汽车轮毂单元内圈新材料及工艺研发
- 格式:doc
- 大小:159.50 KB
- 文档页数:20
高强度碳纤维复合材料轮毂的设计与制造一、背景介绍复合材料是近年来航空、汽车等高速运动设备中广泛采用的材料。
其中,碳纤维复合材料由于具有高强度、高弹性模量和较小的密度等优点,成为轮毂、车架、车身等几乎所有部件的理想材料。
轮毂是汽车、飞机等高速运输工具的核心部件,承受车辆运行时传来的重力、刹车、加速等各种力,对车辆的安全和性能有巨大的影响。
高强度碳纤维复合材料轮毂的设计和制造是一个前沿且具有挑战性的科技难题。
二、设计要求1.耐久性轮毂需要满足耐久性的要求,以保证它的使用寿命。
高速运动中,轮毂承受着巨大的风荷载和离心力。
这会导致材料疲劳、裂纹等问题。
因此应采用高强度、高韧性的碳纤维复合材料,并考虑制造工艺和受力部位的优化设计。
2.重量轻车辆重量是一个重要的考虑因素。
由于轮毂是转动的质量,轮毂的轻量化可以减小车辆的总重量,提高其性能。
碳纤维材料密度小于金属材料,因此设计时可以通过减小轮毂尺寸、减少配重等方法来实现重量轻量化。
3.制造成本和复杂度高强度碳纤维复合材料的制造工艺相对复杂,生产成本高。
同时,纤维方向的布局和层数的选择等制造参数,对轮毂性能具有重要影响。
因此,制造成本和复杂度也是设计中需要考虑的一个重要因素。
三、材料选择碳纤维复合材料的基本结构是由高强度碳纤维和高韧性树脂组成。
在选择碳纤维时,应考虑弹性模量、强度和密度等性能指标。
目前,聚合物基树脂是一种常用的基质材料,具有较好的机械性能和耐热性能,而且价格相对较低。
与此同时,也可以考虑使用环氧材料,因为它的强度、刚度和弹性模量等方面优于聚合物基树脂。
不过生产成本会稍高一些。
四、设计方案轮毂的设计需要考虑静态和动态受力条件。
在静态方面,应考虑轮毂的重量,并在必要时增加配重来保证稳定性。
在动态方面,应考虑材料的疲劳寿命和减小轮毂的空气力学阻力。
1.设计工艺设计者应采用自动化计算方法,通过各种仿真和强度分析工具来确保设计稳健性和可行性。
设计方法可以借鉴冲压、铸造等传统材料的工艺方法,适当采用机械加工或人工制造等方法。
《汽车轮毂用A356铝合金的精炼及净化》篇一一、引言在汽车制造业中,A356铝合金以其优异的机械性能、可加工性以及良好的铸造性能,成为汽车轮毂制造的首选材料。
然而,铝合金的纯净度对轮毂的强度、耐磨性及使用寿命具有决定性影响。
因此,A356铝合金的精炼及净化过程对于保证汽车轮毂的质量具有极其重要的意义。
本文将详细阐述A356铝合金的精炼及净化过程,以解析其重要性及实际操作要点。
二、A356铝合金的精炼1. 原料准备:首先,选取高质量的纯铝和其他合金元素作为原料。
这些原料需经过严格的检验,确保其纯度和成分符合要求。
2. 熔炼:将选定的原料放入熔炉中加热至熔化状态。
熔炼过程中需注意控制温度,避免过高或过低的温度对合金性能造成影响。
3. 精炼:熔化后,通过加入精炼剂、搅拌等方式去除合金中的杂质和气体。
这一过程可以有效提高合金的纯净度,减少气孔和夹杂物的产生。
三、A356铝合金的净化1. 气体净化:在熔炼过程中,铝合金会吸收氢气等有害气体。
为了去除这些气体,需要采用气体净化的方法。
常用的方法是在熔炉中通入惰性气体(如氩气),通过置换熔融金属中的气体,将氢气等有害气体从金属中排出。
2. 机械净化:通过离心分离机等设备对熔融金属进行离心分离,进一步去除杂质和夹杂物。
离心分离可以有效分离密度较大的夹杂物和颗粒物,提高合金的纯净度。
四、精炼及净化过程中的注意事项1. 控制温度:在精炼及净化过程中,需严格控制温度。
过高的温度可能导致合金元素挥发,影响合金性能;过低的温度则可能导致精炼及净化效果不佳。
2. 添加适量精炼剂:精炼剂的添加量需根据实际情况进行调整。
过多或过少的精炼剂都会影响精炼及净化效果。
3. 定期检查设备:定期对熔炉、离心分离机等设备进行检查和维护,确保其正常运行和良好的工作状态。
五、结论A356铝合金的精炼及净化过程对于保证汽车轮毂的质量具有至关重要的作用。
通过精炼和净化过程,可以有效去除合金中的杂质和气体,提高合金的纯净度,从而保证汽车轮毂的强度、耐磨性及使用寿命。
《7A04高强铝合金轮毂锻造成形工艺研究》篇一一、引言随着汽车工业的快速发展,轮毂作为汽车的重要部件,其性能和制造工艺日益受到关注。
7A04高强铝合金因其优良的机械性能和抗腐蚀性能,被广泛应用于汽车轮毂的制造。
本文旨在研究7A04高强铝合金轮毂的锻造成形工艺,以提高轮毂的制造质量和生产效率。
二、7A04高强铝合金概述7A04高强铝合金是一种铝-锌-镁系合金,具有较高的强度、良好的塑性和抗腐蚀性。
其合金元素的比例和含量对轮毂的性能具有重要影响。
在轮毂制造过程中,7A04高强铝合金的锻造成形工艺是关键环节之一。
三、锻造成形工艺研究1. 材料准备首先,选择优质的7A04高强铝合金材料,进行化学成分分析和机械性能测试,确保材料符合制造要求。
然后,对材料进行预处理,包括加热、均匀化处理等,以提高材料的可塑性。
2. 锻造设备与模具选择合适的锻造设备和模具是锻造成形工艺的关键。
设备应具备足够的压力和温度控制能力,以满足轮毂锻造的要求。
模具的设计和制造应考虑轮毂的形状、尺寸和精度要求,确保锻造过程中轮毂的形状和尺寸精度。
3. 锻造过程锻造过程包括加热、锻打、冷却等步骤。
首先,将7A04高强铝合金材料加热至适当的温度,以降低材料的塑性变形抗力。
然后,通过锻打的方式使材料发生塑性变形,形成所需的轮毂形状。
最后,进行冷却处理,使轮毂的内部组织得到充分稳定。
4. 工艺参数优化在锻造过程中,应优化工艺参数,包括加热温度、锻打速度、冷却方式等。
通过实验和仿真分析,确定最佳的工艺参数组合,以提高轮毂的制造质量和生产效率。
同时,要关注模具的使用和维护,以延长模具的使用寿命。
四、研究结果与分析通过对7A04高强铝合金轮毂锻造成形工艺的研究,我们得到了以下结果:1. 优化了材料准备过程,提高了材料的可塑性;2. 选择了合适的锻造设备和模具,提高了轮毂的形状和尺寸精度;3. 通过优化工艺参数,提高了轮毂的制造质量和生产效率;4. 分析了锻造过程中可能出现的缺陷和问题,提出了相应的解决措施。
轮毂生产工艺流程轮毂生产工艺流程是指将原材料经过一系列的加工和处理,最终制成轮毂的过程。
下面是一个典型的轮毂生产工艺流程,大致包括以下几个步骤:1. 原材料准备:轮毂的原材料一般是铝合金或钢材。
首先需要根据设计要求选择合适的原材料,并对原材料进行检测和质量验收。
2. 模具制作:根据轮毂的设计图纸,制作相应的模具。
这些模具一般由铸造模具、加工模具等组成,用于后续工序的操作。
3. 铸造:将铝合金或钢材熔化,并倒入铸造模具中进行注射或浇铸,形成初步的轮毂形状。
4. 精密加工:经过铸造得到的轮毂需要进行精密加工,包括修整外表面、铣削轮缘和孔径、钻孔或滚丝等操作。
5. 表面处理:对轮毂进行表面处理,包括喷砂、抛光、镀铬等工艺。
这些工艺可以改善轮毂表面的光洁度、耐腐蚀性和装饰性。
6. 精加工:经过表面处理的轮毂需要进行精加工,包括钻孔、搅拌轧辊、修整孔径和轮缘等操作。
这些工艺可以提高轮毂的尺寸精度和表面质量。
7. 色彩处理:一些轮毂需要进行涂装或喷涂,以增加产品的美观度和耐久性。
通常要经过底漆、涂装、烘干和固化等多个步骤。
8. 轮毂组装:如果轮毂是多部件组成的,需要进行组装。
这包括预装轮缘和中心盖、紧固螺栓和气门芯等。
9. 检测和质量控制:在各个工序中需要进行检测和质量控制,以确保产品符合设计要求和标准。
常见的检测方法包括外观检查、尺寸测量和材料质量检测。
10. 包装和出厂:经过检测和质量控制的轮毂可以进行包装,并准备出厂。
通常要将轮毂包装在适当的包装箱中,以保护产品免受损坏。
以上是一个典型的轮毂生产工艺流程,每个工艺流程都需要经过严格的操作和控制,以确保产品的质量和性能。
这个流程只是一个概述,并不具体说明每个步骤的细节和操作方法。
实际的轮毂生产过程可能会因不同的厂商和工艺而有所不同。
汽车轮毂支持政策
汽车轮毂作为汽车零部件的重要组成部分,中国政府在支持政策方面主要体现在以下几个层面:
1. 产业政策支持:国家鼓励汽车零部件的自主研发和生产,对于关键零部件如轮毂的研发、制造企业给予税收优惠、研发资金支持等政策扶持,通过提升国内零部件企业的自主创新能力来增强产业链的安全性和竞争力。
2. 技术创新补贴:对采用新材料、新技术、新工艺进行汽车轮毂研发生产的高新技术企业,符合条件的可以享受科技创新项目补贴或高新技术企业所得税减免等优惠政策。
3. 新能源汽车配套政策:随着新能源汽车的发展,政府也强调对包括轮毂在内的轻量化、节能化零部件的研发与应用的支持,比如为满足新能源汽车续航里程及节能减排要求而开发的轻量化轮毂产品,可能会得到专项补贴或优先采购政策的支持。
4. 出口退税政策:对于出口海外市场的汽车轮毂产品,根据相关出口政策可享受一定比例的出口退税,以促进产品
的国际竞争力。
5. 标准制定和质量监管:政府积极推动汽车轮毂行业的标准化建设,引导企业按照国家标准、行业标准进行生产和检测,并通过严格的质量监管体系确保产品质量安全。
6. 环保政策:在循环经济和绿色制造政策下,鼓励和支持企业采用环保材料和技术生产汽车轮毂,减少环境污染,符合可持续发展要求的产品可以获得更多的政策倾斜。
以上政策旨在推动中国汽车轮毂行业向高端制造转型,提高整体技术水平和产品质量,实现产业升级。
《汽车轮毂用A356铝合金的精炼及净化》篇一一、引言在汽车制造业中,A356铝合金因具备出色的铸造性、延展性和耐磨性而被广泛应用于汽车轮毂的制造。
然而,要保证其性能的稳定和质量的可靠,精炼及净化过程是不可或缺的环节。
本文将详细解析A356铝合金在汽车轮毂制造过程中的精炼及净化技术。
二、A356铝合金的成分及特性A356铝合金是一种以铝为基础,添加硅、铜、镁等元素的合金。
其特性包括良好的铸造性能、较高的机械强度、优秀的耐腐蚀性以及良好的表面处理性能。
在汽车轮毂制造中,A356铝合金因其优良的物理和机械性能而备受青睐。
三、精炼过程A356铝合金的精炼过程主要包括熔化、除气、除渣等步骤。
1. 熔化:将铝锭及其他合金元素加入熔炉,通过高温熔化成为液态铝合金。
2. 除气:在熔化过程中,通过氩气等惰性气体将铝合金中的气体杂质排出,以消除气孔缺陷。
3. 除渣:通过加入精炼剂和浮选剂,将液态铝合金中的夹杂物和氧化物上浮至表面,然后将其去除。
四、净化过程净化过程主要是通过化学和物理方法进一步去除A356铝合金中的杂质,提高其纯度和性能。
1. 化学净化:通过添加特定的化学试剂,与合金中的杂质发生化学反应,生成无害或低害的化合物,并通过精炼和浮选将其去除。
2. 物理净化:利用离心分离、真空蒸馏等技术,通过物理方法去除合金中的杂质和气体。
五、工艺控制及优化为了确保A356铝合金的精炼及净化效果,需要对整个过程进行严格的工艺控制及优化。
这包括控制熔炼温度、精炼剂和浮选剂的添加量、除气和除渣的时间和频率等。
此外,还需要定期对设备进行维护和检修,确保其正常运行和良好的工作状态。
六、结论A356铝合金的精炼及净化过程是汽车轮毂制造中不可或缺的环节。
通过精炼和净化,可以有效地去除合金中的杂质和气体,提高其纯度和性能,从而保证汽车轮毂的质量和性能。
在未来的汽车制造业中,随着对材料性能和质量的不断要求提高,A356铝合金的精炼及净化技术将不断得到优化和发展。
《7A04高强铝合金轮毂锻造成形工艺研究》篇一一、引言随着汽车工业的快速发展,轻量化、高强度和高耐久性的轮毂材料已成为市场的重要需求。
7A04高强铝合金以其优良的机械性能、加工性能和抗腐蚀性能,成为制造汽车轮毂的理想材料。
本文针对7A04高强铝合金轮毂的锻造成形工艺进行深入研究,探讨其成形过程中的关键技术和影响因素,以提高轮毂的成形质量和生产效率。
二、7A04高强铝合金的特性7A04高强铝合金是一种以铝为基础的合金,通过添加适量的合金元素(如铜、镁、锰等)提高其强度和耐腐蚀性。
该合金具有优良的加工性能、抗腐蚀性能和高强度,广泛应用于航空、航天、汽车等工业领域。
三、锻造成形工艺7A04高强铝合金轮毂的锻造成形工艺主要包括原材料准备、模具设计、锻造过程和后续处理四个部分。
(一)原材料准备选用合格的7A04高强铝合金锭料,进行熔炼、精炼和均匀化处理,以获得纯净、组织均匀的合金材料。
同时,对材料进行热处理,以提高其成形性能。
(二)模具设计根据轮毂的形状和尺寸要求,设计合理的模具结构。
模具应具有良好的强度、耐磨性和热稳定性,以保证锻造过程的顺利进行。
(三)锻造过程锻造过程包括预处理、成形和后处理三个阶段。
预处理阶段主要对合金材料进行加热和保温,使其达到理想的锻造温度。
成形阶段通过模具将材料锻造成预定形状的轮毂。
后处理阶段包括冷却、去毛刺和热处理等工艺,以提高轮毂的机械性能和表面质量。
(四)后续处理对锻造后的轮毂进行表面处理,如喷涂、氧化等,以提高其耐腐蚀性和美观度。
同时,对轮毂进行质量检测,确保其符合设计要求。
四、关键技术和影响因素(一)模具设计及制造技术模具的设计和制造是锻造成形工艺的关键环节。
模具的结构应合理、尺寸应准确,以保证轮毂的成形质量和生产效率。
同时,模具的材料和热处理工艺也应考虑周全,以提高模具的使用寿命和降低制造成本。
(二)锻造温度及变形速率控制锻造温度和变形速率对轮毂的成形质量和机械性能有重要影响。
高端汽车轮毂轴承单元设计制造关键技术与产业化
高端汽车轮毂轴承单元设计制造的关键技术和产业化包括以下方面:
1. 轮毂轴承材料:选择优质轴承材料,如高强度钢材、高性能合金等,以提高轴承的强度、耐磨性和耐腐蚀性。
2. 轮毂轴承结构设计:设计轮毂轴承的结构,包括内外环的尺寸、轴承球的数量和排列方式等,以保证轮毂轴承的稳定性、可靠性和承载能力。
3. 轮毂轴承加工工艺:采用先进的加工工艺和设备,如精密磨削、热处理、超声波清洗等,来提高轴承的加工精度和表面质量,以确保轮毂轴承的性能和寿命。
4. 轮毂轴承装配技术:采用精确的装配技术和设备,如装配夹具、自动装配线等,来保证轮毂轴承的装配精度和一致性,以减少装配误差和提高装配效率。
5. 轮毂轴承测试与质量控制技术:使用可靠的测试设备和方法,如轴承试验机、振动测试仪等,来对轮毂轴承进行性能测试和质量控制,以确保轮毂轴承符合设计要求和使用要求。
6. 轮毂轴承可靠性评估技术:采用可靠性评估方法和技术,如寿命试验、故障分析等,对轮毂轴承的可靠性进行评估和改进,以提高轮毂轴承的可靠性和使用寿命。
7. 轮毂轴承产业化:建立完善的产业化体系,包括研发、生产、销售、服务等环节的协同发展,以推动高端汽车轮毂轴承的规模化生产和市场应用。
《汽车轮毂用A356铝合金的精炼及净化》篇一一、引言随着汽车工业的飞速发展,对汽车零部件的性能和轻量化要求越来越高。
其中,汽车轮毂作为承载整车重量和传输动力的重要部件,其材料的选择至关重要。
A356铝合金以其优异的铸造性能、力学性能以及良好的可加工性成为汽车轮毂的首选材料。
然而,其在使用前需要进行严格的精炼及净化处理,以保证其性能的稳定性和可靠性。
本文将详细探讨汽车轮毂用A356铝合金的精炼及净化工艺。
二、A356铝合金的成分及特性A356铝合金是一种常用的铸造铝合金,具有优良的铸造性能、良好的加工性能和较高的强度。
其主要成分包括铝、硅、铜等元素。
其中,硅元素可以提高合金的流动性,有利于铸造;铜元素可以提高合金的强度和硬度。
此外,A356铝合金还具有良好的耐腐蚀性和可回收性,符合环保要求。
三、精炼工艺A356铝合金的精炼工艺主要包括熔化、除气、除渣等步骤。
首先,将原材料按照一定比例加入炉中熔化。
在熔化过程中,需要严格控制温度和时间,以防止合金元素的氧化和烧损。
其次,通过除气工艺去除熔体中的气体杂质。
常用的除气方法包括气体喷吹法、真空除气法等,这些方法可以有效地去除熔体中的氢气和氧化物。
最后,通过除渣工艺去除熔体中的夹杂物和浮渣。
除渣方法包括机械除渣和化学除渣等,这些方法可以有效地去除熔体中的夹杂物和浮渣,提高合金的纯净度。
四、净化工艺A356铝合金的净化工艺主要包括精炼剂添加和炉内精炼两步。
首先,在精炼过程中加入适量的精炼剂,如氯化物等,这些精炼剂可以与熔体中的杂质元素发生化学反应,生成易于浮出熔体的化合物,从而达到净化合金的目的。
其次,在炉内进行精炼处理,使合金在高温下充分熔解和均匀混合,进一步去除合金中的杂质元素。
在净化过程中,还需要对合金进行充分的搅拌和静置处理,以使杂质元素充分上浮并去除。
五、结论通过对A356铝合金进行严格的精炼及净化处理,可以有效地去除合金中的杂质元素和气体杂质,提高合金的纯净度和性能稳定性。
《A356铝合金汽车轮毂中富铁相的研究》篇一一、引言汽车工业的发展与新材料的应用紧密相连。
铝合金作为一种轻质高强度的金属材料,在汽车制造领域得到广泛应用,尤其体现在汽车轮毂等关键部件的制造上。
A356铝合金因具备出色的铸造性能和力学性能,已成为汽车轮毂制造的首选材料。
然而,其复杂的微观组织和性能,尤其是富铁相的分布和影响,仍需进一步的研究和了解。
本论文主要探讨A356铝合金汽车轮毂中富铁相的研究进展、分析及其在工程实践中的应用。
二、A356铝合金概述A356铝合金是一种典型的铸造铝合金,因其优良的机械性能、可铸性及加工性被广泛应用于汽车轮毂等零部件的制造。
其成分主要包括铝、硅、铁等元素。
其中,铁元素的存在会形成富铁相,对合金的微观结构和性能产生重要影响。
三、富铁相的形成与分布在A356铝合金中,铁元素的存在主要以富铁相的形式存在。
这些富铁相的形成与合金的凝固过程、元素扩散及第二相的析出密切相关。
研究表明,富铁相的分布对合金的机械性能和耐腐蚀性有显著影响。
通过对A356铝合金的微观组织进行观察,可以发现富铁相的形态、大小和分布规律。
四、富铁相的影响分析富铁相的存在对A356铝合金的性能产生多方面的影响。
首先,富铁相的形态和分布对合金的力学性能具有显著影响,如硬度、强度和韧性等。
其次,富铁相还会影响合金的耐腐蚀性,特别是在特定的腐蚀环境中,富铁相可能成为腐蚀的起点。
此外,富铁相还可能影响合金的热稳定性和加工性能。
因此,深入研究富铁相的特性和影响,对于优化A356铝合金的性能具有重要意义。
五、研究方法与实验结果为了深入探讨A356铝合金中富铁相的特性及其对性能的影响,本部分采用多种研究方法进行实验和分析。
包括金相显微镜、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等观察手段,以及硬度测试、拉伸试验、腐蚀试验等性能测试方法。
通过这些实验手段,可以观察到富铁相的形态、大小和分布规律,并分析其对A356铝合金性能的影响。
铝合金汽车用轮毂的研发与制造一、引言随着人们对汽车外观的不断追求和对行驶舒适感的提高,轮毂成为了一项重要的汽车装饰品,铝合金汽车用轮毂因其良好的耐腐蚀性、强度和轻量化等特点受到人们的喜爱,是目前市场上广泛应用的一种轮毂材质。
本文将就铝合金汽车用轮毂的研发与制造进行探讨。
二、铝合金汽车用轮毂材料的特点铝合金轮毂材料以其具有强度高、重量轻、耐腐蚀性好、加工性能优良、较高的综合使用性能等特点,成为了高档汽车车轮的必选材料。
在铝合金轮毂中,常用的材料有铝硅合金、铝镁合金、铝镁硅合金等。
其中,铝镁合金被普遍应用于高档轿车和跑车的轮毂上,因其高强度和轻量化的特性被广泛推广使用。
三、铝合金轮毂的研发1. 铝合金轮毂的设计铝合金汽车用轮毂的设计必须在轮辋的强度、振动性、制动效应和风阻等方面进行考虑,以满足多样化的使用需求。
通过计算机辅助设计软件和有限元分析技术等手段,设计师可以分析和模拟轮毂的受力情况和振动特性,并确定最优的结构设计方案,以满足各种工况条件下的使用需求。
2. 铝合金轮毂的模具制作铝合金轮毂的生产首先需要制作模具,模具的设计和制作直接影响到铝合金轮毂的生产质量和生产效率。
通过采用先进的数控加工技术和模具材料,可以提高模具精度和硬度等关键指标,同时也可以降低模具制造的时间成本和生产成本。
3. 铝合金轮毂的热成型铝合金轮毂的成型过程中,采用热成型技术可以提高制品的强度和韧性,并有效减少轮毂表面的氧化层,以保证轮毂的表面质量和外观。
在热成型过程中,需要控制铝合金的加热温度和放冷速度,使其在成型过程中达到理想的物理性能。
四、铝合金轮毂的制造工艺1. 铝合金轮毂的铸造工艺铝合金轮毂的铸造工艺是主要工艺之一,它采用铸造机进行生产,一次成型后不需要进行后续加工处理,成品率高、生产效率高。
但是,铸造工艺会影响到铝合金轮毂的性能和表面粗糙度。
目前,采用新一代铸造技术,如高压铸造和低压铸造等,可以提高铸造质量和生产效率。
汽车轮毂加工工艺的编制及钻床夹具的设计方案一、汽车轮毂加工工艺编制汽车轮毂是指由金属材料制成的车辆轮胎的支撑和连接部分。
汽车轮毂的加工工艺编制是为了确保轮毂的质量和加工效率,提高生产效益。
下面将介绍汽车轮毂加工工艺编制的过程。
1.确定加工工艺流程:根据轮毂的设计要求和加工设备的特点,确定轮毂的加工工艺流程。
一般包括下列步骤:原材料选料、切削加工(车削、铣削等)、车削、铣削、焊接、抛光、喷涂、质检等。
2.确定加工参数:根据轮毂的材料、形状和加工设备的特点,确定加工参数。
包括切削速度、进给量、切削深度、切削力等。
通过试加工和实验数据分析,不断优化加工参数,提高加工效率和质量。
3.制定加工工艺文件:根据加工工艺流程和加工参数,制定加工工艺文件。
包括工艺路线(包括具体的加工步骤和顺序)、工艺卡(包括各道工序的加工参数和质量要求)、工艺文件(包括图纸、工艺说明书等)等。
加工工艺文件是指导生产的依据,要保证其准确性和可操作性。
4.设计加工夹具:根据轮毂的形状和加工要求,设计相应的加工夹具。
加工夹具是用于固定工件并与切削工具或加工设备配合使用的工具。
夹具的设计要考虑轮毂的形状、尺寸、加工过程中的力和热变形等因素。
夹具设计应尽量简单、牢固、易于操作和调整。
5.进行试加工:在实际生产之前,进行试加工。
通过试加工可以验证加工工艺的可行性和合理性,检查夹具的设计是否满足生产要求,以及发现和解决可能存在的问题。
试加工的数据和结果用于修订和完善加工工艺文件。
以上是汽车轮毂加工工艺编制的基本步骤。
在具体的加工过程中,还需要根据实际情况进行相应的调整和优化,以满足产品质量和生产效率的要求。
钻床是用来钻孔的工具。
钻床夹具是用于固定和夹持工件,在钻孔过程中保持工件的稳定性和加工精度。
下面将介绍钻床夹具的设计方案。
1.根据工件形状和尺寸,确定夹具类型:根据工件的形状和尺寸,确定采用哪种类型的钻床夹具。
常见的钻床夹具类型有平板夹具、卡盘夹具、夹具支架等。
汽车轮毂加工工艺流程及工艺分析下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、引言汽车轮毂是汽车的重要零部件,对汽车的行驶性能和安全性起着至关重要的作用。
汽车轮毂可行性研究报告一、项目背景及研究目的随着汽车产业的不断发展,轮毂作为汽车外观设计中的重要元素之一,也成为了汽车厂商和消费者关注的焦点。
传统的钢制轮毂在车辆行驶过程中往往存在一定的缺陷,例如重量大、制动性能差、阻力大等问题,限制了汽车性能的进一步提升。
因此,研究开发一种新型的汽车轮毂材料具有重要的意义。
本研究旨在探讨汽车轮毂材料的选择、制造工艺、性能评价等方面的可行性,并通过实验验证新型轮毂材料的优势和实用性,为汽车制造业提供新的技术支持和方向。
二、轮毂材料选择1. 碳纤维复合材料碳纤维复合材料具有高强度、轻质、抗腐蚀等优点,被广泛运用于航空航天领域。
将其应用于汽车轮毂制造,能够有效减轻车辆重量、提升车辆性能,但成本较高,制造难度大。
2. 铝合金材料铝合金材料具有优良的强度、硬度和耐腐蚀性能,适用于汽车轮毂的制造。
其成本较低,制造工艺相对简单,但相比碳纤维复合材料在重量上稍有劣势。
3. 镁合金材料镁合金材料密度较低,具有优异的强度、耐腐蚀性能,适合用于汽车轮毂制造。
然而,其成本相对较高,加工难度大,需要专门的设备和技术支持。
综合考虑碳纤维复合材料、铝合金材料和镁合金材料的特点,本研究决定选择铝合金材料作为汽车轮毂的制造材料,以平衡成本和性能的关系。
三、制造工艺流程1. 原材料准备:选用优质的铝合金材料,按照设计要求进行切割、预处理。
2. 模具设计与制造:根据轮毂的形状和尺寸要求,设计定制轮毂模具。
3. 模具注塑成型:将铝合金材料加热至特定温度后,通过模具进行注塑成型。
4. 表面处理:进行研磨、抛光、喷涂等表面处理,提升轮毂的外观质感。
5. 性能测试:对制造完成的轮毂进行强度、硬度、耐腐蚀等性能测试,确保其达到设计标准。
四、性能评价与实验验证1. 轮毂重量:比较新型铝合金轮毂和传统钢制轮毂的重量差异,验证新材料的轻量化优势。
2. 制动性能:通过模拟制动过程,测试新型轮毂对制动效果的影响,比较其与传统轮毂的性能差异。
《汽车轮毂用A356铝合金的精炼及净化》篇一一、引言随着汽车工业的快速发展,对汽车零部件的性能和质量要求也越来越高。
其中,汽车轮毂作为车辆的重要组成部分,其材料的选择和制造工艺的优化显得尤为重要。
A356铝合金因其良好的铸造性能、力学性能和抗腐蚀性能,被广泛应用于汽车轮毂的制造。
本文将详细介绍A356铝合金的精炼及净化工艺,以期为相关领域的研究和应用提供参考。
二、A356铝合金的成分及特性A356铝合金是一种以铝为基础,含有硅、铜、镁等元素的合金。
其具有良好的铸造性能、优良的力学性能、抗腐蚀性能和可回收性等特点。
此外,A356铝合金的流动性好,适合铸造复杂形状的零部件,因此被广泛应用于汽车轮毂的制造。
三、精炼工艺A356铝合金的精炼工艺主要包括熔炼、除气、除渣等步骤。
1. 熔炼:将A356铝合金的原料按照一定比例加入熔炉中,通过高温熔化得到液态铝合金。
熔炼过程中需严格控制温度和时间,以确保合金元素的充分溶解和均匀分布。
2. 除气:在液态铝合金中,会溶解一定量的气体,如氢气等。
这些气体会对合金的性能产生不利影响。
因此,需要采用真空除气法或气泡法等方法,将液态铝合金中的气体排除。
3. 除渣:在熔炼和除气过程中,会产生一些杂质和氧化皮等浮渣。
这些浮渣会污染液态铝合金,影响其性能。
因此,需要采用机械或化学方法,将浮渣从液态铝合金中去除。
四、净化工艺A356铝合金的净化工艺主要包括熔剂净化、气体搅拌和静置处理等步骤。
1. 熔剂净化:在精炼后的液态铝合金中加入一定量的熔剂,通过化学反应将杂质和氧化物等杂质去除。
常用的熔剂有氯化物、氟化物等。
2. 气体搅拌:通过气体搅拌法使液态铝合金中的杂质更好地聚集在液体表面,以便于后续的去除操作。
3. 静置处理:在经过上述处理后,将液态铝合金静置一段时间,使其中的杂质和气体进一步上浮或下沉,从而达到净化的目的。
五、结论通过对A356铝合金进行精炼和净化处理,可以有效提高其纯度和性能,满足汽车轮毂等零部件的制造要求。
《汽车轮毂用A356铝合金的精炼及净化》篇一一、引言随着汽车工业的快速发展,汽车轮毂作为汽车的重要组成部分,其材料的选择与制造工艺对汽车性能有着至关重要的影响。
A356铝合金因其优良的铸造性能、力学性能及良好的成形性,已成为制造汽车轮毂的优质材料。
本文将重点介绍A356铝合金的精炼及净化工艺,以确保其高品质和适用性。
二、A356铝合金的特性A356铝合金是一种常用的铸造铝合金,具有优良的铸造性能、较高的强度、良好的耐腐蚀性和较好的成形性。
此外,其成本相对较低,适合大规模生产。
因此,A356铝合金在汽车轮毂制造中得到了广泛应用。
三、精炼工艺A356铝合金的精炼工艺主要包括熔化、除气、除渣等步骤。
1. 熔化:将A356铝合金的原材料按照一定比例混合后,放入熔炉中进行熔化。
熔化过程中需控制好温度,以防止合金元素的烧损和氧化。
2. 除气:熔化后的合金液中会含有一定的气体,如氢气等。
除气工艺通过引入惰性气体(如氩气)将合金液中的气体排出,从而提高合金的纯净度。
3. 除渣:在熔化和除气过程中,会产生一些渣状物,这些渣状物会降低合金的纯度和性能。
除渣工艺通过物理或化学方法将渣状物从合金液中去除。
四、净化工艺A356铝合金的净化工艺主要包括精炼剂加入、搅拌和静置等步骤。
1. 精炼剂加入:根据合金的成分和性能要求,加入适量的精炼剂。
精炼剂可以进一步去除合金中的杂质,提高其纯净度。
2. 搅拌:加入精炼剂后,进行适当的搅拌,使精炼剂与合金液充分混合,提高净化效果。
3. 静置:搅拌后,让合金液静置一段时间,使杂质和精炼剂充分反应并上浮到合金液的表面,然后将其去除。
五、结论通过上述的精炼及净化工艺,可以有效地提高A356铝合金的纯净度和性能,使其满足汽车轮毂制造的要求。
在精炼过程中,通过控制熔化温度、引入惰性气体除气和物理化学方法除渣等步骤,可以去除合金液中的气体和渣状物。
在净化过程中,通过加入精炼剂、搅拌和静置等步骤,可以进一步去除合金中的杂质,提高其纯净度。
毕业设计——汽车轮毂的数控加工工艺及程序分析汽车轮毂是汽车重要的结构部件之一,它直接与地面接触,承受着车辆全重的压力和冲击力。
因此,汽车轮毂的质量和加工精度直接关系到汽车的安全性能和行驶稳定性。
为了满足汽车轮毂的质量要求,目前广泛采用数控加工工艺进行加工。
数控加工是一种自动化加工技术,该技术通过将加工程序输入数控机床,由机床自动执行加工操作,实现对工件的加工。
相比传统加工方式,数控加工具有高精度、高效率、高质量等优点,因此在汽车轮毂的加工中得到广泛应用。
数控加工汽车轮毂的工艺包含以下几个步骤:1.首先,需要根据设计图纸准备合适的毛坯材料。
毛坯材料应具有足够的强度和切削性能,以确保加工过程中的稳定性和精度。
2.接下来,需要使用数控机床进行车削、铣削、钻削等加工操作。
由于轮毂一般为圆盘形,因此车削是常用的加工方式。
机床按照预定的程序将切削刀具移动到适当的位置,并进行加工操作。
这一过程中需要保证刀具和工件的相对运动精度,以获得所需的几何形态和表面质量。
3.在加工过程中,还需要充分考虑切削液的使用。
切削液可以起到冷却、润滑和清洁的作用,有效提高加工质量和刀具寿命。
在数控加工中,加工程序的编写和调试是一个关键的环节。
程序编写需要根据轮毂的设计图纸和要求确定加工路径、切削方向、切削速度、进给速度等参数。
编写好的程序可以通过数控机床的控制系统进行调试,通过实时监测工件和刀具的状态,及时调整参数以满足加工要求。
在汽车轮毂的数控加工中1.确保机床的精度。
数控机床的精度直接决定了加工轮毂的精度和质量。
因此,需要定期检查和维护数控机床,保证其正常工作。
2.制定合理的刀具选择。
不同的轮毂材料和几何形状可能需要不同的切削刀具。
通过合理选择刀具和刀具参数,可以提高加工效率和质量。
3.加强质量控制。
在加工过程中,需要使用合适的检测设备对加工质量进行检查,及时发现和纠正问题。
综上所述,汽车轮毂的数控加工工艺及程序分析是汽车工程领域的一个重要课题。
《汽车轮毂用A356铝合金的精炼及净化》篇一一、引言随着汽车工业的快速发展,对汽车零部件的材料要求日益严格。
其中,汽车轮毂作为汽车行驶中承载重量的重要部分,其材料的选择和制造工艺的优化显得尤为重要。
A356铝合金因其优良的铸造性能、机械性能和良好的耐腐蚀性,被广泛应用于汽车轮毂的制造。
本文将详细探讨A356铝合金的精炼及净化过程,为优化汽车轮毂的制造工艺提供理论支持和实践指导。
二、A356铝合金的精炼过程A356铝合金的精炼过程主要包括熔化、除气、除渣等步骤。
1. 熔化:首先将原材料A356铝合金锭和其他合金元素按一定比例放入熔炉中,通过加热使铝合金锭熔化。
熔化过程中需严格控制温度,避免合金元素的烧损和氧化。
2. 除气:熔化后的铝合金中含有一定的气体杂质,如氢气等。
通过真空除气装置,将熔融的铝合金中的气体杂质排出,提高铝合金的纯净度。
3. 除渣:除气后的铝合金中可能还含有一些夹杂物和氧化物等杂质,通过加入精炼剂和机械搅拌等方法,将这些杂质从熔融的铝合金中分离出来,进一步提高铝合金的纯净度。
三、A356铝合金的净化过程A356铝合金的净化过程主要包括滤渣、均匀化处理和铸造等步骤。
1. 滤渣:精炼后的铝合金通过滤渣装置,将剩余的杂质和夹杂物进一步去除,保证铸造出的轮毂表面光滑、无缺陷。
2. 均匀化处理:滤渣后的铝合金需要进行均匀化处理,使合金元素在熔体中均匀分布,提高合金的性能。
均匀化处理的温度和时间需严格控制,避免合金元素的过烧和氧化。
3. 铸造:均匀化处理后的铝合金即可进行铸造。
铸造过程中需控制好铸造温度、铸造速度和冷却速度等参数,以保证轮毂的尺寸精度和机械性能。
四、结论通过对A356铝合金的精炼及净化过程的探讨,我们可以得出以下结论:1. 精炼过程能有效去除铝合金中的气体杂质和夹杂物,提高铝合金的纯净度,为后续的铸造过程提供良好的原材料。
2. 净化过程通过滤渣、均匀化处理和铸造等步骤,进一步保证轮毂的尺寸精度和机械性能,提高轮毂的使用寿命和安全性。
乘用车第三代轮毂轴承单元制造关键技术及应用1. 背景介绍在乘用车行业中,轮毂轴承单元是车辆传动系统中的重要部件之一。
它承担着支撑车辆重量、传递动力和减少摩擦的重要作用,直接关系到车辆的性能和安全性。
随着乘用车制造技术的不断发展和创新,第三代轮毂轴承单元已成为当今乘用车制造行业的主流选择。
本文将从制造关键技术和应用两个方面探讨乘用车第三代轮毂轴承单元的相关内容。
2. 制造关键技术第三代轮毂轴承单元制造关键技术是保证产品性能和品质的关键。
在轮毂轴承单元的制造过程中,需要借助复杂的工艺和先进的设备,确保其在高速旋转、重载和恶劣环境下的可靠性和持久性。
以下是第三代轮毂轴承单元制造关键技术的主要内容:2.1 材料选择第三代轮毂轴承单元的材料选择至关重要。
通常采用滚动轴承钢、不锈钢或其他特殊合金材料,以提高其耐磨损、耐腐蚀和耐高温的性能。
2.2 制造工艺制造工艺包括冷态成型、热态成型、热成型和精密锻造等多种工艺。
其中,精密锻造技术可以提高产品的密实度和硬度,减少表面裂纹和疲劳寿命。
2.3 精密加工精密加工是保证轮毂轴承单元尺寸精度和表面质量的关键。
采用数控机床、磨床和其他高精度设备进行外圆、内孔、滚道和轴肩的加工,确保轴承的匹配性和可靠性。
2.4 装配技术装配技术是保证轮毂轴承单元完整性和一致性的关键。
采用自动装配线和检测设备进行组装和检测,确保产品的质量和稳定性。
3. 应用领域第三代轮毂轴承单元已经广泛应用于乘用车行业,并逐渐成为主流产品。
它在提高车辆性能、降低燃油消耗、减少维护成本等方面具有显著的优势。
以下是第三代轮毂轴承单元的主要应用领域:3.1 高速旋转第三代轮毂轴承单元可以承受高速旋转和高温环境,适用于高速公路和竞速赛车等领域。
3.2 重载传动第三代轮毂轴承单元可以承受重载和冲击负荷,适用于越野车辆和卡车等领域。
3.3 高精度传动第三代轮毂轴承单元具有高精度和高刚性,适用于高速列车和豪华轿车等领域。
汽车轮毂单元内圈新材料及工艺研发可行性研究报告一、立项依据(一)目的意义“十二五”是中国汽车产量跃居世界第一,同时完成由汽车大国向强国转变的关键时期。
特别是在金融危机面前,我国政府将汽车列为首先要振兴的产业,2009年3月20日国务院办公厅颁布《汽车产业调整振兴规划》,提出加快汽车产业调整和振兴,必须实施积极的消费政策,稳定和扩大汽车消费需求,以结构调整为主线,推进企业联合重组,以新能源汽车为突破口,加强自主创新,形成新的竞争优势。
这一规划无疑会对中国汽车产业起到推波助澜的作用。
预计汽车业未来10年有望维持15%-20%的平稳增速。
提出了三年100亿元技术改造投资。
预计从“十一五”到“十三五”将投资约两万亿用于汽车工业。
汽车零部件产业是中国汽车工业持续健康发展的根基。
在汽车总生产成本中,零部件占70%至80%。
因此,只有零部件工业的发展,才有整车成本的降低,汽车产业的发展。
目前,全球汽车行业都在削减成本以提高市场占有率,国内整车制造商的自主开发与创新需要强大的零部件体系作为支撑。
国内汽车消费市场的持续升温,中国轿车私有化程度的不断提升,为汽车零部件市场提供了无穷的商机。
汽车销售的快速增长使汽车零部件市场也日益呈现出前所未有的活力。
(二)中国汽车零部件产业发展现状进入21世纪以来,伴随着汽车工业的高速发展,中国汽车零部件产业同样发展迅猛,并取得了令世界汽车业瞩目的成就。
表1-2~表1-10基本反映了中国汽车零部件产业的发展现状。
由表1-2、表1-3显见,2005年到2008年,中国汽车零部件工业总产值增长124%,翻了一番还多;2005年~2007年,销售利润率和净资产收益率在逐年提升。
由表1-5 、表1-6显见,2004年到2007年,500人以上及主营业务收入1亿元以上的大、中型企业数量在增加,而小型企业的数量在明显减少,说明中国汽车零部件产业的散、乱、差局面在逐步改善。
由表1-7显见,2004年~2008年,中国汽车零部件产业的净出口额在逐年增长,且零部件贸易竞争优势正在由弱竞争优势区向中竞争优势区过度。
由表1-8显见,中国汽车零部件产业的出口主要集中在车身件、发动机件、电子电器、轮胎和车轮等领域,而在变速器、发动机、制动、传动、转向、悬挂等大总成领域依然薄弱和落后。
由表1-9显见,尽管中国汽车零部件产业中外资和港澳台企业数量仅占23%(表1-4),但出口额的60%以上由外资和港澳台企业贡献,说明中国汽车零部件自主品牌企业的技术水平与国外比依然差距甚远。
由表1-10显见,目前中国汽车零部件产业的出口国主要是美国,其次是日本、韩国。
表1-2 近几年中国汽车零部件产业主要经济指标(产值)注:以上数据来自国家信息中心,统计不包括橡胶轮胎、玻璃和部分电子产品。
下表1-3、表1-4同。
表1-3 近几年中国汽车零部件产业主要经济指标(利润)表1-4 2007年不同所有制企业数量及比例表1-5 企业规模——按2007年末从业人数划分的企业数注:数据来源于2008年《中国汽车工业年鉴》,企业包括整车企业。
下表1-6、表1-10同。
表1-6 企业规模——按2007年末主营业务收入W划分的企业数(单位:万元)表1-7 近8年中国汽车零部件产业国际贸易总量的变化注:我国零部件贸易竞争优势正在由弱竞争优势区向中竞争优势区过度(竞争优势指数:TC=进出口额/进出口总额,0-0.3为弱势,0.3-0.6为中等,0.6-1为强势);我国汽车零部件出口占全球零部件出口10%以上,且增速高于其他国家)表1-8 2007年进出口产品分类(单位:亿美元)表1-9 2007年出口企业属性(单位:亿美元)表1-10 2007年出口市场特征由上可见,实施本项目是十分必要的。
(三)市场预测和发展趋势轮毂轴承是汽车的关键零部件之一。
当前世界上新型轿车车轮轴承已全面采用了汽车轮毂轴承单元技术。
轮毂轴承正逐步成为与车轮连为一体的内部部件,并与传感器相结合向着数字化方向发展。
汽车轮毂轴承单元作为一种轴承新品种,在国内外市场需求量都很大。
江西省近年来立足自身产业优势、后发优势,积极延伸已有汽车产业链,主动承接沿海产业梯度转移,汽车摩托车零部件及配件(简称“汽摩配”)产业呈现出蓬勃兴盛、快速发展的喜人态势。
2012年,江西汽摩配制造业总资产达71.07亿元,实现主营业务收入近150亿元,利润总额达7亿元。
近年来,江西省加快了汽摩配工业园区建设,促进了汽车零部件企业的发展。
同时,整车企业在开发新产品初期吸纳主要零部件配套企业共同参与,加快汽车新产品开发进程。
鹰潭市在国家高新区打造的汽摩配产业基地主要服务于承接沿海“汽摩配”产业转移。
利用鹰潭独特的区位优势、便捷的交通条件、低廉的商务成本、丰富的劳力资源,计划引进100余家汽车、摩托车零部件及配件专业生产企业及相关专业化服务企业,以及汽车零部件制造过程中的毛坯制造、热处理、表面处理等多种共性工序工艺的专业化服务企业,致力于打造一座专业化程度高、设备利用率高、质量控制能力强、生产成本低的“新兴汽摩配生产基地”。
目前已有20余家汽摩配企业进驻,该公司2011年入驻高新区以来,已成功研发出了汽车轮毂轴承的制造方法,以优质的产品质量和良好的信誉、售后服务赢得广大客户的认可,并通过了主机厂的严格测试与制造过程审核,产品主销美国、德国等欧洲及美洲国家,与客户建立了长期的友好、诚信的良好合作关系。
在客户中有较高的质量声誉(四)合作的必要性江西省骏腾汽车零部件股份有限公司成立于2011年8月,注册资金3000万。
企业经过几年的发展,企业规模不断扩大,经济实力逐步增强,在车用轮毂轴承生产上拥有多项自主知识产权,产品已远销欧美市场。
但企业与国内外先进企业相比尚存在一定差距,汽车轮毂轴承产品的市场竞争十分剧烈,对产品质量的要求越来越高。
科技含量的提高使产品市场更为广阔,所以企业必须加大建设,从价格、质量、品牌三个层面提高市场竞争能力,积极发展数字化、网络化等技术,大力提高科技含量,增加产品附加值,使企业在汽车轮毂轴承制造领域与世界巨头的竞争中谋得一席之地。
浙江大学是我国著名大学,其汽摩配研究所是浙江大学面向汽摩配产业的科技创新基地、科研成果转化基地、国际交流合作基地和高层次人才培养基地。
研究所在依托浙江大学的人才和科技资源优势的同时加强自身建设,整合国内外相关领域的技术资源,着重为汽摩配生产企业提供产品质量检测、技术研发攻关、生产工艺改进等技术服务,帮助企业解决产品开发中的技术瓶颈问题,使企业通过技术创新和产品创新,掌握自主知识产权,提升核心竞争力。
项目研究主要通过自主研发和引进消化高校研究成果的方式,进行新技术、新工艺新材料和新产品的工程化研究开发。
二、研究开发内容、方法、技术路线(一)具体研究开发内容和重点解决的技术关键问题随着汽车工业的迅速发展,对汽车的轮毂轴承单元提出了更高的要求。
减轻重量,降低摩擦力矩,单元化设计以及实现结构紧凑可以很好的减少汽车能源消耗;改善密封性能和设计技术可以提高可靠性和寿命以及提高速度性能和刚度;轮毂轴承的智能化技术极大的促进了ABS技术的普及,显著改善汽车行驶的稳定性和安全性。
本项目研究的主要内容如下:1、提高轮毂轴承的性能和使用寿命的技术。
轮毂轴承是应用于汽车车轴处用来承重和为轮毂的转动提供精确引导的零部件,提高轮毂轴承的性能和使用寿命是各轮毂轴承厂家研究的主要课题,目前大多轮毂轴承上使用的密封结构、防尘结构等设计不合理,造成在使用过程中磨损而降低性能和使用寿命。
我公司与浙江大学合作研发各类轮毂轴承产品的结构技术以及采用新的合金结构钢材料替代现在常用的轴承钢材料,提高车辆轮毂密封性能和使用寿命。
2、研究新的加工工艺技术。
针对传统工艺加工速度慢,生产周期长,产品质量难以控制,精度不够准确,报废率高等问题,研发一系列新的加工工艺,如数字化铆接智能技术、通过组合式夹具,简单的卡盘夹紧就能加工零件的所有工序、利用智能控制技术进行温度动态控制等等,均可实现节省加工时间,降低劳动强度,提高产品质量,实现优质、高效、节能的目的。
3、保证安全有效的检测方法技术。
新技术的应用有效地保障了行车安全的同时,也给汽车检测带来新的问题。
针对这些问题,研发一些能安全有效的检测方法,准确无误地检测出输出信号及磁对极,从而判断产品是否合格,能在产品出厂前提供检测支持,也能在汽车售后服务中提供检测方法,及时排除安全隐患。
(二)项目的特色和创新之处项目创新点:1、新材料的应用:面向小型汽车轮毂轴承单元,在设计制造其内圈时,采用适合的合金结构钢材料(20CrMo或20CrMoTi)代替现在常用的轴承钢材料(GCr15等)。
2、新加工工艺:采用表面中频(或高频)淬火、渗碳工艺代替原有的淬透工艺;外圈及保持架仍采用原有的轴承钢材料及相应热处理工艺。
上述工艺使内圈零件具有表面硬度高耐磨性好、芯部韧性好等特点,内外圈摩擦状态得到优化,提升了轮毂单元整体产品寿命,降低了内圈材料成本和热处理成本。
3、采用人字形弹性骨架式橡胶密封件与L型弹性骨架式橡胶密封件呈弹性扣合连接,二者连接后与L型防尘挡环复合安装,形成整体复合密封结构,以保证车辆轮毂密封性能的要求和使用寿命。
4、把三凸技术运用在轴承上通过内滚道、外滚道及滚子都带凸度,使轴承的滚动面由面接触变成了线接触,从而提高了轴承的转动灵活性及寿命。
5、把内外套圈及发兰盘等设计为一体通过用轮毂内外发兰盘取代轴承内外套圈,不但优化了设计,减轻了重量,增加了密封的有限空间,可以采用多唇多腔的密封圈,而且不需要调整轴承组装游隙,轴承漏脂问题得到了根本的解决,从而提高了产品寿命。
6、把ABS 运用在轿车轮毂轴承上车轮转动过程中产生的电磁感应电压,通过电控系统,保持轿车制动到边滚动边滑动的滑动状态,防止打滑,起到ABS 防抱死作用,提高了轿车的安全性。
7、把纳米技术运用在轴承上通过特殊工艺加工,使轴承内外滚道上形成一种纳米薄膜,减少了摩擦系数,增强了耐磨强度,提高了轴承疲劳寿命。
(三)要达到的技术、经济指标及社会、经济效益1、经济效益:本项目财务效益较好,项目总投资4862万元,建成达产后,年产80万套汽车轮毂,按每套90元计算,年增销售收入7200万元,出口创汇480万美元,利润总额794万元,税金及附加198.5万元,投资利润率16.2%,年平均净利润额投资利润率= ×100%=16.2%项目总投资额以上数据可知,本项目的经济效益良好。
2、社会效益:本项目建成后,将增强企业的应变能力、竞争能力和生产能力,能新增就业岗位25个,可以缓解当地的劳动就业压力,为我市汽摩配产业的发展做出重要贡献。
综上所述,本项目的建设具有明显的社会效益。