光电检测技术中的微弱光信号前置放大电路设计解读
- 格式:doc
- 大小:23.00 KB
- 文档页数:2
微弱信号检测前置处理模块电路设计孙韩【摘要】从Y光纤斐索型激光干涉微振动检测仪的微弱信号检测实际需求出发,基于高速DSP数据采集与处理系统,采用集成运放芯片AD620,设计了一种能实现前置放大、带通滤波、电平抬升、增益可调等功能的前置处理模块电路。
经实验测试,该电路设计具有抑制噪声、抗干扰能力强,信号放大、带通滤波效能高等的优点,能有效进行微弱信号前置放大、去噪等处理,为后续A/D转换和高速DSP数据采集奠定基础。
%According to the actual demand of weak signal detection of Y type optical fiber Laser in-terference micro vibration detector,based on high-speed DSP data acquisition and processing system, using the integrated operational amplifier AD620 chip,a kind of pre-processing module circuit which can realize function of pre-amplifier, band-pass filter, level up and gain adjustable is designed. Through experimental test,the circuit designed in this paper has a strong suppress noise and anti-in-terference ability,the advantages of signal amplification and band-pass filtering efficiency higher. It can also effectively amplify a weak signal and suppress the noise,and lay a foundation for subsequent A/D conversion and high-speed DSP data acquisition.【期刊名称】《江西科学》【年(卷),期】2015(000)004【总页数】4页(P598-601)【关键词】微小振动测量;微弱信号检测;前置处理模块;电路设计【作者】孙韩【作者单位】安徽大学电子信息工程学院,230601,合肥【正文语种】中文【中图分类】TN248微振动测量广泛应用于石油勘探,各种发电机组、机床及桥梁的振动监测,高层建筑晃动测试,船舶及飞机等的发动机振动分析中。
ElectronicComponent&Device Applications0引言光电检测技术是光学与电子学相结合而产生的一门新兴检测技术。
它主要利用电子技术来对光学信号进行检测,并进一步传递、储存、控制、计算和显示。
其原理是通过光电探测器件将光学信息量变换成电信号,并进一步经过电路放大、处理,以达到电信号输出的目的。
微弱光信号的检测在许多领域都有应用,检测方法多种多样,但常用的方法由于灵敏度有限,难以满足要求,本文应用光电检测技术来检测微弱光信号。
该方法利用高性能运放来设计检测电路,因而具有精度高、稳定性好等优点。
1电路基本原理用光电二极管组成的光电检测电路,实际上是一个光→电流→电压的变换器。
首先由光电二极管将接收的光信号变成与之成比例的微弱电流信号,再通过运放和反馈电阻组成的放大器变换成电压信号。
其基本电路如图1所示。
假定运放为理想的运放,其输入电阻和放大倍数都为无穷大,则输出电压为U0=I P R。
理论上,系统的输出电压U0的值与输入电流I P成线性关系,灵敏度由反馈电阻R确定。
而实际应用中,由于要受到运放失调电压V od与偏置电流I b的影响,其输出电压总要产生误差。
误差电压一般为:U e=V od(1+R/R d)+I b R其中R d为光电二极管的结电阻。
由此式中可以看出,当运放的失调电压与偏置电流都较小时,输出电压误差较小。
因此,选择运放时,应选择性能参数都符合要求的运放。
本设计选择AD795KN作为前置放大器。
2检测电路设计光电二极管所接收到的信号一般都非常微弱,而且输出的信号往往被深埋在噪声之中。
因此,对这样的微弱信号一般都要先进行放大、滤波,然后通过模数转换将信号传输给后续处理器电路。
本检测系统由光电二极管、前置放大电路、滤波电路、主放大电路、A/D转换电路,MCU控制和信号处理电路等组成,其结构框图如图2所示。
微弱光信号检测电路的设计杜习光(西南大学工程技术学院,重庆400716)摘要:从微弱光信号检测电路的设计方案入手,论述了光电检测电路的基本工作原理,给出了采用AD795KN为前置放大器来设计放大电路、有源滤波电路以及主放大电路,最终设计低噪声光电检测电路的一般原则。
微弱信号检测的前置放大电路设计研究摘要:当前在现代农业生产发展中,检测微弱信号越来越受到高度重视,尤其是在精准农业产业发展过程中。
本文以电压电流转换设施为载体,对微弱信号检测前置放大电路设计的相关技术要求进行了阐述,并且通过具有远程集成控制的电路器件的选用和抗噪影响的技术改进,对在电路设计中应当注意的一些技术要点进行了分析,而且经过微弱信号检测,结果比较安全科学。
关键词:微弱信号;检测前置;放大电路;设计分析一.前言近年来,随着现代农业的不断发展,通过在安全、高效的时限内采集收取农田生态条件和农作物生产资料,并且实现肥料、水分、农药等精准作业,有效地防范和杜绝生态破坏、环境污染问题,实现农业生产经营经济、社会、生态效益最大化的精准农业,得到了前所未有的健康发展。
生物传感设施在上述信息资料的采集取得中具有很大的作用,比如,在精准农业种植物施水灌溉过程中需要充分考虑空气指数和土壤中水分的含量,利用传感设施对这些信号的变化情况进行检测,及能够实现精准农业灌溉的良好效果。
所以近年来很多生物传感设施在精准农业中的生态条件、农作物生长环节等信息采集检测上得到了很好的应用。
不过由于一些农作物自身具有的生理属性,存在着一定程度的微弱信号,很多电流和电压信息都无法满足级次需求,因此,便设计了前置放大电路,通过这种选系统结构来检测微弱信号的相关信息。
笔者试就微弱信号检测的前置放大电路设计中应当把握的技术要点,谈些粗浅的认识。
二.微弱信号检测前置放大电路设计中应当把握的技术要点2.1 前置放大电路系统结构一般来说,微弱信号是生物传感设施形成的信号,通常频率不是很高,在对具有一定差异性的农作物自身属性进行检测的时候,能够获取一定的电流和电压数值。
而要获取这样的电流信号资料,需要先将其转换生成电压信号,并且利用电路系统的放大功效,在滤波设施的作用下,降低频率较高的噪音影响(如图1)。
(图1 微弱信号检测前置放大电路系统结构示意图)由于传感设施形成的信号是微弱的,很可能遭受噪音的干扰,因而在放大仪器的选用上通常倾向于仪表设施。
光电探测器前置放大电路设计概要上海光学精密机械研究所李国扬此处的光电探测器,指的是将光功率转化为电流的二极管结构光电转换器件。
有人认为光电探测器的应用很简单,将光电二极管的输出电流用一个电阻进行取样,就得到了电压,该电压可经过AD转换电路进行数字化处理。
一个简单的光电探测器应用电路如下图所示:实际上,没有如上图一样简单。
首先,上图中的光电探测器会产生一个暗电流,这个暗电流有可能会大到可以和信号电流比拟;其次,取样电阻会产生热噪声,而电阻值越大,噪声也越大。
并且,10mV 的信号电压未必足够大。
而在光电流大小一定的情况下要提高信号电压,就需要增大取样电阻,取样电阻变大,又会增大噪声,这是一对矛盾。
进一步分析,光电探测器的PN结有一个结电容,这个结电容和取样电阻形成一个RC充电回路,RC值的大小决定了光电探测器的响应速度。
对于一个给定探测器,C 值是随着VCC电压值变化而变化的。
电容值随VCC变化典型曲线如下图。
当VCC值不稳时(如用噪声大的开关电源给探测器做偏压),就会使结电容不稳,结电容的大小会影响响应度;这样,VCC的噪声会通过改变结电容的大小而转化成信号的噪声。
确定了探测器种类和VCC后,C值就固定了,此时,减小R值可以减小响应时间,增大响应带宽;但是,减小R值又会减小响应幅度。
这又是一对矛盾。
对于探测微弱信号而言,需要一个比较大的取样电阻,而取样电阻如果很大,对于后级电路来说,相当于一个大的输出阻抗,这对后级电路的处理带来了困难。
如下图所示意,如果后级电路的输入电阻为1M欧,那么信号电压只有一半被后级放大器提取,所以,要求后级电路有很大的输入阻抗,才能尽可能多的提取信号能量。
到了这里,您可能会说,是否可以选择一种光电探测器,使它能够对光信号更为敏感,也就是说,单位光功率可以得到更大一些的光电流,这样就减轻了电路的压力。
是的,有响应更大的器件。
但是,增大光电响应度,在半导体工艺上需要增大光敏面积,而增大光敏面积的一个伴生效应是增大结电容。
前置放大器在微弱信号检测中的应用进展2010年光电电子技术结课作业前置放大器在微弱光电信号检测中的应用进展前置放大器在微弱光电信号检测中的应用进展摘要光电检测系统中光电器件紧密连接一个低噪声前置放大器,它的任务是:放大光电探测器件所输出的微弱电信号;匹配后置处理电路与探测器件之间的阻抗。
对前置放大器的要求是:低噪声、高增益、低输出阻抗、足够的信号带宽和负载能力,以及良好的线性和抗干扰能力。
针对不同类型的光电检测系统的相应的前置放大电路的种类不同有T 型网络前置放大电路、差分式前置放大电路、双运放前置放大电路、高阻型前置放大电路,低阻型前置放大电路等等。
关键词:前置放大电路,微弱光信号检测,光电转换引言微弱信号的检测和处理技术主要运用迅速发展起来的电子学、信息论以及物理方法等加以分析噪声,对信号进行检测、采集有用信号。
微弱信号不仅信号本身的幅度较小,而且往往都是淹没在背景噪声之中。
而其中的光电检测技术是光学与电子学相结合而产生的一门新兴检测技术[1]。
它主要利用电子技术对光学信号进行检测, 并进一步传递、储存、控制、计算和显示[2]。
光电检测技术从原理上讲可以检测一切能够影响光量和光特性的非电量。
它可通过光学系统把待检测的非电量信息变换成为便于接受的光学信息, 然后用光电探测器件将光学信息量变换成电量, 并进一步经过电路放大、处理, 以达到电信号输出的目的[3]。
由于光电探测器所接收到的信号一般都非常微弱而且光探测器输出的信号往往被深埋在噪声之中的特点, 要对这样的微弱信号进行处理, 一般都要先进行预处理, 以将大部分噪声滤除掉,并将微弱信号放大到后续处理器所要求的电压幅度。
这样, 就需要通过前置放大电路、滤波电路和主放大电路来输出幅度合适、并已滤除掉大部分噪声的待检测信号。
1 光电检测电路模块[4]上图为光电检测电路模块示意图前置放大电路位于光电转换器后级放大电路之间对整个光电检测系统性能的影响很大,为得到有用的信号设计低噪声,高精度的前置放大电路就变得非常重要。
微弱光电信号检测电路设计孙红兵1,莫永新2(1.淮阴师范学院 江苏淮安 223001;2.江苏电大武进学院 江苏常州 213161)摘 要:光电检测电路的性能对基于激光诊断技术的脉冲爆震发动机多参数测量系统有重要的影响。
针对测量系统中光信号的特点,从改善信噪比、提高带宽及稳定性入手,设计了一种宽带低噪声光电信号放大电路,具有电压增益高、上升沿短及噪声低的特点。
该电路主要适用于探测快速变化的微弱光,并在某型发动机多参数测量系统中得到了成功应用。
关键词:光电检测;信噪比;前置放大;频率特性;脉冲信号中图分类号:T N710.2 文献标识码:B 文章编号:10042373X(2007)182156203Design of Amplifier Circuit of Photo 2electric Detection for Weak SignalSUN Hongbing 1,M O Yongxin 2(1.H uai yin Teachers College,H uaian,223001,Chi na;2.Wuji n College,Jiangsu Broadc a st U niversity,Changzhou,213161,China)A bstra ct :The multi 2par ameter measur ement system for pulse detonation engine based on laser 2diagnose technology is af 2fected by the performance of phot o elect ric detecting cir cuit.I n view of the character istic of opt ic signa l of t he measur ement system,taking int o account the improvement of signal to noise ratio and the stability obtains,has designed one kind of wide band and low noise photo 2elect ric detecting circuit.It has character istic of high voltage gain and low noise.T he cir cuit is fit for detecting fleetness change and faint signal,and is applied to a multiple parameter measur ement system of an engine.Keywords :photo 2electr ic detection;signal 2to 2noise;pre 2amplifier;frequency char act eristic;pulse signal收稿日期:2007204203基金项目:国防预研项目(402030202)1 引 言在研制基于激光诊断技术的脉冲爆震发动机多参数自动测量系统过程中,需要针对中心波长为1.33L m,1.55L m 的红外脉冲光进行测量,而且该脉冲光是频率为1MH z 的方波信号,工作现场有很强的电磁干扰,这给电路设计带来了困难[1]。
一种用于GaN紫外探测器的前置放大器电路的分析与设计以GaN光伏型紫外探测器输出的微弱电流信号为根据对探测器的前置放大电路进行设计,首先运用标准的电路理论建立了等效噪声模型,分析计算了电路中各个噪声源引起的噪声,导出了光电检测电路的信噪比输出公式,对影响光电检测电路输出信噪比的因素进行了详细的分析与研究;同时还给出了跨组放大器带宽与稳定性之间的关系,最后用multisim10软件的仿真印证了分析和设计的正确性。
标签:紫外探测器;前置放大器;噪声;稳定性引言空空导弹系统中多为红外制导和雷达制导。
随着干扰手段的发展,单一的探测手段已经不能满足抗干扰的需求。
于是,出现了双色探测器等多探测体制,如紫外/红外、紫外/激光、红外/激光等多种复合探测体制。
继红外探测技术之后紫外探测技术成为又一重要的军民两用光电探测技术。
相较于红外探测系统,紫外探测技术因其独有优势,受到了军方的关注。
正是因为军方的重視和紫外探测技术的独特性,本文开展紫外信号检测放大技术的研究,以此来确定一种更适合紫外信号的前放电路结构,并对它的噪声特性及抑制方法进行分析和验证。
1 紫外探测器紫外探测器件主要分为点探测器和像探测器。
半导体紫外探测器件因其体积小、过载高在军事中应用较多。
本系统中采用GaN基紫外探测器,光谱响应区间在260~380nm,峰值响应波长为365nm。
在探测器应用中多采用PIN结构[2],I层会加大耗尽层厚度。
I层有更高的电阻相对于PN层,这里的反向偏压形成高电场区,加宽了光电转换的有效工作区域,使暗电流有所降低,提高了灵敏度,探测器的电容也有减小。
紫外探测多采取直接探测,所以在光信号功率小时,电信号输出相应也较小。
一般在实际探测器的应用中,为了方便后续处理,通常使用前置放大电路将信号放大。
紫外探测器中就要设计合理的前置放大电路,以保证探测系统能够在一定的输出信噪比下工作。
2 前置放大电路微弱光电信号前置放大器,信号小,输入信噪比低,在空空导弹系统等军用系统中多有专门的低噪声放大器。
在弱光检测中,光电探测器将接收到的光信号变为微弱的电流信号,一般为微安数量级,光电探测器通过放大器将其转变为电压信号,只有经过充分的放大和处理才能被记录下来。
加州理工学院曾对光通信中微弱光信号的检测器使用不同特性的前置放大器,给出了各种比较数据,充分说明前置电路的性能决定整个系统的优良[1]。
前置电路若设计得好,会使探测灵敏度提高,从而更好地进行实验研究;反之,不仅会把输入信号和噪声放大,同时还会混进电子器件本身带来的新噪声,这对于实际实验的影响会非常大。
基于此点,有必要对光电探测器前置电路进行深入研究。
1光电探测器光电探测器是一种将辐射能转换成电信号的器件,是光电系统的核心组成部分,在光电系统中的作用是发现信号、测量信号,并为随后的应用提取某些必要的信息。
光电探测器的性能参数与其工作条件密切相关[2],所以在给出性能参数时,要注明有关的工作条件,只有这样,光电探测器才能互换使用。
主要工作条件有:(1)辐射源的光谱分布很多光电探测器,特别是光子探测器,其响应是辐射波长的函数,仅对一定波长范围内的辐射有信号输出。
这种称为光谱响应的“信号依赖于辐射波长”的关系,决定了探测器探测特定目标的有效程度。
所以在说明探测器的性能时,一般都需要给出测定性能时所用辐射源的光谱分布。
如果辐射源是单色辐射,则需给出辐射波长。
假如辐射源是黑体,就要指明黑体的温度。
当辐射经过调制时,则要说明调制频率。
(2)电路的通频带和带宽因噪声限制了探测器的极限性能,噪声电压或电流均正比于带宽的平方根,所以在描述探测器的性能时,必须明确通频带和带宽。
(3)工作温度许多探测器,特别是用半导体材料制作的探测器,无论是信号还是噪声,都与工作温度有密切关系。
所以必须明确工作温度。
最通用的工作温度是:室温(295K)、干冰温度(195K)、液氮温度(77K)、液氯温度(4.2K)以及液氢温度(20.4K)。
(4)光敏面尺寸探测器的信号和噪声都与光敏面积有关,大部分探光电探测器前置放大电路研究高科,孙晶华(哈尔滨工程大学理学院,黑龙江哈尔滨150001)摘要:在弱光检测中,光经过光电探测器转换为电信号,此信号极其微弱。
收稿日期:2015-07-02;修订日期:2015-08-10作者简介:孙 韩(1994-),女,安徽合肥人,研究方向:通讯系统原理与设计、嵌入式开发、自动控制。
基金项目:安徽大学2013年大学生科研训练计划项目“压缩感知用于频谱检测方案的研究”(编号:kyx12013034)。
第33卷 第4期2015年8月江 西 科 学JIANGXI SCIENCEVol.33No.4Aug.2015 doi :10.13990/j.issn1001-3679.2015.04.032微弱信号检测前置处理模块电路设计孙 韩(安徽大学电子信息工程学院,230601,合肥)摘要:从Y 光纤斐索型激光干涉微振动检测仪的微弱信号检测实际需求出发,基于高速DSP 数据采集与处理系统,采用集成运放芯片AD620,设计了一种能实现前置放大、带通滤波、电平抬升、增益可调等功能的前置处理模块电路。
经实验测试,该电路设计具有抑制噪声、抗干扰能力强,信号放大、带通滤波效能高等的优点,能有效进行微弱信号前置放大、去噪等处理,为后续A /D 转换和高速DSP 数据采集奠定基础。
关键词:微小振动测量;微弱信号检测;前置处理模块;电路设计中图分类号:TN248 文献标识码:A 文章编号:1001-3679(2015)04-598-04Pre⁃processing Module Circuit Design of Weak Signal DetectionSUN Han(School of Electronic Information Engineering Anhui University,230601,Hefei,PRC)Abstract :According to the actual demand of weak signal detection of Y type optical fiber Laser in⁃terference micro vibration detector,based on high⁃speed DSP data acquisition and processing system,using the integrated operational amplifier AD620chip,a kind of pre⁃processing module circuit which can realize function of pre⁃amplifier,band⁃pass filter,level up and gain adjustable is designed.Through experimental test,the circuit designed in this paper has a strong suppress noise and anti⁃in⁃terference ability,the advantages of signal amplification and band⁃pass filtering efficiency higher.It can also effectively amplify a weak signal and suppress the noise,and lay a foundation for subsequent A /D conversion and high⁃speed DSP data acquisition.Key words :micro vibration measuring;weak signal detection;pre⁃processing module;circuit design0 引言微振动测量广泛应用于石油勘探,各种发电机组、机床及桥梁的振动监测,高层建筑晃动测试,船舶及飞机等的发动机振动分析中。
光电检测技术中的微弱光信号前置放大电路设计<
0引言
光电检测技术是光学与电子学相结合而产生的一门新兴检测技术[1]。
它主要利用电子技术对光学信号进行检测,并进一步传递、储存、控制、计算和显示[2]。
光电检测技术从原理上讲可以检测一切能够影响光量和光特性的非电量。
它可通过光学系统把待检测的非电量信息变换成为便于接受的光学信息,然后用光电探测器件将光学信息量变换成电量,并进一步经过电路放大、处理,以达到电信号输出的目的[3]。
然后采用电子学、信息论、onclick=kwC(event,0) onmouseout=kwL(event,this)> 计算机及物理学等方法分析噪声产生的原因和规律,以便于进行相应的电路改进,更好地研究被噪声淹没的微弱有用信号的特点与相关性,从而了解非电量的状态。
微弱信号检测的目的是从强噪声中
onclick=kwC(event,1) onmouseout=kwL(event,this)>提取有用信号,同时提高检测系统输出信号的信噪比。
1 光电检测电路的基本构成
光电探测器所接收到的信号一般都非常微弱,而且光探测器输出的信号往往被深埋在噪声之中,因此,要对这样的微弱信号进行处理,一般都要先进行预处理,以将大部分噪声滤除掉,并将微弱信号放大到后续处理器所要求的电压幅度。
这样,就需要通过前置放大电路、滤波电路和主放大电路来输出幅度合适、并已滤除掉大部分噪声的待检测信号。
其光电检测模块的组成框图如图1所示。
2 光电二极管的工作模式与等效模型
2.1 光电二极管的工作模式
光电二极管一般有两种模式工作:零偏置工作和反偏置工作,图2所示是光电二极管的两种模式的偏置电路。
图中,在光伏模式时,光电二极管可非常精确的线性工作;而在光导模式时,光电二极管可实现较高的切换速度,但要牺牲一定的线性。
事实上,在反偏置条件下,即使无光照,仍有一个很小的电流(叫做暗电流或无照电流1。
而在零偏置时则没有暗电流,这时二极管的噪声基本上是分路电阻的热噪声;在反偏置时,由于导电产生的散粒噪声成为附加的噪声源。
因此,在设计光电二极管电路的过程中,通常是针对光伏或光导两种模式之一进行最优化设计,而不是对两种模式都进行最优化设计[4]。
一般来说,在光电精密测量中,被测信号都比较微弱,因此,暗电流的影响一般都非常明显。
本设计由于所讨论的待检测信号也是十分微弱的信号,所以,尽量避免噪声干扰是首要任务,所以,设计时采用光伏模式。
2.2 光电二极管的等效电路模型
工作于光伏方式下的光电二极管的工作模型如图3所示,它包含一个被辐射光激发的电流源、一个理想的二极管、结电容和寄生串联及并联电阻。
图中,IL为二极管的漏电流;ISC为二极管的电流;RPD为寄生电阻;CPD为光电二极管的寄生电容;ePD为噪声源;Rs为串联电阻。
由于工作于该光伏方式下的光电二极管上没有压降,故为零偏置。
在这种方式中,影响电路性能的关键寄生元件为CPD和RPD,它们将影响光检测电路的频率稳定性和噪声性能。
CPD是由光电二极管的P型和N型材料间的耗尽层宽度产生的。
耗尽层越窄,结电容的值越大。
相反,较宽的耗尽层(如PIN光电二极管)会表现出较宽的频谱响应。
硅二极管结电容的数值范围大约在20或
25pF到几千pF以上。
而光电二极管的寄生电阻RPD(也称作"分流"电阻或"暗"电阻),则与光电二极管的偏置有关。
与光伏电压方式相反,光导方式中的光电二极管则有一个反向偏置电压加至光传感元件的两端。
当此电压加至光检测器件时,耗尽层的宽度会增加,从而大幅度地减小寄生电容CPD的值。
寄生电容值的减小有利于高速工作,然而,线性度和失调误差尚未最优化。
这个问题的折衷设计将增加二极管的漏电流IL和线性误差。
3 电路设计
3.1 主放大器设计
众多需要检浏的微弱光信号通常都是通过各种传感器来进行非电量的转换,从而使检测对象转变为电量(电流或电压)。
由于所测对象本身为微弱量,同时受各种不同传感器灵敏度的限制,因而所得到的电量自然是小信号,一般不能直接用于采样处理。
本设计中的光电二极管前置放大电路主要起到电流转电压的作用,但后续电路一般为A/D转换电路,所需电压幅值一般为2 V。
然而,即使是这样,而输出的电压信号一般还需要继续放大几百倍,因此还需应用主放大电路。
其典型放大电路如图4所示。
该主放大器的放大倍数为A=l+R2/R3,其中R2为反馈电阻。
为了后续电路的正常工作,设计时需要设定合理的R2和R1值,以便得到所需幅值的输出电压。
即有。