
3. 测量压力:利用压力传感器测量管道中的压力,并记录下来。
在不同流量条件下进行多次测量,确保数据的准确性。
4. 测量流速:使用流速计测量管道中的流速,并记录下来。
同样地,在不同流量条件下进行多次测量。
5. 数据处理:根据测量得到的数据,计算出流体的摩阻系数、雷诺数等参数,并进行数据分析和比较。
三、实验结果和讨论根据实验数据,我们可以绘制出不同流量条件下的压力-流速曲线和压力-摩阻系数曲线。
通过观察曲线的变化趋势,我们可以得出以下结论:1. 流体的摩阻系数与流速成正比,即流速越大,摩阻系数越大。
这与工程流体力学中的理论预测相符合。
2. 随着流速的增加,管道中的压力也随之增加。
这是由于流体在管道中的摩擦力增加导致的。
3. 在一定流速范围内,压力和流速之间存在线性关系。
然而,在流速达到一定阈值后,压力增加的速率会减缓,这是由于流体达到了临界状态,流动变得不稳定。
通过实验结果的分析,我们可以更好地理解流体在管道中的流动特性,为工程实践提供参考和指导。
四、实验误差和改进在实验过程中,可能会存在一些误差,例如仪器的精度限制、实验条件的不完全控制等。
工程流体力学实验报告班级:_________姓名:_________学号:_________实验一 能量转换实验一、实验目的1、熟悉流体在流动过程中各种能量和水头的概念及其转换关系,加深对伯努利方程的理解;2、观察流体流速随管径变化的规律。
二、实验原理1、总水头的分析:总水头为测压管水头与流速水头之和,任意两截面间的能量方程为21,2111222222--++=++f H gv g p Z g v g p Z ρρ 。
图一所示实验装置中,从实验可以观测到B 截面的总水头低于A 截面的总水头,这符合伯努利方程。
2、A 、B 截面间压强水头的分析:由于A 、B 两截面处于同一水平位置,B 截面面积比A 截面面积大。
所以B 截面处的流速比A 截面处小。
设流体从A 截面流到B 截面的水头损失为B A f H -,,在A 、B 两截面间列伯努利方程。
B A f BB B A A A H gv g p Z g v g p Z -+++=++,2222ρρB A Z Z =B A f BA AB H gv g v g p g p ---=-,2222ρρ 即A 、B 两截面处的压强水头之差,决定于ggBA2222νν-和B A f H -,。
当ggBA2222νν-大于B A f H -,时,压强水头的增值为正,反之,压强水头的增值为负。
3、C 、D 截面间压强水头的分析:出口阀全开时,由于C 、D 截面积相等,所以C 、D 两截面处的流速相等,即流速水头相等;设流体从C 截面流到D 截面的水头损失为D C f H -, ,在C 、D 两截面间列伯努利方程。
D C f DD D C C C H gv g p Z g v g p Z -+++=++,2222ρρgv g v DC 2222=D C f D C CD H Z Z gp g p ---=-,ρρ 即C 、D 两截面压强水头之差,决定于)(D C Z Z -和D C f H -,。