曲线积分与曲面积分习题与答案
- 格式:doc
- 大小:1.87 MB
- 文档页数:35
曲线积分与曲面积分习题详解习题9-11 计算下列对弧长的曲线积分:(1)I s=⎰,其中C是抛物线2y x=上点(0,0)O到(1,1)A之间的一段弧;解: 由于C由方程2y x=(01x≤≤)给出,因此1I s x x===⎰⎰⎰123211(14)1)1212x⎡⎤=+=⎢⎥⎣⎦.(2)dCI x s=⎰,其中C是圆221x y+=中(0,1)A到B之间的一段劣弧;解:C AB=的参数方程为:cos,sinx yθθ==()42ππθ-≤≤,于是24cosIππθ-=⎰24cos1dππθθ-==⎰.(3)(1)dCx y s++⎰,其中C是顶点为(0,0),(1,0)O A及(0,1)B的三角形的边界;解: L是分段光滑的闭曲线,如图9-2所示,根据积分的可加性,则有(1)Cx y ds++⎰(1)OAx y ds=++⎰(1)ABx y ds+++⎰(1)BOx y ds+++⎰,由于OA:0y=,01x≤≤,于是ds dx===,故13(1)(01)2x y ds x dx++=++=⎰⎰OA,而:AB1y x=-,01x≤≤,于是ds==.xyoABC10(1)[(1)ABx y ds x x ++=+-+=⎰⎰同理可知:BO 0x =(01y ≤≤),0ds =,则13(1)[01]2BOx y ds y dy ++=++=⎰⎰. 综上所述33(1)322Cx y ds -+=+=+⎰. (4)22Cx y ds +⎰,其中C 为圆周22x y x +=;解 直接化为定积分.1C 的参数方程为11cos 22x θ=+,1sin 2y θ=(02θπ≤≤), 且12ds d θθ=.于是22201cos222Cx y ds d πθθ+=⋅=⎰⎰.(5)2 ds x yz Γ⎰,其中Γ为折线段ABCD ,这里A ,B ,C ,D 的坐标依次为(0,0,0), (0,0,2),(1,0,2),(1,2,3);解 如图所示, 2222ABBCCDx yzds x yzds x yzds x yzds Γ=++⎰⎰⎰⎰.线段AB 的参数方程为 0,0,2(01)x y z t t ===≤≤,则ds =2dt =,故02200 12=⋅⋅⋅=⎰⎰dt t yzds x AB.线段BC 的参数方程为,0,2(01)x t y z t ===≤≤,则,ds dt ==122 0020BCx yzds t dt =⋅⋅⋅=⎰⎰,线段CD 的参数方程为1,2,2x y t z t===+)10(≤≤t ,则ds ==,故1122012(2))CDx yzds t t t t dt =⋅⋅+=+=⎰⎰ 2 (2所以2222A BB CC Dx y z d s x y z d sx y z d sd s Γ=++⎰⎰⎰⎰(6)2ds y Γ⎰,其中Γ为空间曲线2222,(0),x y z a a x z a ⎧++=>⎨+=⎩. 解: Γ在,x y 平面的投影为:2222()x y a x a ++-=,即22220x y ax +-=,从而2221222a x y a ⎛⎫-+= ⎪⎝⎭.利用椭圆的参数方程得Γ的参数方程为11cos ,22:, 02.11cos ,22x a a y z a x a a θθθπθ⎧=+⎪⎪⎪Γ=≤≤⎨⎪⎪=-=+⎪⎩由于d s θθθ==. 则332π2π2222 01ds sin d sin d 222y a θθθθΓ===⎰⎰2 设一段曲线ln (0)y x a x b =<≤≤上任一点处的线密度的大小等于该点横坐标的平方,求其质量.解 依题意曲线的线密度为2x ρ=,故所求质量为2CM x ds =⎰,其中:ln (0)C y x a x b =<≤≤.则C 的参数方程为ln x xy x =⎧⎨=⎩(0)a x b <≤≤, 故ds ==,所以3221[(1)]3b a aM x ==+⎰3322221[(1)(1)]3b a =+-+.3 求八分之一球面2221(0,0,0)x y z x y z ++=≥≥≥的边界曲线的重心,设曲线的密度1ρ=。
第十一章 曲线积分与曲面积分第三节 Green 公式及其应用1.利用Green 公式,计算下列曲线积分: (1)⎰-Lydx x dy xy 22,其中L 为正向圆周922=+y x ; 解:由Green 公式,得232222381()22LDxy dy x ydx x y dxdy d r dr ππθ-=+==⎰⎰⎰⎰⎰Ñ, 其中D 为229x y +≤。
(2)⎰-++Ly ydy y xe dx y e)2()(,其中L 为以)2,1(),0,0(A O 及)0,1(B 为顶点的三角形负向边界;解:由Green 公式,得()(2)(1)1y y y y LDDe y dx xe y dy e e dxdy dxdy ++-=---==⎰⎰⎰⎰⎰Ñ。
*(3)⎰+-Ldy xy ydx x22,其中L 为x y x 622=+的上半圆周从点)0,6(A 到点)0,0(O 及x y x 322=+的上半圆周从点)0,0(O 到点)0,3(B 连成的弧AOB ;解:连直线段AB ,使L 与BA u u u r围成的区域为D ,由Green 公式,得6cos 2222223203cos 444620()01515353cos 334442264LDBAx ydx xy dy y x dxdy x ydx xy dy d r dr d πθθπθπθθπ-+=+--+=-==⨯⨯⨯=⨯⨯⎰⎰⎰⎰⎰⎰⎰u u u r*(4)⎰+-Lyx xdy ydx 22,其中L 为正向圆周4)1(22=++y x . 解:因为22222()x y P Q y x x y -∂∂==∂∂+,(,)(0,0)x y ≠。
作足够小的圆周l :222x y r +=,取逆时针方向,记L 与l 围成的闭区域为D ,由Green 公式,得220L lydx xdyx y +-=+⎰Ñ,故 22222222222sin cos 2L l l ydx xdy ydx xdy ydx xdyx y x y r r r d rπθθθπ---+=-=++--==-⎰⎰⎰⎰蜒?2.计算下列对坐标的曲线积分:⎰+-Lx xydy e dx y esin 2)cos 21(,其中L 为曲线x y sin =上由点)0,(πA 到点)0,0(O 的一段弧;解:(12cos ),2sin x xP e y Q e y =-=,2sin x P Q e y y x∂∂==∂∂, 故积分与路径无关,取)0,(πA 经x 轴到点)0,0(O 的一条路径, 从而 原式=(12cos )2sin 1x x x AOe y dx e ydy e dx e ππ-+=-=-⎰⎰。
25第十一章 曲线积分与曲面积分第一节 对弧长的曲线积分1. 选择题:(1) 对弧长的曲线积分的计算公式⎰Lds y x f ),(=⎰'+'βαφϕφϕdt t t t t f )()()](),([22中要求 (C ) .(A ) α>β (B ) α=β (C ) α<β(2) 设光滑曲线L 的弧长为π,则⎰Lds 6= (B ) . (A ) π ( B ) π6 (C ) π122.计算下列对弧长的曲线积分: (1)⎰+Lds y x )(,其中L 为I ) 以)1,1(),0,1()0,0(B A O ,为顶点的三角形的边界; II )上半圆周222R y x =+;解:I )111()()()()(1)13222LOAABBOx y ds x y ds x y ds x y dsxdx y dy +=+++++=+++=++=⎰⎰⎰⎰⎰⎰⎰II )22()(cos sin [sin cos ]2Lx y ds R t R t R t t R ππ+=+=-=⎰⎰(2)⎰Lyds ,其中L 为x y 22=上点)2,2(与点)2,1(-之间的一段弧;解:2223/211[(1)]33Lyds y ===+=⎰⎰⎰26*(3) ⎰Γ+ds y x )(22,其中Γ为螺旋线bt z t a y t a x ===,sin ,cos ;)20(π≤≤t解:1/222222222220()(sin cos )2x y ds a a t a t b dta a πππΓ+=++==⎰⎰⎰*(4)⎰+L ds y x 22,其中L 为y y x 222-=+;解:L 的极坐标方程为2sin r θ=-,2πθπ≤≤,则ds θ=。
222224sin 8Lrd d ππππππππθθθθθ====-=⎰⎰⎰⎰第二节 对坐标的曲线积分1.填空题(1) 对坐标的曲线积分的计算公式⎰+Ldy y x Q dx y x P ),(),(=⎰'+'βαφφϕϕφϕdt t t t Q t t t P )}()](),([)()](),([{中,下限α对应于L 的 始 点,上限β对应于L 的 终 点; (2) 第二类曲线积分⎰+Ldy y x Q dx y x P ),(),(化为第一类曲线积分是[(,)cos (,)cos ]LP x y dx Q x y ds αβ+⎰ ,其中βα,为有向光滑曲线L 在点),(y x 处的 切向量 的方向角.2.选择题:(1) 对坐标的曲线积分与曲线的方向 (B )(A )无关, (B )有关;(2) 若),(y x P ,),(y x Q 在有向光滑曲线L 上连续,则 (A ) (A ) ⎰-+L dy y x Q dx y x P ),(),(=⎰+-L dy y x Q dx y x P ),(),(,(B )⎰-+L dy y x Q dx y x P ),(),(=⎰+Ldy y x Q dx y x P ),(),(.273.计算下列对坐标的曲线积分:(1)⎰+Ldx y x )(22,其中L 为从点)0,0(A 经上半圆周1)1(22=+-y x(0)y ≥到点)1,1(B 的一段弧;解:L的方程为221(1)y x =--,:01x →,则112222()[1(1)]21Lx y dx x x xdx +=+--==⎰⎰⎰ (2) ⎰-Lydx xdy ,其中L 为2x y =上从点)1,1(B 到点)1,1(-A 的一段弧;解:112211223Lxdy ydx x xdx x dx x dx ---=-==-⎰⎰⎰。
第十章 曲线积分与曲面积分答案一、选择题 1.曲线积分()sin ()cos xL f x e ydx f x ydy ⎡⎤--⎣⎦⎰与路径无关,其中()f x 有一阶连续偏导数,且(0)0f =,则()f x = BA.1()2x x e e -- B. 1()2x x e e -- C. 1()2x x e e -+ D.0 2.闭曲线C 为1x y +=的正向,则Cydx xdyx y -+=+⎰Ñ C A.0 B.2 C.4 D.6 3.闭曲线C 为2241x y +=的正向,则224Cydx xdyx y -+=+⎰Ñ D A.2π- B. 2π C.0 D. π 4.∑为YOZ 平面上221y z +≤,则222()xy z ds ∑++=⎰⎰ DA.0B. πC.14π D. 12π 5.设222:C x y a +=,则22()Cx y ds +=⎰Ñ CA.22a πB. 2a πC. 32a πD. 34a π 6. 设∑为球面2221x y z ++=,则曲面积分∑[ B ]A.4πB.2πC.πD.12π7. 设L 是从O(0,0)到B(1,1)的直线段,则曲线积分⎰=Lyds [ C ]A. 21B. 21- C. 22 D. 22-8. 设I=⎰Lds y 其中L 是抛物线2x y =上点(0, 0)与点(1, 1)之间的一段弧,则I=[D ]A.655 B.1255 C.6155- D. 12155- 9. 如果简单闭曲线 l 所围区域的面积为 σ,那么 σ 是( D ) A.⎰-l ydy xdx 21; B. ⎰-l xdx ydy 21;C.⎰-l xdy ydx 21; D. ⎰-lydx xdy 21。
10.设2222:(0)S x y z R z ++=≥,1S 为S 在第一卦限中部分,则有 CA.14SS xds xds =⎰⎰⎰⎰ B.14SS yds yds =⎰⎰⎰⎰C.14SS zds zds =⎰⎰⎰⎰ D.14SS xyzds xyzds =⎰⎰⎰⎰二、填空题1. 设L 是以(0, 0), (1, 0), (1, 1), (0, 1)为顶点的正方形边界正向一周,则曲线积分⎰=+-L y dy x eydx )(2-22.S 为球面2222a z y x =++的外侧,则⎰⎰=-+-+-sdxdy y x dzdx x z dydz z y )()()(03.⎰=++-12222y x yx xdyydx =π2-4.曲线积分22()Cx y ds +⎰Ñ,其中C 是圆心在原点,半径为a 的圆周,则积分值为32a π 5.设∑为上半球面)0z z =≥,则曲面积分()222ds y x z ∑++⎰⎰= 32π6. 设曲线C 为圆周221x y +=,则曲线积分()223d Cxy x s +-⎰Ñ 2π .7. 设C 是以O(0,0),A(1,0),B(0,1)为顶点的三角形边界,则曲线积分⎰=+C ds )yx (8. 设∑为上半球面z=,则曲面积分∑的值为 83π。
一、选择题1. 设有曲线222:r y x C =+,0≥y ,其中0>r 为常数,则对弧长的曲线积分()⎰+Cds y x22的值为( )A. 2r π; B. 3r π; C. 4r π; D. 32r π.2. 简单闭曲线L 所围成的区域的面积为S ,L 取逆时针方向,则S 为 ( ) A.⎰-L ydy xdx 21; B. ⎰-L xdx ydy 21; C. ⎰-L xdy ydx 21; D. ⎰-Lydx xdy 21. 3. 设平面曲线C 是从点)1,1(到点)3,2(的直线段,则对坐标的曲线积分()⎰=-+Cdy x y xdx 2( )A. 4-;B. 4;C. 2;D. 6.4. 设有平面闭区域},|),{(a y x a x a y x D ≤≤≤≤-=,},0|),{(1a y x a x y x D ≤≤≤≤=,则 =+⎰⎰dxdy y x xy D)sin cos (( ) A. ydxdy x D sin cos 21⎰⎰; B. xydxdy D 12⎰⎰; C. ydxdy x D sin cos 41⎰⎰;D. 0.5. 设封闭曲线L 由直线0=x ,0=y ,2=x 4=y 所围成,取逆时针方向,则曲线积分()⎰=-+-Ldy xy y dx xy x 2)2(22 ( )A. 3816+-; B. 31616--; C. 32-; D. 16-. 6. 若L 为由点)0,0(O 到点(,0)B π的曲线弧sin ,y x =则L=ydx xdy +⎰( )A. 4ab π;B. 0;C. 3ab π; D. ab π.二、判断题1. 设开区域是D 是一个单连通域,函数),(y x P 及),(y x Q 在D 内具有一阶连续偏导数,则在D内xQ y P ∂∂=∂∂的充要条件是曲线积分⎰+L Qdy Pdx 在D 内与路径相关. ( )2. 在D 上,1),(=y x f ,S 为D 的面积,则S d y x f D=⎰⎰σ),(. ( )3. 格林公式是斯托克斯公式的推广.( )《 高等数学 》 曲线积分与曲面积分测试题14. 当∑是xOy 面内的一个闭区域时,曲面积分⎰⎰⎰⎰=∑xyD d y x f dS z y x f σ)0,,(),,(.( )5. 第一类曲线积分只与曲线的起点和终点有关.( )6. 曲线积分cydx xdy -⎰与路径无关。
第十一章 曲线积分与曲面积分试题一.填空题(规范分值3分)11.1.1.2 设在xoy 平面内有一分布着质量的曲线L ,在点(x,y)处它的线密度为μ(x,y),用第一类曲线积分表示这曲线弧对x 轴的转动惯量I x =。
ds y x y L),(2μ⎰11.1.2.2 设在xoy 平面内有一分布着质量的曲线L ,在点(x,y)处它的线密度为μ(x,y),用第一类曲线积分表示这曲线弧的质心坐标x =;y =。
x =⎰⎰LLds y x ds y x x ),(),(μμ;y =⎰⎰LLdsy x ds y x y ),(),(μμ 11.1.3.1在力),,(z y x F F =的作用下,物体沿曲线L 运动。
用曲线积分表示力对物体所做的功=W 。
d z y x L⋅⎰),,(11.1.4.2 有向曲线L 的方程为⎩⎨⎧≤≤==βαt t y y t x x )()(,其中函数)(),(t y t x 在[]βα,上一阶导数连续,且[][]0)()(22≠'+'t y t x ,又),(),,(y x Q y x P 在曲线L 上连续,则有:[]ds y x Q y x P dy y x Q dx y x P LL⎰⎰+=+βαcos ),(cos ),(),(),(,那么αcos =;βcos =。
αcos =[][]22)()()(t y t x t x '+''βcos =[][]22)()()(t y t x t y '+''11.1.5.1 设L 为xoy 平面内直线a x =上的一段,则曲线积分⎰Ldx y x P ),(=。
011.1.6.2 设L 为xoy 平面内,从点(c,a )到点(c,b )的一线段,则曲线积分⎰+Ldy y x Q dx y x P ),(),(可以化简成定积分:。
dy y Q ba),0(⎰11.1.7.2 第一类曲线积分ds y x L⎰+)(22的积分值为。
曲线、曲面积分部分难题解答1.(P201,第1题)计算下列标量函数的曲线积分(第一型曲线积分): (ⅰ)⎰lxyds ,l 为抛物线x y 22=上从原点)0,0(O 到点)2,2(A 的弧⋂OA ;(ⅱ)()⎰+lds y x 22,l 为联结点)0,0(O 、)0,2(A 和)1,0(B 的三角形围线;(ⅲ)⎰+l s d y x 22,l 为圆周()022>=+a ax y x ;(ⅳ)()⎰++lds z y x 222,l 为螺线()0,sin ,cos >===b bt z t a y t a x 的 一段弧()π20≤≤t ;(ⅴ)⎰lzds ,l 为曲线()⎩⎨⎧>===0,2222a ax y z y x 上从点)0,0,0(O 到)2,,(a a a A 的一段弧.解:(ⅰ)[]2,0,,21:2∈⎪⎩⎪⎨⎧==y y y y x l ,.1122dy y dy dy dx ds +=⎪⎪⎭⎫ ⎝⎛+=dy y y y xyds l 22201..21+=⎰⎰(令t y tan =)()()t td t sec sec .1sec 21222arctan 0-=⎰|2arctan 035sec 31sec 5121⎥⎦⎤⎢⎣⎡-=t t .151355+=(ⅱ)解:()⎰+lds y x 22⎰⎰⎰++=OAABOB()()3801.022222222==++=+⎰⎰⎰dx x dx x ds y x OA;.20,,0:≤≤⎩⎨⎧==x xx y OA ()()[]()dy y y ds y x AB 210222221.22-++-=+⎰⎰().5354855102=+-=⎰dy y y .10,,22,:≤≤⎩⎨⎧-==y y x y y AB()().3101.02102222=++=+⎰⎰dy y ds y xBO,.10,,0:≤≤⎩⎨⎧==y y y x BO .3535+=++=⎰⎰⎰OA AB OB I (ⅲ)解法一:.20,sin 2,cos 22:π≤≤⎪⎪⎩⎪⎪⎨⎧=+=t t a y t a a x l()().2cos 2sin 22222dt a dt t a t a dt t y t x ds =⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-='+'=所以,()dt a t a t a s d y x l 2sin 4cos 1420222222⎰⎰⎥⎦⎤⎢⎣⎡++=+πdt t a ⎰=π20222sin 2.24dt t a ⎰=π2022sin 2.22cos 22sin 2202202|a t a t d t a =⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎰ππ解法二:化l 为极坐标表示:().2,2,cos :⎥⎦⎤⎢⎣⎡-∈=ππθθθa r l ()().22,sin .cos sin ,cos cos :2πθπθθθθθθθ≤≤-⎩⎨⎧====a r y a r x l()()()().sin cos 2222θθθθθad dt a a dt r r ds =-+='+=所以,()()[]θθθθππad a a s d y x l⎰⎰-+=+2222222sin cos cosθθππd a a ⎰-=2222cos .2sin 2cos 2220222|a a d a===⎰ππθθθ(ⅳ) ()()()()()dt b a dt b t a t a dt t z t y t x ds 22222222cos sin +=++-='+'+'=()()()()[]dt b a bt t a t a ds z y x l 2220222222.sin cos +++=++⎰⎰π()|203222220222223ππ⎥⎦⎤⎢⎣⎡++=++=⎰t b t a b a dt t b a b a[].433222222b a b a ++=ππ2.(P201,第2题)设有某种物质分布在椭圆1:2222=+by a x l 上,其密度().,y y x =μ求它的总质量. 解:不妨假设.b a >⎰⎰==14l lyds ds y M ,其中.2,0,sin ,cos ;1⎥⎦⎤⎢⎣⎡∈⎩⎨⎧==πt t b y t a x l()()()().cos sin cos sin 22222222dt t b t a dt t b t a dt t y t x ds +=+-='+'=dt t b t a t b yds M l 222220cos sin sin 441+==⎰⎰π()()t d t b a a b cos cos 4202222⎰---=π()du u b a a b 2222014---=⎰()du u b a a b 222214--=⎰du u ba a ba b ⎰---=202222224π(公式) |102222222222222arcsin .2.4⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--+---=u b a a u b a au b a a b a b .arcsin ..222222⎥⎥⎦⎤⎢⎢⎣⎡+--=b a b a b a a b 3.(P202,第3题)设曲线l 的长度为L ,而函数f 在包含l 的某个区域内连续.证明: ()().max .P f L ds P f lP l ∈≤⎰证明:由第一型曲线积分的定义()()i ni i d l s P f ds P f ∆=∑⎰=→.lim 1故 ()()i n i i d ls P f ds P f ∆=∑⎰=→.lim 1()i ni i d s P f ∆=∑=→.lim 1()i n i i d s P f ∆≤∑=→.lim 1()i ni lp d s P f ∆≤∑=∈→.max lim 1().max .P f L lP ∈=4.(P202,第4题)从原点()0,0O 到点()2,1A 沿下列不同路径分别计算第二型曲线积分 .⎰⋂-OAydx xdy(1).⋂OA 为直线段;(2).⋂OA 为抛物线22x y =上的弧; (3).⋂OA 为从点()0,0O 经点()0,1B 到点()2,1A 的折线⋂OBA . 解:(1) .1~0:,,2:x xx x y OA ⎩⎨⎧==⋂[].022.10=-=-⎰⎰⋂dx x x ydx xdy OA(2).1~0:,:x xx OA ⎩⎨=[].323224.|10312==-=-⎰⎰⋂x dx x x x ydx xdy OA(3).220=+=+=+⎰⎰⎰⋂OB BAOAydx xdy.1~0:,.,0:x x x y OB ⎩⎨⎧== ();000.10=-=-⎰⎰dx x ydx xdy OB.2~0:,.,1:y y y x BA ⎩⎨⎧== ().20.120=-=-⎰⎰dy y ydx xdy BA5.(P202,第5题)计算曲线积分 .⎰+lxdy ydx(1).l 为从点()0,a 点()0,a -的上半圆周()022>-=a x a y ; (2). l 为从点()0,a 点()0,a -的直线段()0>a ; (3). l 为逆时针方向的圆周.222a y x =+ 解:(1) .~0:,sin ,cos :πt ta y t a x l ⎩⎨⎧==()()()()[]dt t a t a t a t a xdy ydx l ⎰⎰+-=+π0cos .cos sin .sin ==⎰dt t aπ22cos 02sin 2|02=πt a .(2).~:,,0:a a x xx y l -⎩⎨⎧== ().00.0=+=+⎰⎰-dx x xdy ydx a al(3).2~0:,sin ,cos :πt t a y t a x l ⎩⎨⎧==()()()()[]dt t a t a t a t a xdy ydx l⎰⎰+-=+π20cos .cos sin .sin ==⎰dt t aπ2022cos 02sin 2|202=πt a .6.(P202,第6题)计算沿逆时针方向的圆周()222a y x =+的曲线积分 ()().22⎰+--+ly x dy y x dx y x解:π2~0:,.sin :t t a y l ⎩⎨=,所以,()()⎰+--+l y x dy y x dx y x 22()()()()dt a t a t a t a t a t a t a ⎰---+=π202cos .sin cos sin sin cos .22022ππ-=-=⎰dt aa 7.(P202,第7题)计算下列曲线积分,曲线的方向与参数增加方向: (ⅰ)()()d y xy y dx xy x l⎰-+-2222,l 为抛物线()112≤≤-=x x y ;(ⅱ)()()d y y x dx y x l ⎰-++2222,l 为折线()2011≤≤--=x x y ;(ⅲ)()dz x yzdy dx z y l⎰-+-2222,l 的参数方程为().10,,3,2≤≤⎪⎩⎪⎨⎧===t t z t y t x ;解:(ⅰ).1~1:,:2-⎩⎨⎧==x xy x x l ()()d y xy y dx xy x l⎰-+-2222 ()()[]d x x x x x x x x⎰--+-=1124222..2.2 [].151454324|10531142-=⎥⎦⎤⎢⎣⎡-=-=⎰-x x dx x x (ⅱ)设点().0,1A 则()()dy y x dx y xL2222-++⎰()()dy y x dx y xOA2222-++=⎰()()dy y x dx y xAB2222-+++⎰.1~0:,,:x x x x y OA ⎩⎨⎧==()()()()[]321022222222=-++=-++⎰⎰dx x x x x dy y x dx y x OA;.2~1:,,2:x x x x y AB ⎩⎨⎧=-=()()()()()()()[]d xx x x x dy y x dx y xAB⎰⎰---+-+=-++21222222221.22()().3232222|213212=-=-=⎰x dx x 原式.343232=+=(ⅲ)()dz x yzdy dx z y l⎰-+-2222 ()[]d t t t t t t t t ⎰-+-=102232643.2 (2)[].351527323|10571046=⎪⎭⎫ ⎝⎛-=-=⎰t t dt t t 8.(P202,第8题)设曲线l 的长度为L ,而函数()P f 在包含l 的某个区域内连续.证明: ())....P L P f lP l ∈≤⎰证明:设()()(){}.,21P f P f P f = 由第二型曲线积分的定义及柯西不等式()()()[]∑⎰=→∆+∆=ni i i i i d l y P f x P f d P f 1210..lim .故 ()()()[]∑⎰=→∆+∆=ni i i i i d ly P f x P f P f 1210..lim .()()[]∑=→∆+∆≤n i i i i i d y P f x P f 1210..lim ()()()()22122210.lim i i ni i i d y x P f P f ∆+∆+≤∑=→)()()221.lim i i ni i d y x P ∆+∆==→)()())⎰∑=→=∆+∆≤li i ni d ds P y x P ..lim 221)P L =.9.(P209,第1题)求下列曲面块的面积:(ⅰ)球面2222a z y x =++包含在圆柱面()a b b y x ≤<=+0222内的那部分面积;(ⅱ)圆锥面22y x z +=被圆柱面x y x 222=+截下的那一部分; (ⅲ)圆柱面222a y x =+被圆柱面222a z y =+截下的那一部分.解:(ⅰ)画出示意图222:b y x D xy ≤+. 将曲面方程化为:z ∑=则dS dxdy ==.dxdy yx a a S S xyD ⎰⎰--==22222上 ⎥⎦⎤⎢⎣⎡--=-=⎰⎰|022022202.2122b br a a ra ardrd πθπ极().422b a a a --=π(ⅱ)画出示意图x y x D xy 2:22≤+. 由曲面方程22:y x z +=∑,得,2122dxdy dxdy y z x z dS =⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+=.().222π===⎰⎰xy D D S dxdy S xy(ⅲ)利用对称性(仅在第一卦限内计算)18S S =,曲面1∑(1∑为∑在第一卦限的那部分,其面积设为1S )向yoz面上的投影区域为222:a z y D yz ≤+. 将曲面1∑方程化为22y a x -=,则,22y a y yx--=∂∂,0=∂∂zx,所以,dydzya a dydz z x y x dS 22221-=⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+=.dydz y a a S S yzD ⎰⎰-==22188 ⎰⎰--=2202208y a a dz y a a dy .8820a adz a==⎰10.(P209,第2题)求下列曲面积分:(ⅰ)()⎰⎰++Sy x dS21,式中S 为四面体()1,0,0,0≤++≥≥≥z y x z y x 的表面; (ⅱ)()d S y x S⎰⎰+22,式中S 为圆柱体()h z a y x ≤≤≤+0,222的表面;(ⅲ)()dS z y x S⎰⎰++,式中S 为球面()2222a z y x =++的表面.解:(ⅰ).4321S S S S S +++=其中 ,0:1=z S dxdy dS =1, ()()()dy y x dx dxdy y x y x dSxD S xy⎰⎰⎰⎰⎰⎰-++=++=++1010222111111dx x dx y x x ⎰⎰⎪⎭⎫⎝⎛-+=⎥⎦⎤⎢⎣⎡++-=-101010211111| 212ln -=; ,0:2=x S dydz dS =2,()()()dz y dy dydz y y x dSyD S yz⎰⎰⎰⎰⎰⎰-+=++=++10102221101112()()dy y y dy y y⎰⎰⎪⎪⎭⎫ ⎝⎛+-+=+-=10212111211 ()2ln 11ln 12||1010-=+-+-=y y ; ,0:3=y S dzdx dS =3,()()()dz x dx dzdx x y x dSxD S zx⎰⎰⎰⎰⎰⎰-+=++=++10102221101113()()dx x x dx x x⎰⎰⎪⎪⎭⎫⎝⎛+-+=+-=10212111211 ()2ln 11ln 12||101-=+-+-=x x ;,1:4y x z S --= dxdy dS 34=,()()()dz y x dx dxdy y x y x dSxD S xy⎰⎰⎰⎰⎰⎰-++=++=++101022211311314dx x dx y x x ⎰⎰⎪⎭⎫⎝⎛-+=⎥⎦⎤⎢⎣⎡++-=-10101021113113| ().212ln 33211ln 321113|1010⎪⎭⎫ ⎝⎛-=-+=⎪⎭⎫⎝⎛-+=⎰x dx x ;()⎰⎰++S y x dS 21()+++=⎰⎰121S y x dS()+++⎰⎰221S y x dS()⎰⎰++321S y x dS ()⎰⎰++421S y x dS()()().32ln 2213212ln 32ln 12ln 1212ln +-=⎪⎭⎫ ⎝⎛-=-+-+⎪⎭⎫ ⎝⎛-=(ⅱ).321S S S S ++=其中 ,0:1=z S dxdy dS =1,()()rdr r d dxdy y x dS y x aD S xy.420222221⎰⎰⎰⎰⎰⎰=+=+πθ 24a π=;,:2h z S = dxdy dS =2,()()rdr r d dxdy y x dS y x aD S xy.420222222⎰⎰⎰⎰⎰⎰=+=+πθ24a π=;,:2223a y x S =+其向yoz 面上的投影区域为⎩⎨⎧≤≤-≤≤.,0:a y a h z D yz . 将曲面3S 方程化为22y a x -±=,则,22y a y yx --=∂∂,0=∂∂zx,所以, dydz ya a dydz z x y x dS 22221-=⎪⎭⎫⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+= ()()dydz ya a y y a dS y x yz D S ⎰⎰⎰⎰-⎥⎦⎤⎢⎣⎡+-=+222222322.23⎰⎰-=-haadz y a dy a 022312..2arcsin4303|h a a y h a aπ== 或者()..22..32232233h a ah a dS a dS y x S S ππ===+⎰⎰⎰⎰()⎰⎰++S y x dS21()++=⎰⎰122S dS y x ()++⎰⎰222S y x()d S y xS ⎰⎰+322().22223344h a a h a a a +=++=ππππ(ⅲ)由积分区域的对称性,及被积函数的奇偶性知,显然()dS z y x S⎰⎰+++=⎰⎰dS x SdS y S ⎰⎰().0=+++⎰⎰dS z y x S11.(P210,第3题)证明泊松公式()()d uc b a u f dS cz by ax f S⎰⎰⎰-++=++112222π其中S 为球面0,1222222>++=++c b a z y x ,f 为连续函数.证明:取新的空间直角坐标系Ouvw ,其中原点不变,使坐标平面Ouvw 与平面0=++cz by ax 重合,并使Ou 轴垂直于平面0=++cz by ax .则有 其实根据坐标系Ouvw 选取方法的描述,我们不难看出Ou 轴上的单位向量就可取作平面0=++cz by ax 的单位法线向量.则222cb a cz by ax u ++++=(注意到,显然222cb a cz by ax u ++++=为点()z y x P ,,到平面0=++cz by ax 的距离).则 ()dS cz by ax f S⎰⎰++()d S c b a u f S⎰⎰++=222显然在新坐标系下,球面的形状并未改变(仍记为S ),且它的方程应为1222=++w v u(因为在新的坐标系下,任何一个球面上的点到原点的距离仍然为1.)得: ()22221uw v -=+当u 固定时,1222=++w v u 表示垂直于Ou 轴平面上的一个圆周. 进一步,我们把S 化为参数方程表示:.20,11,sin 1,cos 1,22πθθθ≤≤≤≤-⎪⎩⎪⎨⎧-=-==u u w u v u u,1='uu ,cos 12θuu v u --=';sin 12θuu w u--=',0='θu ,sin 12θθu v --='.cos 12θθu w -=' ;112222u w v u E u u u-='+'+'= ;0...=''+''+''=θθθw w v v u u F u u u.12222u w v u G -='+'+'=θθθ因此, 曲面的元素dS =dudv =故()dS cz by ax f S⎰⎰++()d S c b a u f S⎰⎰++=222()d u c b a u f d ⎰⎰-++=πθ2011222().211222⎰-++=du c b a u f π12(P210,第4题)设某种物质均匀分布在球面2222a z y x =++上(认为分布密度1=ρ).求它对于oz 轴的转动惯量.解:由公式 ()d Sy x J S⎰⎰+=22由对称性 ()d S y x J S ⎰⎰+=1228其中 2221:y x a z S --=,则z z x y ∂∂==∂∂,所以,dS ==.因此 ()dxdy yx a a y x S S xyD ⎰⎰--+==222221.88rdr ra r d a a.8022220⎰⎰-=πθ极()rdr ra a a ra a .4022222⎰-+-=πrdr r a a a.4022⎰--=πrdr ra a a.140223⎰-+π()22022.2r a d r a a a--=⎰π()220223.12r a d ra a a ---⎰π()|232232.2a r a a -=π|02232.2ar a a --π434a π-=44a π+ .384a π=13(P217,第1题)沿圆锥面()122≤=+z y x S 的下侧,求曲面积分d S.⎰⎰,其中{}.,,z y x =解:⎰⎰⎰⎰++=SSzdxdy ydzdx xdydz S d r .化为第一型曲面积分计算.S 的向下的法向量{}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-++=-''=1,,1,,2222y x y y x x z z yx ,所以{}.cos ,cos ,cos 21,2,222220γβα=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-++==y x y y x x n 故⎰⎰⎰⎰++=SSzdxdy ydzdx xdydz d .()⎰⎰++=SdS z y x γβαcos .cos .cos .⎰⎰⎪⎪⎪⎭⎫⎝⎛-+++=S dS z y x y yx x 222222222 ⎰⎰⎪⎪⎭⎫ ⎝⎛-+=S dS z y x 2222(根据第一型曲面积分的计算方法) ⎰⎰=⎪⎪⎭⎫⎝⎛+-+=xy D dxdy y x y x .02222222 14(P217,第2题)沿椭球面1222222=++cz b y a x 的外侧,求曲面积分.⎰⎰⎪⎪⎭⎫⎝⎛++S z dxdy y dzdx x dydz解:把S 分割为21,S S 两个部分.其中,222211:b y a x c z S --=(上侧);222221:by a x c z S ---=(下侧).21,S S 向xoy 面上的投影区域均为.1:2222≤+by a x D xy故 dxdy b ya x c z dxdyxyD S ⎰⎰⎰⎰--=2222111作变量代换: ⎩⎨⎧==.sin ,cos θθbr y ar x由二重积分的换元法 dr abrd rc dxdy b y a x c D D xyθ⎰⎰⎰⎰'-=--222221111.其中 ()()abr br b ar a y r yxrxr y x J =-=∂∂∂∂∂∂∂∂=∂∂=θθθθθθθcos sin sin cos ,,⎩⎨⎧≤≤≤≤'.20,10:πθr D 所以=⎰⎰1S zdxdy dr abrd rc dxdy b y a x c D D xyθ⎰⎰⎰⎰'-=--222221111dr r r d c ab ⎰⎰-=πθ2010211dr r rd c ab ⎰⎰-=πθ2010211所以, ().212111|1022102πππcab r c ab r d r c ab =⎥⎦⎤⎢⎣⎡--=---=⎰ 由轮换对称性,知: πa bc x dzdy S4=⎰⎰; .4πb ac y dzdx S=⎰⎰ 故⎰⎰⎪⎪⎭⎫⎝⎛++Sz dxdy y dzdx x dydz +=⎰⎰S z dxdy +⎰⎰S x dzdy⎰⎰Sy dzdx+=πc ab 4πa bc 4().44222222a c c b b a abcb ac ++=+ππ15(P217,第3题)沿球面()()()2222R c z b y a x =-+-+-的外侧,求曲面积分.222⎰⎰++Sdxdy z dzdx y dydz x解:把S 分割为21,S S 两个部分.其中,()()2221:b y a x R c z S ----+=(上侧);()()2222:b y a x R c z S -----=(下侧).21,S S 向xoy 面上的投影区域均为:xy D ()()222R b y a x ≤-+-故 ()()dxdy b y a x R c dxdy z xyDS ⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡----+=222221作变量代换: ⎩⎨⎧+=+=.sin ,cos θθr b y r a x由二重积分的换元法()()[]rdr r R c dxdy b y a x R c D D xy⎰⎰⎰⎰'-+=⎥⎦⎤⎢⎣⎡----+2222222.其中 ()()r r r y r yxrx r y x J =-=∂∂∂∂∂∂∂∂=∂∂=θθθθθθθcos sin sin cos ,,⎩⎨⎧≤≤≤≤'.20,0:πθR r D 所以=⎰⎰12S dxdy z[]rdr rR c D 222⎰⎰'-+()dr r rR c d R⎰⎰-+=πθ20222()rdr rR c R2222⎰-+=π()r dr r R r R c c R⎰-+-+=02222222πrdr r R c rdr c R R ⎰⎰-+=02202222ππ()rdr r R R⎰-+0222π()()|||0222023220222132.222RR R r R r R c r c ⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡--⎪⎪⎭⎫ ⎝⎛=πππ.2344322R cR R c πππ++=(1)同理()()dxdy b y a x R c dxdy z xyDS ⎰⎰⎰⎰⎥⎦⎤⎢⎣⎡------=222221()dr r r R c d R⎰⎰⎥⎦⎤⎢⎣⎡---=πθ200222()rdr r R c R 20222⎰---=πrdr r R c rdr cRR⎰⎰-+-=0222222ππ()r dr r R R⎰--0222π()()|||0222023220222132.222RR R r R r R c r c ⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡--⎪⎪⎭⎫ ⎝⎛-=πππ.2344322R cR R c πππ-+-= =⎰⎰Sdxdy z 2+⎰⎰12S dxdy z 32382cR dxdy z S π=⎰⎰ ; 由轮换对称性,知: =⎰⎰Sdydz x 2338aR π; =⎰⎰Sdzdx y 2.383bR π 故.222⎰⎰++Sdxdy z dzdx y dydz x ⎰⎰=Sdydz x 2⎰⎰Sdzdxy 2⎰⎰Sdxdy z2().383c b a R ++=π16(P217,第4题)设S 为长方体()c z b y a x ≤≤≤≤≤≤0,0,0的表面.沿外侧求曲面积分 ⎰⎰Sxyzdxdy解:把S 分割为654321,,,,,S S S S S S 六个部分. 其中 ()b y a x c z S ≤≤≤≤=0,0:1的上侧; ()b y a x z S ≤≤≤≤=0,00:2的下侧; ()c z b y a x S ≤≤≤≤=0,0:3的前侧; ()c z b y x S ≤≤≤≤=0,00:4的后侧; ()c z a x b y S ≤≤≤≤=0,0:5的右侧; ()c z a x y S ≤≤≤≤=0,00:6的左侧.注意到除21,S S 外,其余四片曲面在xoy 面上的投影为零,因此 =⎰⎰Sxyzdxdy +⎰⎰1S xyzdxdy ⎰⎰2S xyzdxdy⎰⎰=xyD xycdxdy ⎰⎰-xyD dxdy xy 0.c b a ydy xdx c ab.40022⎰⎰==17(P225第1题)利用格林公式计算下面的曲线积分(l 的方向为正方向): (ⅰ)()dy xy dx y x l22+-⎰,l 为圆周()222a y x =+;(ⅱ)()()dy y x dx y x l--+⎰,l 为椭圆⎪⎪⎭⎫⎝⎛=+12222b y a x ; (ⅲ)()xdy dx y l+-⎰,l 为曲线()1=+y x ;(ⅳ)()()dy y y e dx y e x lx sin cos 1---⎰,l 为区域().sin 0,0x y x D <<<<π;18(P225第2题)求()()dy m y e dx my y eI x xL-+-=⎰cos sin ,(m 为常数) 其中l 是自点()0,a A 经过圆周()022>=+a ax y x 的上半部分到点O(0,0)的半圆周.(提示:作辅助线后用格林公式). 解:cos ,cos x x P Qe y m e y y x∂∂=-=∂∂. 所以,由格林公式:221...428AO OA D DQ P a dxdy mdxdy m ma x y ππ⋂⎡⎤∂∂+=-===⎢⎥∂∂⎣⎦⎰⎰⎰⎰⎰⎰.所以,2220.888AO OAma ma ma I πππ⋂==-=-=⎰⎰ (因为,⎰⎰==OAadx 0.00)19(P225第5题)设函数()x f 在正半轴()0>x 上有连续导数()x f '且().21=f 若在右半平面内沿任意闭合光滑曲线l ,都有 ()043=+⎰dy x xf ydx x l求函数().x f解:()y x y x P 34,=,()()x xf y x Q =,都是右半平面上的连续函数,由于在右半平面内沿任意闭合光滑曲线l ,都有()043=+⎰dy x xf ydx x l故有xQ y P ∂∂=∂∂即 ()()x f x x f x '+=34 化简,得 ()()241x x f xx f =+' (1)为一阶线性微分方程,其通解为()⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-c e x e x f dx xdx x 1214().1134xc x c x x +=+=代入条件()21=f ,得 .1=c故 ().13xx x f +=20(P226第6题)设D 是以光滑曲线l 为正向边界的有界闭区域,而函数()y x u u ,=在闭区域D 上具有连续的二阶偏导数且记2222yux u u ∂∂+∂∂=∆证明: ⎰⎰⎰∆=∂∂Dl udxdy ds n u其中()()yu x u n u ,cos ,cos ∂∂+∂∂=∂∂ 表示函数()y x u u ,=沿边界曲线l 外法线方向的方向导数.证明:设τ为曲线l 的正向的切线向量,其方向余弦为()x ,cos 、()y ,cos ,则有 ()()y x ,,τ=,()().,,x y τπ-=故 ()()y x ,cos ,cos τ=,()().,cos ,cos x y τ-=()()ds x y uy xu ds n u l l ⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ(由两型曲线积分之间的联系)dx y udy x u l ⎰∂∂-∂∂=(格林公式) ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂=D dxdy y u y x u x =⎪⎪⎭⎫⎝⎛∂∂+∂∂=⎰⎰D dxdy y u x u 2222.⎰⎰∆Dudxdy21(P226第7题)在第6题的假设和记号下,证明:.22ds n uu udxdy u dxdy y u x u D l D ⎰⎰⎰⎰⎰∂∂+∆-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂ 证明:仿上题 ()()ds xy uy x u u ds n u ul l⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ(由两型曲线积分之间的联系)dx yuu dy x u ul ⎰∂∂-∂∂=(格林公式) ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂=Ddxdy y u u y x u u x ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=D dxdy y u u y u y u x u u x u x u 2222....dxdy y u x u u dxdy y u x u D D ⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎰⎰⎰⎰222222 udxdy u dxdy y u x u D D ∆+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎰⎰⎰⎰22 移项,即得 .22ds n uu udxdy u dxdy y u x u D l D ⎰⎰⎰⎰⎰∂∂+∆-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂ 22(P227第8题)格林第二公式 若函数()y x u u ,=和()y x v v ,=都满足第6题中的假设,证明: ds vu n v n u dxdy vuv u lD⎰⎰⎰∂∂∂∂=∆∆证明: ()()ds x y u y xu v ds n u vl l⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂,cos ,cos ττ (由两型曲线积分之间的联系)dx yuv dy x u vl ⎰∂∂-∂∂=(格林公式) ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎭⎫ ⎝⎛∂∂∂∂=Ddxdy y u v y x u v x ⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂∂∂=D dxdy y u v y u y v x u v x u x v 2222....⎰⎰⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂=D D dxdy y u x u v dxdy y v y u x v x u 22.....⎰⎰⎰⎰∆+⎪⎪⎭⎫⎝⎛∂∂∂∂+∂∂∂∂=DD udxdy v dxdy y v y u x v x u (1)由轮换对称性,知 ds nv ul⎰∂∂...⎰⎰⎰⎰∆+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂=DD vdxdy u dxdy y v y u x v x u(2)于是ds n v u n uv ds vun vnul l ⎰⎰⎪⎭⎫ ⎝⎛∂∂-∂∂=∂∂∂∂ ⎥⎦⎤⎢⎣⎡∆+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂=⎰⎰⎰⎰D D udxdy v dxdy y v y u x v x u ..⎥⎦⎤⎢⎣⎡∆+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂∂∂-⎰⎰⎰⎰D D vdxdy u dxdy y v y u x v x u .. ()⎰⎰∆-∆=Ddxdy v u u v .dxdy vuv u D⎰⎰∆∆=23(P227第9题)计算高斯(Gauss)积分()(b a I =,其中l 为简单(光滑)闭合曲线,为不在l 上的点()b a ,到l 上动点()y x ,的向量,而为l 上动点()y x ,处的法向量.解:设为曲线l 的正向的切线向量,其方向余弦为()x ,cos τ、()y ,cos τ,则 有 ()()y x ,,τ=,()().,,x y τπ-= 又设()(){}y x n ,cos ,,cos 0= ,{}b y a x --=,,则()()()()()()().,cos .,cos .,cos ,cos 2200b y a x y b y x a x n r n r -+--+-==⎪⎭⎫ ⎝⎛= 故(()()()()()().,cos .,cos .22b y a x y n b y x n a x -+--+-=()()()()()()()[]d s y b y x a x b y a x b a I l,cos ,cos .1,22-+--+-=⎰()()()()()()[]d s x b y y a x b y a x l,cos ,cos .122----+-=⎰ ()()()().22⎰-+----=lb y a x dx b y dy a x 记 ()()(),,22b y a x b y y x P -+---=()()().,22b y a x ax y x Q -+--=则()()()(),2222b y a x a x b y y P-+-----=∂∂()()()().2222b y a x a x b y x Q -+-----=∂∂它们在xoy 平面内除点 ()b a ,外处处连续,且.0=∂∂-∂∂yP xQ(一)若点()b a ,在l 所包围的区域D 外,原式=0;(二)若点()b a ,在l 所包围的区域D 内,以点()b a ,为中心作一个充分小的圆()()).0(:222>=-+-εεεb y a x l 取逆时针方向,使之完全包含在l 为边界的区域内.记介于εl 和l 之间的区域为'εD .则在'εD 由格林公式可得:()()()()⎰-+----l b y a x dx b y dy a x 22()()()()⎰-+-----εl b y a x dx b y dy a x 22.0⎰⎰'=⎥⎦⎤⎢⎣⎡∂∂-∂∂=εD dxdy y P x Q所以,()()()()⎰-+----=l b y a x dx b y dy a x I 22()()⎰---=εεldx b y dy a x 2()()⎰---=εεl dx b y dy a x 21(格林公式)()()ππεεεεε2.22112222===⎥⎦⎤⎢⎣⎡∂-∂-∂-∂=⎰⎰⎰⎰DD dxdy dxdy y y b x a x . 24(P227第10题)利用斯托克斯公式重新计算积分(例3) ()()(),⎰-+-+-=ldz y x dy z x dx y z I 其中l 是曲线⎩⎨⎧=+-=+.2,122z y x y x方向为从oz 轴正方向往负方向看去是顺时针方向. 解一:由斯托克斯公式dxdy yx zx yz z y x dxdy dzdx dydz2=---∂∂∂∂∂∂.取∑为平面2=+-z y x 上由椭圆所围成的那一小块曲面.(取下侧),因此{}1,1,1-=,.31,33,330⎭⎬⎫⎩⎨⎧-=n )()()()dS dxdy dz y x dy z x dx y z I l ⎰⎰⎰⎰⎰∑∑-=-=-+-+-=3122.2.23.312⎰⎰⎰⎰-=-=-=xyxyD D dxdy dxdy π解二:(直接计算)()()()⎰⎰⎰∑=-+-+-=dxdy dz y x dy z x dx y z I l2其中,.1:22≤+y x D xy所以,.22π-=-=⎰⎰dxdy I xyD .25(P238第1题)下面的向量场是否为保守场?若是,并求位势:u (){};sin cos 2,sin cos 2122y x x y x y y x f --=解:(1)这里()x y y x y x P sin cos 2,2-=,().sin cos 2,2y x x y y x Q -= 因为xQx y y x y P ∂∂=--=∂∂sin 2sin 2,()2,R y x ∈ 所以{}y x x y x y y x f sin cos 2,sin cos 222--=是定义在全平面上的保守场.所以,()+-dx x y y x sin cos 22()dy y x x y sin cos 22-是某一个函数()y x u ,的全微分. 故可取()()()()()dyy x x y dx x y y x y x u y x sin cos 2sin cos 2,2,0,02-+-=⎰()()dy y x x y dx x x yx ⎰⎰-+-=0202sin cos 2sin 00cos 2.cos cos 22y x x y +=则,所求的位势为 ().cos cos ,22c y x x y c y x u ++=+(){}.sin ,cos ,222z y e x z xe f y y --=--解:这里()()().sin ,,,cos ,,,2,,2z y z y x R e x z z y x Q xe z y x P y y -=-==--x Q xe y P y ∂∂=-=∂∂-2;y R z z Q ∂∂=-=∂∂sin ;.0zP x R ∂∂==∂∂ ().,,3R z y x ∈ 所以,{}z y e x z xe f y y sin ,cos ,22--=--为定义在全空间上的保守场.所以,+-dx xe y 2()zdz y dy e x z y sin cos 2---是某一个函数()z y x u ,,的全微分.(二)现取()()()()zdz y dy e x z dx xe z y x u y z y x y sin cos 2,,2,,0,0,0--+=--⎰取0M M 如图所示,从()0,0,00M 沿x 轴到点()0,0,1x M 再沿平行于y 轴的直线到点()0,,2y x M 最后沿平行于z 轴的直线到点(),,.M x y z 于是()()⎰⎰⎰-+-+=--z yyxzdz y dy ex dx xe z y x u 00200sin 0cos 2,,[]|||022cos zy yx z y e x y x+++=-()[]()y z y x e x y x y-+-++=-cos 222.cos 2z y e x y +=-则,所求的位势为 ().cos ,,2c z y e x c z y x u y ++=+- 26(P238第2题)证明式(14-31),并由此求下面的曲线积分: ()();).1(2,11,22⎰-xxdyydx ()()⎰++1,1,63,2,1.).2(xydz zxdy yzdx解:(一)要证式(14-31)成立,即要证若平面区域D 内保守力场()(){}y x Q y x P f ,,,=有位势()y x u ,,则对D 内的任意两点()()222111,,,y x M y x M ,有 ()()()()()().,,,.1122,,2211y x u y x u dy y x Q dx y x P y x y x -=+⎰事实上,因为()(){}y x Q y x P f ,,,=为保守力场,故()()dy y x Q dx y x P l ,.+⎰在D 内与路径无关,而只取决于路径的起点、终点.令()()()()()dy y x Q dx y x P y x v y x y x ,.,,,11+=⎰(1)则可证明()y x v ,也是f 在D 内的一个势函数.故 ()()C y x v y x u ≡-,, ,对任意()D y x ∈,成立(2)取()()11,,y x y x =,并注意到()0,11=y x v (因为沿闭合曲线的积分为零),得()()()111111,,,y x u y x v y x u C =-=(2)式中再取()()22,,y x y x =,并注意到(),0,11=y x v 得()()C y x v y x u =-2222,, 即 ()()()()().,,3,,11222222y x u y x u C y x u y x v --============Θ又由(1)式,注意到()y x v ,的记号,得 ()()()()()().,,,.1122,,2211y x u y x u dy y x Q dx y x P y x y x -=+⎰(二)()()⎰-2,11,22).1(x xdyydx 中,()2,x y y x P =,().1,2x xx y x Q -=-= 因为 xQx y P ∂∂==∂∂21,().0,,2≠∈x R y x 所以,2xxdyydx -是某一个函数()y x u ,的全微分. 故可取()()()⎰-=y x x xdy ydx y x u ,0,12,dy x dx y x ⎰⎰⎪⎭⎫ ⎝⎛-+=0110.x y -=所以 ()()()().2321121,22,12,11,22-=⎪⎭⎫ ⎝⎛---=-=-⎰u u x xdyydx()()⎰++1,1,63,2,1.).2(xydz zxdy yzdx 中,()()().,,,,,,,,xy z y x R zx z y x Q yz z y x P ===因为x Q z y P ∂∂==∂∂;y R x z Q ∂∂==∂∂;.zPy x R ∂∂==∂∂ ().,,3R z y x ∈ 所以,+yzdx xydz zxdy +是某一个函数()z y x u ,,的全微分. (二)现取()()()xydz zxdy dx yz z y x u z y x ++=⎰,,0,0,0,,取0M M 如图所示,从()0,0,00M 沿x 轴到点()0,0,1x M 再沿平行于y 轴的直线到点()0,,2y x M 最后沿平行于z 轴的直线到点(),,.M x y z 于是 ()⎰⎰⎰++=zyxxydz dy x dx z y x u 000.00,, .xyz =所以 ()()()().03,2,11,1,61,1,63,2,1=-=++⎰u u xydz zxdy yzdx 27(P238第5题)验证下列方程我全微分方程,并求通解:()();04332).1(=-++dy y x dx y x ()().03223).2(2222=+-++-dy y xy x dx y xy x解:()();04332).1(=-++dy y x dx y x这里,()()y x y x Q y x y x P 43,,32,-=+=.因为,xQy P ∂∂==∂∂3,是全微分方程.故:()()()()()dyy x dx y x y x u y x 4332,,0,0-++=⎰ ()()dy y x dx x yx ⎰⎰-++=004302[]||02223yx y xy x-+=.2322y xy x -+=通解为:c y xy x =-+2223.()().03223).2(2222=+--+-dy y xy x dx y xy x这里,()().32,,23,2222y xy x y x Q y xy x y x P -+-=+-=. 因为,xQ y x y P ∂∂=+-=∂∂22,所以方程是全微分方程. 故:()()()()()dy y xy x dx y xy x y x u y x 22,0,0223223,+--+-=⎰()()dy y xy x dx x yx⎰⎰-+-+=022023203[]||03223yx yxy y xx-+-+=.3223y xy y x x -+-=因此,所求方程的通解为:.3223c y xy y x x =-+-.28(P238第6题)设函数()y x u u ,=在凸区域(即包含区域内任意两点间的连线)2R ⊂Ω内连续可微分且K gradu ≤(常数).证明:对于Ω内任意两点B A ,,都有 ()()().,.B A d K B u A u ≤- 其中()B A d ,表示点B A ,之间的距离.证明:由于Ω为凸区域,故线段AB 整个属于Ω.设点B 的坐标为()000,,z y x ,点A 的坐标为()111,,z y x ,且令.,,010101z z z y y y x x x -=∆-=∆-=∆ 考虑一元函数()()z t z y t y x t x u t f ∆+∆+∆+=000,, ().10≤≤t (1) 显然,()()()().1,0A u f B u f ==(2)且()t f 在[]1,0上可微,并且 ()()x z t z y t y x t x u t f x ∆∆+∆+∆+'='.,,000 ()y z t z y t y x t x u y ∆∆+∆+∆+'+.,,000()z z t z y t y x t x u z ∆∆+∆+∆+'+.,,000 (3)于是,由微分学中值定理知()()()()()ξf f f B u A u '=-=-01()()=3Θ()x z z y y x x u x ∆∆+∆+∆+'.,,000ξξξ ()y z z y y x x u y ∆∆+∆+∆+'+.,,000ξξξ()z z z y y x x u z ∆∆+∆+∆+'+.,,000ξξξ ()..,,000z z y y x x gradu ∆+∆+∆+=ξξξ (4)由(4)式可知 ()()(z z y y x x gradu B u A u ,,000∆+∆+∆+=-ξξξ()().,..,,000B A d K z z y y x x gradu ≤∆+∆+∆+≤ξξξ29(P238第7题)求向量场⎪⎭⎫ ⎝⎛=x y grad f arctan 沿下列曲线l 的环量: (ⅰ)l 为圆周()()12222=-+-y x ;l 为圆周422=+y x (分为左、右半圆周分别计算).解: ⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛∂∂⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛=x y y x y x x y grad f arctan ,arctan arctan.,2222⎭⎬⎫⎩⎨⎧++-=y x x y x y (ⅰ) 2222.y x xdyy x ydx d f l l +++-=⎰⎰(格林公式)dxdy y x y y y x x x D⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛+-∂∂-⎪⎪⎭⎫ ⎝⎛+∂∂=2222()().022********=⎥⎥⎦⎤⎢⎢⎣⎡+--+-=⎰⎰dxdy y x x y y x x y D (ⅱ)⎰⎰+-=ll y x ydx xdy d f 22.[].22.241412ππ==-=⎰l ydx xdy 30(P238第8题)求,f rot 其中().2,3,32x y z x y z f ---= 解:⎭⎬⎫⎩⎨⎧∂∂-∂∂∂∂-∂∂∂∂-∂∂=y P x Q x R z P z Q y R f rot ,,{}.6,4,2= 31(P238第9题)证明: ()f gradu f urot f u rot ⨯+=. 解:设()()(){}z y x R z y x Q z y x P f ,,,,,,,,=,则()()(){}.,,,,,.,,,z y x uR z y x Q u z y x uP uf =()()()()()()⎭⎬⎫⎩⎨⎧∂∂-∂∂∂∂-∂∂∂∂-∂∂=y uP x uQ x uR z uP z uQ y uR f rot ,, ,,{⎪⎭⎫ ⎝⎛∂∂+∂∂-⎪⎭⎫ ⎝⎛∂∂+∂∂⎪⎭⎫ ⎝⎛∂∂+∂∂-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=x u R x R u z u P z P u z u Q z Q u y u R y R u },⎪⎪⎭⎫ ⎝⎛∂∂+∂∂-⎪⎭⎫ ⎝⎛∂∂+∂∂y u P y P u x u Q xQu⎭⎬⎫⎩⎨⎧∂∂-∂∂∂∂-∂∂∂∂-∂∂=y P x Q x R z P z Q y R u ,,⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂-⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+y u P x u Q z u P x u R z u Q y u R ,.f gradu f urot ⨯+= 31(P246第1题)利用奥-高公式计算下列各曲面积分:(ⅰ)⎰⎰++Szdxdy ydzdx xdydz ,沿球面()()()2222R c z b y a x =-+-+-外侧;(ⅱ)⎰⎰++Sdxdy z dzdx y dydz x 333,沿正方体()10,10,10≤≤≤≤≤≤z y x 外表面;(ⅲ)()()()[]d S z z y y x x S⎰⎰++,cos ,cos ,cos 222,沿锥面()h z y x S ≤=+22的下侧;(ⅳ),3dxdy z S⎰⎰沿上半球面222y x a z --=的上侧.解:(ⅰ)⎰⎰++Szdxdy ydzdx xdydz (奥-高公式)()()()⎰⎰⎰Ω⎥⎦⎤⎢⎣⎡∂∂+∂∂+∂∂=dv z z y y x x .434.3333R R dv ππ===⎰⎰⎰Ω(ⅱ)⎰⎰++Sdxdy z dzdx y dydz x 333(奥-高公式)()()()xdydz d z z y y x x ⎰⎰⎰Ω⎥⎦⎤⎢⎣⎡∂∂+∂∂+∂∂=333()⎰⎰⎰Ω++=dxdydz z y x 2223=3(ⅲ)若取h z S =:1(上侧).则S 与1S 一起构成一个封闭曲面.记它们所围成的空间闭区域为Ω.在Ω上利用奥-高公式,便得:()()()[]d S z n z y n yx n x S S ⎰⎰+++1,cos ,cos ,cos 222dxdy z dzdx y dydz xS S 2221++=⎰⎰+ (奥-高公式)()()()xdydz d z z y y x x ⎰⎰⎰Ω⎥⎦⎤⎢⎣⎡∂∂+∂∂+∂∂=222()⎰⎰⎰Ω++=dxdydz z y x 2⎰⎰⎰Ω=zdxdydz 2(=⎰⎰⎰Ωxdxdydz 0=⎰⎰⎰Ωydxdydz )dz z rdr d h h r⎰⎰⎰=πθ202()dr r h r d h⎰⎰-=πθ20022212 .24πh = 所以 ()()()[]d S z n z y n y x n x S⎰⎰++,cos ,cos ,cos 222dxdy z dzdx y dydz x h S 222212++-=⎰⎰π=-=⎰⎰dxdy h h xyD 222π.2.22222πππh h h h =-=(ⅳ),3dxdy z S⎰⎰沿上半球面222y x a z --=的上侧.若取0:1=z S (下侧).则S 与1S 一起构成一个封闭曲面.记它们所围成的空间闭区域为Ω.在Ω上利用奥—高公式,便得:。
《曲线积分与曲面积分》测试题一、选择题(共15分,每小题3分)1.设L 为抛物线21y x =-上介于0x =与1x =之间的一段弧,则L xds =⎰( )( A)33112-;(B) 55112- ; (C) 3316- ; (D)5516-2.均匀曲面222z a x y =--的形心坐标为( )( A)1(0,0,)2a ;(B) 1(0,0,)3a ; (C) 1(0,0,)4a ; (D)10,0,5a ⎛⎫ ⎪⎝⎭3.星形线:33cos ,sin (0,02)x a t y a t a t π==>≤≤所围平面图形的面积为( )( A)235a π;(B) 253a π ; (C) 238a π ; (D)283a π 4.设[()]sin ()cos x Lf x e ydx f x ydy --⎰与路径无关,且()f x 有一阶连续导数,(0)0f =,则()f x =( )( A)2x x e e -- ; (B) 2x x e e -- ;(C) 12x x e e -+- ; (D)12x xe e -+- . 5. 设∑为球面222x y z R ++=的内侧,则曲面积分 333x dydz y dzdx z dxdy ∑++=⎰⎰( )( A)54R π-;(B) 54R π ; (C) 5125R π ; (D)5125R π- 二、填空题(共15分,每小题3分)1.设L 为椭圆22143x y +=,其周长为a ,则22(234)L xy x y ds ++=⎰ .2. 设Γ为曲线0cos sin (0)x t t y t t t t z t =⎧⎪=≤≤⎨⎪=⎩,则zds Γ=⎰ .3.设L 为一条不过原点的光滑闭曲线,且原点位于L 内部,其走向为逆时针方向,则曲线积分222L xdy ydx x y -=+⎰__________________. 4.设∑为平面1x y z ++=位于球面2221x y z ++=内的上侧,则曲面积分()()()x y dydz y z dzdx z x dxdy ∑-+-+-=⎰⎰ .5.全微分方程2201xdx ydy xdy ydx x y +++=++的解为 .三、计算积分222dS x y z ∑++⎰⎰,其中∑为界于0z =与(0)z H H =>之间的柱面:222x y R +=。
第十章 曲线积分与曲面积分一.曲线积分的计算 (1)基本计算1.第一类:对弧长线积分的计算(,)Lf x y ds ⎰关键是用曲线L:(),(),x t y t ϕψ=⎧⎨=⎩()t αβ≤≤做变量替换(被积函数,积分变元,积分范围)(,)[(),(,()Lf x y ds f t t βαϕψαβ=<⎰⎰例 L 为圆周221,x y +=则22xy Le ds +=⎰2e π 参数方程,曲线代入解 cos :(02)sin x L y θθπθ=⎧≤≤⎨=⎩ds d θθ==22x y Leds +=⎰202ed e πθπ=⎰例 计算2⎰L x ds ,其中2222:(0)0⎧++=>⎨-=⎩x y z a L a x y . (8分)解 由于 22222222::00⎧⎧++=+=⇒⎨⎨-=-=⎩⎩x y z a x z a L L x y x y 所以L 的参数方程可表示为:(02)sin θθπθ⎧=⎪⎪⎪=≤≤⎨⎪⎪=⎪⎩x L y t z a (3分)θθ==ds ad (2分) 故23222cos 22ππθθ==⎰⎰La a x ds ad(3分) 【例10.22】求⎰,式中L 为圆周22(0)x y ax a +=>解 L 的极坐标方程为:,(),cos 22L ds ad r a θθππθθθθ=⎧-≤≤==⎨=⎩则222cos 2a ad a ππθθ-=⋅=⎰⎰第二类:对坐标的线积分的计算 关键是用曲线L:(),(),x t y t ϕψ=⎧⎨=⎩(:)t αβ→做变量替换(被积函数,积分变元,积分范围)''(,)(,){[(),()]()[(),()]()}LP x y dx Q x y dy P t t t Q t t t dt βαϕψϕϕψψ+=+⎰⎰例 设L 为抛物线2y x =从点()0,0到()2,4一段弧,则()22Lx y dx -=⎰5615-注意微元,及参数方程的形式【例10.17】 求2L ydx xdy x +⎰,其中L 是曲线ln y x =上从点(1,0)到点(,1)e 的一段弧. 解 由ln y x =得1,ydx dy x e x==,故原式=1121002()|y y ydy e dy y e e +=+=⎰⎰⑵ 基本技巧① 利用对称性简化计算;对弧长的线积分,对称性同二重积分 例 计算3222(),Lx y ds L x y R 其中:++=⎰解:33()LLLx y ds xds y ds =+=0+⎰⎰⎰ 第一个L 关于y 对称,第二个L 关于x 对称【例10.15】 求yL xe ds ⎰,其中L 是由cos (0)sin x a ta y a t =⎧>⎨=⎩所表示的曲线上相应于233t ππ≤≤的一段弧.解 (法一)ds adt ==,故 原式=22sin sin 3333cos |0a ta ta t e adt aeππππ⋅⋅==⎰.(法二)容易看出积分弧段关于y 轴对称,而被积函数是关于变量x 的奇函数,故0y Lxe ds =⎰【例10.18】 求2()Lx y ds +⎰,其中L 为圆周222x y a +=.解 由对称性得0Lxyds =⎰,故22222()(2)()2LLLLx y ds x xy y ds x y ds xyds +=++=++⎰⎰⎰⎰2223022LLa ds a ds a a a ππ=+==⋅=⎰⎰对坐标的线积分,对称性为,当平面曲线L 是分段光滑的,关于x 对称,L 在上半平面与下半平面部分的走向相反时,若P 对y 为偶函数,则,0LPdx =⎰奇函数,则12LL Pdx Pdx =⎰⎰。
十 曲线积分与曲面积分习题(一) 对弧长的曲线积分1. 计算ds y x L⎰+)(22,其中L 为圆周t a y t a x sin ,cos == )20(π≤≤t .解32032222202222222cos sin )sin cos ()(a dt a dt t a t a t a t a ds y x Lπππ==++=+⎰⎰⎰.2. 计算ds x L⎰,其中L 为由直线x y =及抛物线2x y =所围成的区域的整个边界.解 )12655(1214121210-+=++=⎰⎰⎰dx x x dx x ds x L. 3.计算⎰Lyds ,其中L 是抛物线x y 42=上从)0,0(O 到)2,1(A 的一段弧.解⎰L y d s =dy y y dy y y ⎰⎰+=+202202421)2(1 )122(34)4(4412202-=++=⎰y d y . 4.计算⎰+Lds y x )(,其中L 为从点)0,0(O 到)1,1(A 的直线段.解⎰+L ds y x )(=23211)(10=++⎰x x . 5.计算⎰L xyzds ,其中L 是曲线2321,232,t z t y t x ===)10(≤≤t 的一段. 解 ⎰Lx y z d s =⎰⎰+=++13102223)1(232)2(121232dt t t t dt t t t t t =143216.6.计算L⎰ ,其中L 为圆周222x y a +=,直线y x =及x 轴在第一象限所围成的扇形的整个边界.解L⎰ =⎰1L +⎰2L +⎰3L=dx e dt t a t a edx eax aa x⎰⎰⎰+++++024022222201)sin ()cos (11π=(2)14ae a π+-7.设在xoy 面内有一分布着质量的曲线L ,在点(),x y 处它的线密度为(),x y μ,试用对弧长的曲线积分分别表达(1)这条曲线弧对x 轴,y 轴的转动惯量,x y I I ; (2) 这条曲线弧的质心坐标,x y . 解 (1)⎰=Lx dS yI 2μ ⎰=Ly dS x I 2μ(2)⎰⎰=L L dSy x dS y x x x ),(),(μμ ⎰⎰=LL dSy x dS y x y y ),(),(μμ (二) 对坐标的曲线积分1.计算⎰+Lxdy ydx ,其中L 为圆周t R y t R x sin ,cos ==上对应t 从0到2π的一段弧. 解⎰+Lx d y y d x =0]cos cos )sin (sin [20=+-⎰dt t tR R t R t R π2.计算⎰+Lydx xdy ,其中L 分别为(1)沿抛物线22x y =从)0,0(O 到)2,1(B 的一段; (2)沿从)0,0(O 到)2,1(B 的直线段.; (3)沿封闭曲线OABO ,其中)0,1(A ,)2,1(B .解 (1)⎰=+=122)24(dx x x x I .(2)2)22(1=+=⎰dx x x I .(3)⎰+Lydx xdy =⎰⎰⎰++BOABOA=210(22)0dy x x dx +++=⎰⎰.3.计算⎰-+++Ldz y x zdy xdx )1(,其中Γ是从点)1,1,1(到点)4,3,2(的一段直线.解 直线方程为312111-=-=-z y x ,其参数方程为13,12,1+=+=+=t z t y t x ,t 从0变到1.13])13(3)12(2)1[(1=+++++=⎰dt t t t I .4.计算2()Lxydx x y dy x dz +-+⎰,其中L 是螺旋线bt z t a y t a x ===,sin ,cos 从0=t 到π=t 上的一段.解 dt t b a t a t a t a t a t a t a I ⎰+-+-∙=π22]cos cos )sin cos ()sin (sin cos [)(222b a a +=π.5.设Γ为曲线23,,x t y t z t ===上相应于t 从0变到1的曲线弧.把对坐标的曲线积分Pdx Qdy Rdz Γ++⎰化成对弧长的曲线积分.解 由于)3,2,1()3,2,1(),,(2y x t t dt dz dt dy dt dx ==,故229411c o s y x ++=α,229412cos yx x ++=β,229413cos yx y ++=γ.(cos cos cos )Pdx Qdy Rdz P Q R dS αβγΓΓ++=++⎰⎰=dS yx yR xQ P ⎰Γ++++2294132.(三) 格林公式及应用1.计算⎰-L ydy x dx xy 22,其中L 为圆周222a y x =+,取逆时针方向. 解⎰-Lydy x dx xy22=0)22(=--⎰⎰Ddxdy xy xy2.计算⎰+--Ldy y x dx y x )sin ()(22,其中L 是在圆周22x x y -=上由点)0,0(到点)1,1( 的一段弧.解 y x P -=2,)sin (2y x Q +-= ()122017sin sin 246I x x x x dx =---=-⎰ 3. 计算(1)()xxL ye dx x e dy +++⎰,其中L 为椭圆22221x y a b +=的上半周由点(,0)A a 到(,0)B a -的弧段.解 x ye P +=1,x e x Q +=⎰⎰-=+11L L L I =2aD adxdy dx ab a π--=-⎰⎰⎰4. 计算3222(2cos )(12sin 3)Lxy y x dx y x x y dy -+-+⎰,其中L 为在抛物线22x y π=上由点(0,0)到,12π⎛⎫⎪⎝⎭的一段弧. 解 322cos P xy y x =-,2212sin 3Q y x x y =-+ ⎰⎰⎰--=+211L L L L I =0)4321(00122-+--⎰⎰⎰y y dxdy D π=42π5. 计算⎰+-L y x xdy ydx )(222,其中L 为圆周2)1(22=+-y x ,L 的方向为逆时针方向. 解 )(222y x y P +=,)(222y x x Q +-=,当022≠+y x 时, yPy x y x x Q ∂∂=+-=∂∂)(22222 L 所围区域为D ,由于D ∈)0,0(,故不能直接用格林公式.选适当小的0>r ,作位于D 内的小圆周222:r y x l =+.记L 与l 所围区域为1D ,在1D 上应用格林公式,得⎰+-L y x xdyydx )(222-⎰+-l y x xdy ydx )(222=0其中l 取逆时针方向.所以⎰+-L y x xdyydx )(222=⎰+-l y x xdy ydx )(222=πθθπ=--⎰20222222cos sin r r r . 6. 计算星形线t a y t a x 33sin ,cos ==,)20(π≤≤t 所围成区域的面积.解 ⎰-=L ydx xdy A 21=2024224283)cos sin 3sin cos 3(a dt t t a t t a ππ=+⎰7. 证明曲线积分(2,1)423(1,0)(2)(4)xy y dx x xy dy -+-⎰在整个xoy 面内与路径无关,并计算积分值.解 (1)42y xy P -=,324xy x Q -=xQy x y P ∂∂=-=∂∂342在整个xoy 面上成立 故曲线积分(2,1)423(1,0)(2)(4)xy y dx x xy dy -+-⎰在整个xoy 面内与路径无关.(2)⎰⎰+=21L L I =8.验证dy x xydx 22+在整个xoy 平面内是某一函数),(y x u 的全微分,并求这样的一个),(y x u .解 (1)验证略;(2)y x dy x y x u yABOA2020),(=+=+=⎰⎰⎰9.试用曲线积分求dy y x dx y x )cos ()sin 2(++的原函数. 解 y x P sin 2+=,y x Q cos =,xQ y y P ∂∂==∂∂cos 在整个xoy 面上成立 所以 ⎰++=),()0,0()cos ()sin 2(),(y x dy y x dx y x y x u=y x x ydy x xdx yxsin cos 220+=+⎰⎰+C.(四) 对面积的曲面积分1.计算⎰⎰∑+dS y x)(22,其中∑是锥面22y x z +=及平面1=z 所围成的区域的整个边界曲面. 解⎰⎰∑+dS y x)(22=⎰⎰⎰⎰∑∑+21=⎰⎰⎰⎰+++++xyxyD D y x dxdy y x dxdy z z y x )(1)(222222 ⎰⎰++=xyD dxdy y x )()12(22=π212+. 2. 计算⎰⎰∑++dS zy x )223(,其中∑为平面1432=++z y x 在第一卦限的部分.解 d x d y y x y x I xyD ⎰⎰-+-+--++=22)34()2(1))321(223(, =⎰⎰⎰⎰-+=+x D dy y dx dxdy y xy 23302)265(361)265(361 =614)42741549(361202=+-⎰dx x x . (x y x D xy 2330,20:-<<<<) 3.计算⎰⎰∑dS z 2,其中∑为球面2222a z y x =++. 解⎰⎰∑dS z 2=⎰⎰⎰⎰--=++--xyxyD D y x dxdy y x a a dxdy z z y x a2222222221)(2=42022342a d a d a aπρρρθπ=-⎰⎰4.计算⎰⎰∑++dS z y x )(,∑是球面0,222≥=++z a z y x .有问题 解 ⎰⎰----++=xyD dxdy y x a y x a y x I 222222)(=⎰⎰⎰⎰--+--+xyxyD D dxdy y x a dxdy y x a y x )()(222222 =πρρρθπ2)(002220=-+⎰⎰ad a d 5.求抛物面壳221()(01)2z x y z =+≤≤的质量,此壳的面密度为z μ=. 解 ⎰⎰∑=zdS M =dxdy y x y x xyD 22221)(21+++⎰⎰=2012d d πρ⎰(五) 对坐标的曲面积分1.计算⎰⎰∑zdxdy y x22,其中∑是球面2222R z y x =++的下半部分的下侧.解⎰⎰∑zdxdy y x22=dxdy y x R y x xyD ⎰⎰--2222=24220cos sin Rd πθρθρ⎰⎰ =72105R π2.计算⎰⎰∑++yzdzdx xydydzxzdxdy ,其中∑是平面1,0,0,0=++===z y x z y x 所围成的空间区域的整个边界曲面的外侧. 解 4321∑+∑+∑+∑=∑0321===⎰⎰⎰⎰⎰⎰∑∑∑⎰⎰⎰⎰--=++∑xyD dxdy y x x yzdzdx xydydz xzdxdy )1(34=dy xy x x dx x⎰⎰---10102)(3=85. 3.计算⎰⎰∑++=dxdy z h dxdz y g dydz x f I )()()(,其中h g f ,,为已知连续函数,∑为平行六面体c z b y a x ≤≤≤≤≤≤Ω0,0,0:表面的外侧. 解 654321∑+∑+∑+∑+∑+∑=∑⎰⎰⎰⎰⎰⎰+-==∑yzyzD D dydz a f dydz f dydz x f I )()0()(1=bc f a f )]0()([-⎰⎰⎰⎰⎰⎰+-==∑yzyzD D dxdz b g dxdz g dxdz y g I )()0()(2=ac g b g )]0()([-ab h c h I )]0()([3-=所以321I I I I ++==ab h c h ac g b g bc f a f )]0()([)]0()([)]0()([-+-+-. 4.计算⎰⎰∑++dxdy z dzdx y dydz x 222,其中∑为半球面222y x a z --=的上侧.解⎰⎰⎰⎰⎰⎰∑∑∑+=21222dydz x dydz x dydz x=0)()(222222=-----⎰⎰⎰⎰dydz z y a dydz z y a yzyzD D 同理:02=⎰⎰∑dzdx y 4202222222)()(a d a d dxdy y x a dxdy z aD xyπρρρθπ=-=--=⎰⎰⎰⎰⎰⎰∑故⎰⎰∑++dxdy z dzdx y dydz x 222=42a π. 5.计算⎰⎰∑++zdxdy ydzdx xdydz ,其中∑是柱面122=+y x 被0=z 及3=z 所截得的在第一卦限内的部分的前侧. 解⎰⎰∑=0zdxdy⎰⎰⎰⎰⎰⎰-=-=∑1032211dz y dy dydz y xdydz yzDπθθθθππ43)2cos 1(23cos 320202=+==⎰⎰d d同理:π43=⎰⎰∑ydzdx 故⎰⎰∑++zdxdy ydzdx xdydz =π23. 6.设∑为平面x z a +=在柱面222x y a +=内那一部分的上侧,下面两个积分的解法是否正确?如果不对,给出正确解法. (1)3()()x z dS a dS a a ∑∑+==⨯∑=⎰⎰⎰⎰的面积; (2)3()()x z dxdy a dxdy a a ∑∑+==⨯∑=⎰⎰⎰⎰的面积. 解 (1)正确;(2)错误.正确解法是:()x z dxdy a dxdy ∑∑+=⎰⎰⎰⎰=3adxdy a xyD π=⎰⎰.(六) 高斯公式利用高斯公式计算: 1.计算⎰⎰∑++dxdy z dzdx y dydz x 333,其中∑为球面2222a z y x=++的内侧.解 2223()I x y z dv Ω=-++⎰⎰⎰2403sin Rd d r dr ππθϕϕ=-⎰⎰⎰5125R π=- 2.计算⎰⎰∑++zdxdy ydzdx xdydz ,其中∑是曲面22y x z +=在第一卦限中10≤≤z 部分的下侧.解 补充曲面:)0,0,1(,1:221≥≥≤+=∑y x y x z ,取上侧; )1,10(,0:22≤≤≤≤=∑z x x y ,取左侧;)1,10(,0:23≤≤≤≤=∑z y y x ,取后侧.∑,1∑,2∑和3∑构成闭曲面,所围的空间闭区域记为Ω,由高斯公式,得⎰⎰∑++zdxdy ydzdx xdydz =⎰⎰⎰⎰⎰⎰⎰⎰∑∑∑∑+∑+∑+∑---++321zdxdy ydzdx xdydz=003+++⎰⎰⎰⎰⎰⎰⎰ΩzxxyD D dzdx dxdy dv=ππρρθρπ=+⎰⎰⎰43110202dz d d .3.计算⎰⎰∑+++-dxdy xz y dzdx x dydz z x y )()(22,∑为正方体Ω的表面并取外侧,其中 {(,,)|0,0,0}x y z x a y a z a Ω=≤≤≤≤≤≤.解 ()I y x dv Ω=+⎰⎰⎰=400)(a dz y x dy dx aaa=+⎰⎰⎰ 4.计算⎰⎰∑++dS z y x )cos cos cos (222γβα,其中∑是由222z y x =+及)0(>=h h z 所围成的闭曲面的外侧,γβαcos ,cos ,cos 是此曲面的外法线的方向余弦. 解 2()2()2I x y z d x d y d z x y d x d y d z z d x d y d zΩΩΩ=++=++⎰⎰⎰⎰⎰⎰⎰⎰⎰=2220()xyxyh D D dxdy zdz h x y dxdy +=--⎰⎰⎰⎰=412h π.(七) 斯托克斯公式1.计算⎰-+-++Ldz z y dy z x dx z y )()()2(,其中L 为平面1=++z y x 与各坐标面的交线,取逆时针方向为正向. 解 由斯托克斯公式,得⎰-+-++Ldz z y dy z x dx z y )()()2(=()()()R Q P R Q P dydz dzdx dxdy y z z x x y∑∂∂∂∂∂∂-+-+-∂∂∂∂∂∂⎰⎰ =⎰⎰∑-+dxdy dzdx dydz 2=⎰⎰⎰⎰⎰⎰-+=xyzxyzD D D dxdy dzdx dydz 2=1. 2.计算⎰-+-+-Ldz x y dy z x dx y z )()()(,其中L 是从)0,0,(a 经)0,,0(a 和),0,0(a 回到)0,0,(a 的三角形.解 由斯托克斯公式,得⎰-+-+-Ldz x y dy z x dx y z )()()(=()()()R Q P R Q P dydz dzdx dxdy y z z x x y∑∂∂∂∂∂∂-+-+-∂∂∂∂∂∂⎰⎰ =2242222a dxdy dxdy dydz dxdy dydz xyxyyzD D D ==+=+⎰⎰⎰⎰⎰⎰⎰⎰∑. (八) 曲线积分与曲面积分自测题1.计算曲线积分 (1)ds y x L⎰+22,其中L 为圆周ax y x =+22;解 :cos (-)22L r a ππθθ=≤≤)d s d d a θθθ==cos r a θ==ds y x L⎰+22=222cos 2a ad a ππθθ-=⎰ .(2)⎰Lzds ,其中Γ为曲线)0(,sin ,cos 0t t t z t t y t t x ≤≤===;解d s t d t=⎰Lz d s=0322(2)3t t +-=⎰ (3)⎰+-Lxdy dx y a )2(,其中L 为摆线)cos 1(),sin (t a y t t a x -=-=上对应t 从0到π2的一段弧;解⎰+-Lx d y dx y a )2(=20{[(2(1cos ))](1cos )(sin )sin }a a t a t a t t a t dt π---+-⎰=2220sin 2at tdt a ππ=-⎰. (4)⎰Γ-+-dz x yzdy dx z y 2222)(,其中Γ是曲线32,,t z t y t x ===上由01=t 到12=t 的一段弧;解⎰Γ-+-dz x yzdy dx z y2222)(=14623220[()1223]t t t t t t t dt -+-⎰=16401(3)35t t dt -=⎰(5)⎰-+-Lx x dyy e dx y y e )2cos ()2sin (,其中L为上半圆周0,)(222≥=+-y a y a x 沿逆时针方向;解 补充积分路径1:0L y =,x 从0到2a. sin 2,cos 2xxP e y y Q e yy =-=-11(s i n 2)(c o s 2)xx LL L L ey y dx e y dy +-+-=-⎰⎰⎰=220()(sin 020)0ax D Q Pdxdy e dx a x y π∂∂---+=∂∂⎰⎰⎰2.计算曲面积分 (1)⎰⎰∑++222z y x dS ,其中∑是介于平面0=z 及H z =之间的圆柱面222R y x =+; 解x =,dS ==⎰⎰∑++222z y x dS=12∑∑+⎰⎰⎰⎰=yzD+yzD=221yzD R z =+⎰⎰=2arctanHR π. (2) ⎰⎰∑-+-+-dxdy y x dzdx x z dydz z y )()()(222,其中∑为锥面)0(22h z y x z ≤≤+=的外侧;解 11I ∑+∑∑=-⎰⎰⎰⎰=()P Q Rdxdydz x y z Ω∂∂∂++∂∂∂⎰⎰⎰2()xyD x y dxdy --⎰⎰ =44044h h ππ-=-.(3)⎰⎰∑++zdxdy ydzdx xdydz ,其中∑为半球面22y x R z --=的上侧;解11I ∑+∑∑=-⎰⎰⎰⎰=()P Q R dxdydz x y z Ω∂∂∂++∂∂∂⎰⎰⎰0xyD dxdy -⎰⎰ =3302dv R πΩ-=⎰⎰⎰.(4)⎰⎰∑++++3222)(z y x zdxdyydzdx xdydz ,其中∑为曲面)0(9)1(16)2(5122≥-+-=-z y x z 的上侧;解 0I = (利用高斯公式) (5) ⎰⎰∑xyzdxdy ,其中∑为球面)0,0(1222≥≥=++y x z y x 外侧. 解⎰⎰∑xyzdxdy =12xyzdxdy xyzdxdy ∑∑+⎰⎰⎰⎰=12022cos sin xyD d r r πθθθ=⎰⎰⎰⎰=215. 3.证明:22yx ydyxdx ++在整个xoy 平面除去y 的负半轴及原点的区域G 内是某个二元函数的全微分,并求出一个这样的二元函数.解 在整个xoy 平面除去y 的负半轴及原点的区域G 是单连通域.在G 内,222()Q xy Px x y y ∂-∂==∂+∂, 所以存在(,)u x y ,使22xdx ydydu x y+=+. 取积分路径:(1,0)(,0)(,)x x y →→(,)22222(1,0)10(,)x y yx xdx ydy x y u x y dx dy x y x x y +==+++⎰⎰⎰=221ln()2x y +. 4.计算⎰Γ-+-++dz x y dy z x dx z y )()()2(,其中Γ为平面1=++z y x 与各坐标面的交线,从z 轴正向看取逆时针方向. 解 由斯托克斯公式,得⎰-+-++Ldz z y dy z x dx z y )()()2(=()()()R Q P R Q Pdydz dzdx dxdy y z z x x y∑∂∂∂∂∂∂-+-+-∂∂∂∂∂∂⎰⎰ =⎰⎰∑-+dxdy dzdx dydz 2=⎰⎰⎰⎰⎰⎰-+=xyzxyzD D D dxdy dzdx dydz 2=1.5.求均匀曲面222y x a z --=的质心的坐标.解 设面密度为ρ,重心(,,)x y z 由对称性:0x y ==2200xyaD M dS πρρ∑===⎰⎰⎰=22a πρ2112xyD z zdS Ma ρπ∑==⎰⎰=2a 故重心的坐标为(0,0,)2a .。
第十章 曲线积分与曲面积分(A)1.计算()⎰+Ldx y x ,其中L 为连接()0,1及()1,0两点的连直线段。
2.计算⎰+Lds y x 22,其中L 为圆周ax y x =+22。
3.计算()⎰+Lds y x 22,其中L 为曲线()t t t a x sin cos +=,()t t t a y cos sin -=,()π20≤≤t 。
4.计算⎰+Ly x ds e22,其中L 为圆周222a y x =+,直线x y =及x 轴在第一角限所围成的扇形的整个边界。
5.计算⎰⎪⎪⎭⎫ ⎝⎛+L ds y x 3434,其中L 为摆线t a x 3cos =,t a y 3sin =⎪⎭⎫ ⎝⎛≤≤20πt 在第一象限的一段弧。
6.计算⎰+Lds yx z 222,其中L 为螺线t a x cos =,t a y sin =,at z =()π20≤≤t 。
7.计算⎰Lxydx ,其中L 为抛物线x y =2上从点()1,1-A 到点()1,1B 的一段弧。
8.计算⎰-+Lydz x dy zy dx x 2233,其中L 是从点()1,2,3A 到点()0,0,0B 的直线段AB 。
9.计算()⎰-+++Ldz y x ydy xdx 1,其中L 是从点()1,1,1到点()4,3,2的一段直线。
10.计算()()⎰---Ldy y a dx y a 2,其中L 为摆线()t t a x sin -=,()t a y cos 1-=的一拱(对应于由t 从0变到π2的一段弧):11.计算()()⎰-++Ldy x y dx y x ,其中L 是:1)抛物线x y =2上从点()1,1到点()2,4的一段弧;2)曲线122++=t t x ,12+=t y 从点()1,1到()2,4的一段弧。
12.把对坐标的曲线积分()()⎰+Ldy y x Q dx y x P ,,化成对弧和的曲经积分,其中L 为:1)在xoy 平面沿直线从点()0,0到()4,3; 2)沿抛物线2x y =从点()0,0到点()2,4; 3)沿上半圆周x y x 22=+2从点()0,0到点()1,1。
13.计算()()⎰-+-Lx xdy mx y e dx my y ecos sin 其中L 为()t t a x sin -=,()t a y cos 1-=,π≤≤t 0,且t 从大的方向为积分路径的方向。
14.确定λ的值,使曲线积分()()⎰-++-βαλλdy y y x dx xy x4214564与积分路径无关,并求()0,0A ,()2,1B 时的积分值。
15.计算积分()()⎰++-Ldy y x dx x xy 222,其中L 是由抛物线2x y =和xy =2所围成区域的正向边界曲线,并验证格林公式的正确性。
16.利用曲线积分求星形线t a x 3cos =,t a y 3sin =所围成的图形的面积。
17.证明曲线积分()()()()⎰-+-4,32,12232366dx xy y x dx y xy在整个xoy 平面与路径无关,并计算积分值。
18.利用格林公式计算曲线积分()()⎰-+-+Lx x dy ye x x dx e y x xy x xy2sin sin 2cos 222,其中L 为正向星形线323232ay x =+()0>a 。
19.利用格林公式,计算曲线积分()()⎰-+++-Ldy x y dx y x 63542,其中L 为三顶点分别为()0,0、()0,3和()2,3的三角形正向边界。
20.验证下列()()dy y x Q dx y x P ,,+在整个xoy 平面是某函数()y x u ,的全微分,并求这样的一个()y x u ,,()()dy ye y x x dx xy y x y 128832322++++。
21.计算曲面积分()⎰⎰∑+dx y x 22,其中∑为抛物面()222y x z +-=在xoy 平面上方的部分。
22.计算面面积分()⎰⎰∑+--ds z x x xy 222,其中∑为平面和三坐标闰面所围立体的整个表面。
24.求抛物面壳()2221y x z +=()10≤≤z 的质量,壳的度为z t =。
25.求平面x z =介于平面1=+y x ,0=y 和0=x 之间部分的重心坐标。
26.当∑为xoy 平面的一个闭区域时,曲面积分()⎰⎰∑dxdy z y x R ,,与二重积分有什么关系?27.计算曲面积分⎰⎰∑++ydzdx xdydz zdxdy 其中∑为柱面122=+y x 被平面0=z 及3=z 所截的在第一卦限部分的前侧。
28.计算⎰⎰∑++dxdy z dxdz y dydz x 222式中∑为球壳()()22b y a x -+-()22R c z =-+的外表面。
29.反对坐标的曲面积分化成对面积的曲面积()()()⎰⎰∑++dxdy z y x R dzdx z y x Q dydz z y x P ,,,,,,化成对面积的曲面积分,其中∑是平面63223=++z y x 在第一卦限的部分的上侧。
30.利用高斯公式计算曲面积:1)⎰⎰∑++dxdy z dzdx y dydz x 222,其中∑为平面0=x ,0=y ,0=z ,a x =,a y =,a z =所围成的立体的表面和外侧。
2)()()⎰⎰∑-+-xdydz z y dxdy y x ,其中∑为柱面122=+y x 与平面0=z ,3=z 所围立体的外表面。
31.计算向理αρ穿过曲面∑流向指定侧的通量:1)()k xz j y x i z x ρρρρ222-+-=α,∑为立体a x ≤≤0,a y ≤≤0,a z ≤≤0,流向外侧;2)()()()k y x z j x z y i z y x ρρρρ-+-++-++-=α,∑为椭球面1222222=++c z b y a x ,流向外侧。
32.求向理场()()k xz j xy i a xyρρρρ2cos cos ++=α的散度。
33.利用斯托克斯公式计算曲经积分⎰Γ++xdz zdy ydx 其中Γ为圆周,2222a z y x =++,0=++z y x ,若从x 轴正向看去,这圆周取逆时针方向。
34.证明⎰Γ=++02xzdz xydy dx y ,其中Γ为圆柱面y y x 222=+与z y =的交线。
35.求向量场()()()k xy j yz x i y x a ρρρρ233-++-=,其中Γ为圆周222y x z +-=,0=z 。
36.求向量场()()j y x z i y z ρρρcos sin --+=α的旋度。
37.计算()()()⎰Γ-+-+-dz y x dy x z dx z y222222,其中Γ为用平面23=++z y x 切立方体a x ≤≤0,a y ≤≤0,a x ≤≤0的表面所得切痕,若从ox 轴的下向看去与逆时针方向。
(B)1.计算⎰Lyds ,其中L 为抛物线px y 22=由()0,0到()00,y x 的一段。
2.计算⎰Lds y 2,其中L 为摆线()t t a x sin -=,()t r a y cos -=一拱()π20≤≤t 。
3.求半径为a ,中心角为24的均匀圆弧(线心度1=ρ)的重心。
4.计算⎰Lzds ,其中L 为螺线t t x cos =,t t y sin =,t z =()π20≤≤t 。
5.计算⎰++Lds zy x 2221,其中L 为空间曲线t x t cos ρ=,t y tsin ρ=,t z ρ=上相应于t 从0变到2的这段弧。
6.设螺旋线弹簧一圈的方程为t a x cos =,t a y sin =,kt z =()π20≤≤t ,它的线心度为()222,,z y x yz y x ++=ρ,求:1)它关于z 轴的转动惯量z I ; 2)它的垂心。
7.设L 为曲线t x =,2t y =,3t z =上相应于t 从0变到1的曲线弧,把对坐标的曲线积分⎰++LRdz Qdy Pdx 化成对弧长的曲线积分。
8.计算()()⎰+--+Ly x dy y x dx y x 22,其中L 为圆周222a y x =+(按逆时针方向绕行)。
9.计算⎰++Lxdz zdy ydx ,其中L 为曲线t a x cos =,t a y sin =,bt z =,从0=t 到π2=t 的一段。
10.计算()()⎰-++Ldy y x dx y x 2222,其中L 为||1x y -=()20≤≤x 方向为x增大的方向。
11.验证曲线积分()()()()⎰-++-1,20,1222dy y x e x dx y xey y与路径无关并计算积分值。
12.证明当路径不过原点时,曲线积分()()⎰++2,21,122yx ydyxdx 与路径无并,并计算积分值。
13.利用曲线积分求椭圆12222=+by a x 的面积。
14.利用格林公式计算曲线积分()()⎰+--Ldy y x dx y x 22sin ,其中L 是圆周22x x y -=上由点()0,0到点()1,1的一段弧。
15.利用曲线积分,求笛卡尔叶形线axy y x 333=+()0>a 的面积。
16.计算曲线积分()⎰+-L y x xdy ydx 222,其中L 圆周()2122=+-y x ,L 的方向为逆时针方向。
17.计算曲面积分⎰⎰∑zds 3,其中∑为抛物面()222y x z +-=在xoy 平面上的部分。
18.计算()⎰⎰∑++ds zx yz xy ,其中∑是锥面22y x z +=被柱面axy x 222=+所截得的有限部分。
19.求面心度为0ρ的均匀半球壳2222a z y x =++()0≥z 对于z 轴的转动惯量。
20.求均匀的曲面22y x z +=被曲面ax y x =+22所割下部分的重心的坐标。
21.计算曲面积分()⎰⎰=++=2222,,a z y x ds z y x f I ,其中()⎪⎩⎪⎨⎧+<+≥+=222222,0,,,yx z yx z y x z y x f 。
22.计算⎰⎰∑++yzdzdx xydydz xzdxdy ,其中∑是平面0=x ,0=y ,0=z ,1=++z y x 所围成的空间区域的整个边界边界曲面的外例。
23.计算dxdy z dxdz y dydz x 111++⎰⎰∑,其中∑为椭球面1222222=++c z b y a x 。
24.计算()()()⎰⎰∑-+-+-dxdyy x dxdy x z dydz z y ,式中∑为圆锥面2=+z y x 22()h z ≤≤0的外表面。