指令级并行性及其动态扩展
- 格式:pptx
- 大小:1.15 MB
- 文档页数:36
题一11.计算机系统结构的层次结构由高到低分别为应用语言机器级,高级语言机器级,汇编语言机器级,操作系统机器级,传统机器语言机器级,微程序机器级12.计算机系统弗林(Flynn)分类法,把计算机系统分成单指令流单数据流(SISD)、单指令流多数据流(SIMD)、多指令单数据流和多指令多数据流四大类。
13.透明指的是客观存在的事物或属性从某个角度看不到,它带来的好处是简化某级的设计,带来的不利是无法控制。
22.数据结构和数据表示之间是什么关系?确定和引入数据表示的基本原则是什么?数据表示是能由硬件直接识别和引用的数据类型。
数据结构反映各种数据元素或信息单元之间的结构关系。
数据结构要通过软件映象变换成机器所具有的各种数据表示实现,所以数据表示是数据结构的组成元素。
(2分)不同的数据表示可为数据结构的实现提供不同的支持,表现在实现效率和方便性不同。
数据表示和数据结构是软件、硬件的交界面。
(2分)除基本数据表示不可少外,高级数据表示的确定和引入遵循以下原则:(1)看系统的效率有否提高,是否减少了实现时间和存储空间。
(2)看引入这种数据表示后,其通用性和利用率是否高。
15.引入数据表示的两条基本原则是:一看系统的效率有否提高;二看数据表示的通用性和利用率是否高。
13.计算机组成指的是计算机系统结构的逻辑实现,包括机器级内的数据流和控制流的组成及逻辑设计等。
计算机实现指的是计算机组成的物理实现,。
21、软件和硬件在什么意义上是等效的?在什么意义上是不等效的?逻辑上等效,性能、价格、实现难易程度上不一样。
22.说明翻译和解释的区别和联系.区别:翻译是整个程序转换,解释是低级机器的一串语句仿真高级机器的一条语句。
联系:都是高级机器程序在低级机器上执行的必须步骤。
19.计算机系统结构也称计算机体系结构,指的是传统机器级的系统结构。
它是软件和硬件/固件的交界面,是机器语言汇编语言程序设计者或编译程序设计者看到的机器物理系统的抽象。
系统结构名词解释(3)系统结构名词解释结构冲突:因硬件资源满足不了指令重叠执行的要求而发生的冲突。
数据冲突:当指令在流水线中重叠执行时,因需要用到前面指令的执行结果而发生的冲突。
控制冲突:流水线遇到分支指令或其它会改变PC值的指令所引起的冲突。
定向:用来解决写后读冲突的。
在发生写后读相关的情况下,在计算结果尚未出来之前,后面等待使用该结果的指令并不见得是马上就要用该结果。
如果能够将该计算结果从其产生的地方直接送到其它指令需要它的地方,那么就可以避免停顿。
写后读冲突:考虑两条指令i和j,且i在j之前进入流水线,指令j用到指令i的计算结果,而且在i将结果写入寄存器之前就去读该寄存器,因而得到的是旧值。
读后写冲突:考虑两条指令i和j,且i在j之前进入流水线,指令j的目的寄存器和指令i的源操作数寄存器相同,而且j在i读取该寄存器之前就先对它进行了写操作,导致i读到的值是错误的。
写后写冲突:考虑两条指令i和j,且i在j之前进入流水线,,指令j和指令i的结果单元(寄存器或存储器单元)相同,而且j在i写入之前就先对该单元进行了写入操作,从而导致写入顺序错误。
这时在结果单元中留下的是i写入的值,而不是j写入的。
链接技术:具有先写后读相关的两条指令,在不出现功能部件冲突和Vi冲突的情况下,可以把功能部件链接起来进行流水处理,以达到加快执行的目的。
分段开采:当向量的长度大于向量寄存器的长度时,必须把长向量分成长度固定的段,然后循环分段处理,每一次循环只处理一个向量段。
半性能向量长度:向量处理机的性能为其最大性能的一半时所需的向量长度。
向量长度临界值:向量流水方式的处理速度优于标量串行方式的处理速度时所需的向量长度的最小值。
4.1解释下列术语指令级并行:简称ILP。
是指指令之间存在的一种并行性,利用它,计算机可以并行执行两条或两条以上的指令。
指令调度:通过在编译时让编译器重新组织指令顺序或通过硬件在执行时调整指令顺序来消除冲突。
计算机体系结构的基本概念计算机体系结构是指机器语言程序的设计者或是编译程序设计者所看到的计算机系统的概念性结构和功能特性。
Amdahl所定义的体现结构是指程序员面对的是硬件的系统。
所关心的是如何合理的进行软硬件功能的分配。
计算机系统结构是指机器语言级的程序员所了解的计算机的属性,即外特性。
可以包含数据表示,寄存器定义、数量、使用方式,指令系统,中断系统,存存储系统,IO系统等。
计算机组成是计算机结构的逻辑实现。
可以包含数据通路宽度,专用部件设置,缓冲技术,优化处理等。
计算机的实现是指其计算机组成的物理实现。
包括处理机,主存部件的物理结构,器件的集成度,速度的选择,模块、硬件、插件底板的划分和连接。
从使用语言的角度,可以把计算机系统按功能从高到低分为7级:0应用语言机器级、1高级程序语言机器级、2汇编语言机器级、3操作系统机器级、4传统机器语言机器级、5微程序机器级和6电子线路级。
3~6级为虚拟机,其语言功能均由软件实现。
硬件功能分配的基本原则:(1)功能要求。
首先是应用领域对应的功能要求,其次是对软件兼容性的要求;(2)性能要求。
如运算速度,存储容量,可靠性,可维护性和人机交互能力等;(3)成本要求。
体系结构设计的方法有三种:由上而下-从考虑如何满足应用要求开始设计;由下而上-基于硬件技术所具有的条件;由中间开始的方法。
体系设计的步骤:需求分析、需求说明、概念性设计、具体设计、优化和评价。
计算机体系结构的分类:(1)弗林FL YNN分类法:按指令流和数据流将计算机分为4类:①单指令流、单数据流-Single Instruction Stream Single Data Stream,SISD。
计算机,即传统的单处理机,通常用的计算机多为此类,如脉动阵列计算机systolic array;②单指令流、多数据流-Multiple,SIMD。
典型代表是并行处理机。
其并行性在于指令一级。
如ILLIAC、PEPE、STARAN、MPP等;③MISD计算机;④MIMD计算机。
计算机体系结构性能优化方法在计算机体系结构的发展过程中,性能优化是一个至关重要的环节。
性能优化是指在保持计算机系统硬件和软件功能的前提下,提高其计算速度、响应时间、资源利用率和可靠性等方面的手段和措施。
本文将介绍一些常见的计算机体系结构性能优化方法。
一、并行计算并行计算是通过将一个任务拆分为多个子任务,然后将这些子任务分配给多个处理器同时执行的方法。
它可以充分利用多核处理器的并行计算能力,提高计算吞吐量和并发能力。
在并行计算中,需要注意任务的划分和调度,合理安排任务的调度顺序和负载均衡,以充分发挥并行计算的优势。
二、指令级并行指令级并行是通过同时执行多条指令来提高计算机的性能。
它包括指令并发和流水线技术。
指令并发是指在同一时钟周期内并行执行多条指令,充分利用处理器的执行单元。
流水线技术是指将指令的执行过程划分为多个阶段,使多条指令在不同阶段同时执行,以提高指令的吞吐量。
三、存储器层次结构优化存储器层次结构是计算机存储器的组织方式。
在性能优化中,存储器的访问速度是一个关键因素。
通过合理设计存储器的层次结构,如缓存技术、预取技术和虚拟存储器技术,可以提高存储器的访问速度和命中率,减少访问延迟,从而提高计算机的性能。
四、并行I/O优化在大规模数据处理和并行计算中,I/O操作成为性能瓶颈。
通过采用并行I/O技术,可以同时进行多个I/O操作,提高数据传输的速度和并发能力。
在并行I/O优化中,还可以使用缓冲区和预读取技术来提高I/O性能,减少CPU等待时间。
五、负载均衡优化负载均衡是指将任务合理分配给多个处理器,使得各个处理器的负载均衡,提高系统的整体性能。
在负载均衡优化中,需要考虑任务的复杂度和执行时间,采用任务分配算法和调度算法来实现任务的均衡分配。
六、优化算法和数据结构优化算法和数据结构是计算机程序设计的关键。
通过优选算法和数据结构,可以提高程序的效率和性能。
在实际应用中,可以使用一些常见的优化算法,如贪心算法、分治算法和动态规划算法,以及高效的数据结构,如哈希表和平衡二叉树,来优化计算机的性能。
第1章计算机系统结构的基本概念1.1 解释下列术语层次机构: 按照计算机语言从低级到高级的次序, 把计算机系统按功能划分成多级层次结构, 每一层以一种不同的语言为特征。
这些层次依次为: 微程序机器级, 传统机器语言机器级, 汇编语言机器级, 高级语言机器级, 应用语言机器级等。
虚拟机: 用软件实现的机器。
翻译: 先用转换程序把高一级机器上的程序转换为低一级机器上等效的程序, 然后再在这低一级机器上运行, 实现程序的功能。
解释: 对于高一级机器上的程序中的每一条语句或指令, 都是转去执行低一级机器上的一段等效程序。
执行完后, 再去高一级机器取下一条语句或指令, 再进行解释执行, 如此反复, 直到解释执行完整个程序。
计算机系统结构: 传统机器程序员所看到的计算机属性, 即概念性结构与功能特性。
在计算机技术中, 把这种本来存在的事物或属性, 但从某种角度看又好像不存在的概念称为透明性。
计算机组成: 计算机系统结构的逻辑实现, 包含物理机器级中的数据流和控制流的组成以及逻辑设计等。
计算机实现: 计算机组成的物理实现, 包括处理机、主存等部件的物理结构, 器件的集成度和速度, 模块、插件、底板的划分与连接, 信号传输, 电源、冷却及整机装配技术等。
系统加速比: 对系统中某部分进行改进时, 改进后系统性能提高的倍数。
Amdahl定律: 当对一个系统中的某个部件进行改进后, 所能获得的整个系统性能的提高, 受限于该部件的执行时间占总执行时间的百分比。
程序的局部性原理: 程序执行时所访问的存储器地址不是随机分布的, 而是相对地簇聚。
包括时间局部性和空间局部性。
CPI: 每条指令执行的平均时钟周期数。
测试程序套件: 由各种不同的真实应用程序构成的一组测试程序, 用来测试计算机在各个方面的处理性能。
存储程序计算机: 冯·诺依曼结构计算机。
其基本点是指令驱动。
程序预先存放在计算机存储器中, 机器一旦启动, 就能按照程序指定的逻辑顺序执行这些程序, 自动完成由程序所描述的处理工作。
并行计算机体系结构的分类并行计算机体系结构是指在计算机系统中,通过多个处理单元同时执行任务以提高计算性能的架构框架。
根据不同的设计思想和实现方式,可以将并行计算机体系结构分为多种分类。
本文将介绍几种常见的并行计算机体系结构分类,并对其特点和应用进行讨论。
1.指令级并行体系结构指令级并行体系结构(ILP)是基于指令级并行技术的一种体系结构。
ILP通过将单个指令分解为多个子操作,并在不同的处理单元上同时执行这些子操作,从而实现指令级并行。
这种体系结构适用于需要大量计算的应用,如科学计算和图像处理。
其中,超标量和超流水线是常见的ILP体系结构。
超标量体系结构通过在一个时钟周期内同时发射多条指令,利用指令之间的独立性实现指令级并行。
而超流水线体系结构则通过将指令的执行过程分解为多个阶段,并在每个阶段上同时执行不同的指令,进一步提高了并行度。
这两种体系结构能够充分利用处理器资源,提高计算性能。
2.向量处理体系结构向量处理体系结构是基于向量处理器的一种体系结构。
向量处理器是一种特殊的处理器,能够同时处理多个数据元素。
在向量处理体系结构中,处理器通过执行向量指令,对向量数据进行并行操作。
这种体系结构适用于需要对大规模数据进行相同类型操作的应用,如科学计算和图像处理。
向量处理体系结构具有高度的并行性和数据吞吐量,能够充分利用数据级并行性,提高计算性能。
然而,由于向量处理器对数据的访问具有一定的限制,对于不适合向量化的应用,其性能优势可能会受到限制。
3.多核体系结构多核体系结构是指在一个计算机系统中,使用多个处理核心来执行任务的体系结构。
每个处理核心都具有独立的处理器和内存,能够同时执行不同的指令流。
多核体系结构适用于需要同时执行多个任务的应用,如服务器和大数据处理。
多核体系结构具有良好的可扩展性和并行性,能够提供更高的计算性能。
通过将任务分配给不同的处理核心,可以充分利用系统资源,提高系统的吞吐量和响应速度。
然而,多核体系结构也面临着任务调度和数据共享的挑战,需要采用合适的并行编程模型和调度算法来优化性能。
高性能计算发展与应用上海超级计算中心编印10《高性能计算发展与应用》 2007年第四期 总第二十一期专家谈可扩展多核编程问题编译:李 利 王广益 江南计算技术研究所 无锡 214083美国RapidMind公司首席科学家Michael D. McCool教授近日在《HPCwire》杂志上撰文探讨了他对可扩展多核编程的看法,现将该文编译整理如下。
多核设备将在结构和内核数量方面迅速发展,这促使软件开发人员将代码与硬件分离开来,以便应用程序可在不同结构上转移,并随着新一代处理器面市而自动扩展。
一种合适的编程模型能够在保持性能不降低(甚至有所增强)的情况下实现这种分离。
目前,单核处理器的性能已趋向极限,通过增加晶体管数已很难再提高其性能;而随着时钟频率不断攀升,功耗也以非线性方式迅速增加。
因此,业界所有处理器制造商都已经转而采用显式并行多核处理器的策略。
通过把多个小的高效内核结合在单块芯片上,就可以在提高整体性能的同时,获得更高的能效。
遗憾的是,只有并行化应用才能发挥这一优势。
事实上,由于处理器的每个内核通常都比过去单核处理器的速度慢,所以非并行应用在多核处理器上反而变慢了。
此外,由于内核数量将随着时间呈指数级增长(按照摩尔定律的新解释),因此要想获得实际性能增益,所有应用都必须以可扩展方式编写,使之能够利用任意数量的内核。
自动并行化工具的作用可能不大。
现代处理器已经通过低级指令级并行性(ILP)方式开发了应用内部的绝大部分隐式并行。
在大多数应用中,这种隐式并行量很小,而且几乎已被当今处理器充分发掘了。
实际上,存储器系统是众多应用中的首要瓶颈。
为了充分发挥处理器的增加性能,数据必须尽可能高效地进入和离开芯片。
如果数据速率跟不上计算性能,那么任何片上计算能力的增加都是无用的。
在多核处理器中,所有内核都必须共享有限的片外带宽,这使得存储器访问瓶颈更加突出。
另外,对于那些不在高速缓存(Cache)中的数据而言,从处理器访问主存储器需数百个处理器时钟周期才能完成。