管理决策分析第五章贝叶斯决策分析
- 格式:ppt
- 大小:1.58 MB
- 文档页数:69
【决策管理】贝叶斯决策模型及实例分析(doc 12页)部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑贝叶斯决策模型及实例分析一、贝叶斯决策的概念贝叶斯决策,是先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法。
风险型决策是根据历史资料或主观判断所确定的各种自然状态概率(称为先验概率),然后采用期望效用最大等准则来确定最优决策方案。
这种决策方法具有较大的风险,因为根据历史资料或主观判断所确定的各种自然状态概率没有经过试验验证。
为了降低决策风险,可通过科学试验(如市场调查、统计分析等)等方法获得更多关于自然状态发生概率的信息,以进一步确定或修正自然状态发生的概率;然后在利用期望效用最大等准则来确定最优决策方案,这种先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法称为贝叶斯决策方法。
二、贝叶斯决策模型的定义贝叶斯决策应具有如下内容贝叶斯决策模型中的组成部分:)(,θθPSAa及∈∈。
概率分布SP∈θθ)(表示决策者在观察试验结果前对自然θ发生可能的估计。
这一概率称为先验分布。
一个可能的试验集合E,Ee∈,无情报试验e0通常包括在集合E之内。
一个试验结果Z取决于试验e的选择以Z0表示的结果只能是无情报试验e0的结果。
概率分布P(Z/e,θ),Zz∈表示在自然状态θ的条件下,进行e试验后发生z结果的概率。
这一概率分布称为似然分布。
c 以及定义在后果集合C的效用函数u(e,Z,a,θ)。
一个可能的后果集合C,C每一后果c=c(e,z,a,θ)取决于e,z,a和θ。
.故用u(c)形成一个复合函数u{(e,z,a,θ)},并可写成u(e,z,a,θ)。
三、贝叶斯决策的常用方法3.1层次分析法(AHP)在社会、经济和科学管理领域中,人们所面临的常常是由相互关联,相互制约的众多因素组成的复杂问题时,需要把所研究的问题层次化。
所谓层次化就是根据所研究问题的性质和要达到的目标,将问题分解为不同的组成因素,并按照各因素之间的相互关联影响和隶属关系将所有因素按若干层次聚集组合,形成一个多层次的分析结构模型。
贝叶斯分析决策Bayesean Analysis§4.0引言一、决策效果的表格表示——损失矩阵对无观察(No-data)效果a=δ可用表格(损失矩阵)替代决策树来描画决策效果的结果(损失):或损失矩阵直观、运算方便二、决策原那么通常,要依据某种原那么来选择决策规那么δ,使结果最优(或满意),这种原那么就叫决策原那么,贝叶斯剖析的决策原那么是使希冀成效极大。
本章在引见贝叶斯剖析以前先引见芙他决策原那么。
三、决策效果的分类:1.不确定型(非确定型)自然形状不确定,且各种形状的概率无法估量.2.风险型自然形状不确定,但各种形状的概率可以估量.四、按形状优于:l ij ≤lik∀I, 且至少对某个i严厉不等式成立, 那么称举动aj按形状优于ak§4.1 不确定型决策效果一、极小化极大(wald)原那么(法那么、准那么) a1a2a4minj maxil (θi, aj) 或maxjminiuij例:各举动最大损失: 13 16 12 14其中损失最小的损失对应于举动a3.采用该原那么者极端保守, 是失望主义者, 以为老天总跟自己作对.二、极小化极小minj minil (θi, aj) 或maxjmaxiuij例:各举动最小损失: 4 1 7 2其中损失最小的是举动a2.采用该原那么者极端冒险,是失望主义者,以为总能撞大运。
三、Hurwitz准那么上两法的折衷,取失望系数入minj [λminil (θi, aj)+〔1-λ〕maxil (θi, aj)]例如λ=0.5时λmini lij: 2 0.5 3.5 1〔1-λ〕maxi lij: 6.5 8 6 7两者之和:8.5 8.5 9.5 8 其中损失最小的是:举动a4四、等概率准那么(Laplace)用i∑l ij来评价举动a j的优劣选minji∑l ij上例:i∑l ij: 33 34 36 35 其中举动a1的损失最小五、后梅值极小化极大准那么(svage-Niehans)定义后梅值sij =lij-minklik其中mink lik为自然形状为θi时采取不同举动时的最小损失.构成后梅值(时机本钱)矩阵S={sij }m n⨯,使后梅值极小化极大,即:min max j i s ij例:损失矩阵同上, 后梅值矩阵为:3 1 0 23 0 8 11 4 0 20 3 2 4各种举动的最大后梅值为: 3 4 8 4其中举动a1 的最大后梅值最小,所以按后梅值极小化极大准那么应采取举动1.六、Krelle准那么:使损失是成效的正数(结果的成效化),再用等概率(Laplace)准那么.七、莫尔诺(Molnor)对理想决策准那么的要求(1954)1.能把方案或举动排居完全序;2.优劣次第与举动及形状的编号有关;3.假定举动ak 按形状优于aj,那么应有ak优于aj;4.有关方案独立性:曾经思索过的假定干举动的优劣不因添加新的举动而改动;5.在损失矩阵的任一行中各元素加同一常数时,各举动间的优劣次第不变;6.在损失矩阵中添加一行,这一行与原矩阵中的某行相反,那么各举动的优劣次第不变。
贝叶斯决策模型及实例分析一、贝叶斯决策的概念贝叶斯决策,是先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法。
风险型决策是根据历史资料或主观判断所确定的各种自然状态概率(称为先验概率),然后采用期望效用最大等准则来确定最优决策方案。
这种决策方法具有较大的风险,因为根据历史资料或主观判断所确定的各种自然状态概率没有经过试验验证。
为了降低决策风险,可通过科学试验(如市场调查、统计分析等)等方法获得更多关于自然状态发生概率的信息,以进一步确定或修正自然状态发生的概率;然后在利用期望效用最大等准则来确定最优决策方案,这种先利用科学试验修正自然状态发生的概率,在采用期望效用最大等准则来确定最优方案的决策方法称为贝叶斯决策方法。
二、贝叶斯决策模型的定义贝叶斯决策应具有如下内容贝叶斯决策模型中的组成部分:)(,θθPSAa及∈∈。
概率分布SP∈θθ)(表示决策者在观察试验结果前对自然θ发生可能的估计。
这一概率称为先验分布。
一个可能的试验集合E,Ee∈,无情报试验e0通常包括在集合E之内。
一个试验结果Z取决于试验e的选择以Z0表示的结果只能是无情报试验e0的结果。
概率分布P(Z/e,θ),Zz∈表示在自然状态θ的条件下,进行e试验后发生z结果的概率。
这一概率分布称为似然分布。
c 以及定义在后果集合C的效用函数u(e,Z,a,θ)。
一个可能的后果集合C,C每一后果c=c(e,z,a,θ)取决于e,z,a和θ。
.故用u(c)形成一个复合函数u{(e,z,a,θ)},并可写成u(e,z,a,θ)。
三、贝叶斯决策的常用方法3.1层次分析法(AHP)在社会、经济和科学管理领域中,人们所面临的常常是由相互关联,相互制约的众多因素组成的复杂问题时,需要把所研究的问题层次化。
所谓层次化就是根据所研究问题的性质和要达到的目标,将问题分解为不同的组成因素,并按照各因素之间的相互关联影响和隶属关系将所有因素按若干层次聚集组合,形成一个多层次的分析结构模型。
第五章贝叶斯决策分析
贝叶斯决策分析(Bayesian Decision Analysis)是一种基于贝叶斯统计推理的决策方法。
它以数据作为输入,利用贝叶斯统计推理以及现实世界中的模型参数等,建立统计学模型,分析不同决策情况的可能性,最终指导决策者进行最优决策。
贝叶斯决策分析采用了极大似然估计(Maximum Likelihood Estimation)和贝叶斯统计推理(Bayesian Statistical Inference)的方法,从而给出了可行的决策结果。
贝叶斯决策分析模型假设了有一个无穷大的条件概率分布集,即根据历史观测值估计的各种情况及其发生概率。
模型的输入包括现有信息的观测值,如目标对象或数据的性质,环境和模型参数的估计值等,以及决策者的系统目标函数。
这些输入被用来估计条件概率,即感兴趣的决策性问题中每一个状态的发生概率,以及状态特征随时间变化的概率。
有了所有的输入信息之后,贝叶斯决策分析可以给出最优决策,它是针对模型的描述做出的。
例如,一个简单的决策模型可以表示为,有两个观测变量X和Y,每个观测变量有三种状态,共有九种模式(3×3=9)。