初三专题复习 动点问题
- 格式:ppt
- 大小:427.00 KB
- 文档页数:15
九年级中考数学几何动点问题专项训练1如图,已知△ABC 中,AB =10 cm ,AC =8 cm ,BC =6 cm.如果点P 由B 出发沿BA 向点A 匀速运动,同时点Q 由A 出发沿AC 向点C 匀速运动,它们的速度均为2 cm/s.连接PQ ,设运动的时间为t (单位:s)(0≤t ≤4).第1题图(1)当t 为何值时,PQ ∥BC ;(2)设△AQP 的面积为S (单位:cm 2),当t 为何值时,S 取得最大值,并求出最大值;(3)是否存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分?若存在,求出此时t 的值;若不存在,请说明理由.解:(1)由题意知BP =2t ,AP =10-2t ,AQ =2t ,∵PQ ∥BC ,∴△APQ ∽△ABC ,∴=,AP AB AQ AC即=,解得t =,10-2t 102t 8209即当t 为 s 时,PQ ∥BC ;209(2)∵AB =10 cm ,AC =8 cm ,BC =6 cm ,∴AB 2=AC 2+BC 2,∴△ABC 为直角三角形,∴∠C =90°,如解图,过点P 作PD ⊥AC 于点D,第1题解图则PD ∥BC ,∴△APD ∽△ABC ,∴=,AP AB PD BC∴=,10-2t 10PD 6∴PD =(10-2t ),35∴S =AQ ·PD = ·2t ·(10-2t )=-t 2+6t =-(t -)2+7.5,121235656552∵-<0,抛物线开口向下,有最大值,65∴当t = 秒时,S 有最大值,最大值是7.5 cm 2;52(3)不存在.理由如下:假设存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分,则S △AQP =S △ABC ,12即-t 2+6t =××8×6,651212整理得t 2-5t +10=0,∵b 2-4ac =(-5)2-4×10=-15<0,∴此方程无解,即不存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分.2.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点D 以每秒1个单位长度的速度由点A 向点B 匀速运动,到达B 点即停止运动.M ,N 分别是AD ,CD 的中点,连接MN .设点D 运动的时间为t .(1)判断MN 与AC 的位置关系;(2)求在点D 由点A 向点B 匀速运动的过程中,线段MN 所扫过区域的面积;(3)若△DMN 是等腰三角形,求t的值.第2题图解:(1)MN ∥AC .证明:在△ADC 中,M 是AD 的中点,N 是DC 的中点,∴MN ∥AC ;(2)如解图①,分别取△ABC 三边中点E ,F ,G 并连接EG ,FG ,第2题解图①根据题意,可知线段MN 扫过区域的面积就是▱AFGE 的面积.∵AC =6,BC =8,∴AE =3,GC =4,∵∠ACB =90°,∴S ▱AFGE =AE ·GC =12,∴线段MN 扫过区域的面积为12;(3)依题意可知,MD =AD ,DN =DC ,MN =AC =3.121212分三种情况讨论:(ⅰ)当MD =MN =3时,△DMN 为等腰三角形,此时AD =AC =6,∴t =6.(ⅱ)当MD =DN 时,AD =DC .如解图②,过点D 作DH ⊥AC 于点H ,则AH =AC =3,12第2题解图②∵cos A ==,AB =10,AH AD AC AB即=.3AD 610∴t =AD =5.(ⅲ)当DN =MN =3时,AC =DC ,如解图③,连接MC ,则CM ⊥AD.第2题解图③∵cos A ==,即=,AM AC AC AB AM 6610∴AM =,185∴t =AD =2AM =.365综上所述,当t =5或6或时,△DMN 为等腰三角形.3653.如图,在矩形ABCD 中,点E 在BC 边上,动点P 以2厘米/秒的速度从点A 出发,沿△AED 的边按照A →E →D →A 的顺序运动一周.设点P 从点A 出发经x (x >0)秒后,△ABP 的面积是y .(1)若AB =8厘米,BE =6厘米,当点P 在线段AE 上时,求y 关于x 的函数表达式;(2)已知点E 是BC 的中点,当点P 在线段ED 上时,y =x ;当点P 在线段AD 125上时,y =32-4x .求y 关于x的函数表达式.第3题图解:(1)∵四边形ABCD 是矩形,∴∠ABE =90°,又∵AB =8,BE =6,∴AE ===10,22BE AB +2268+如解图①,过点B 作BH ⊥AE 于点H,第3题解图①∵S △ABE =AE ·BH =AB ·BE ,1212∴BH =,245又∵AP =2x ,∴y =AP ·BH =x (0<x ≤5);12245(2) ∵四边形ABCD 是矩形,∴∠B =∠C =90°,AB =DC , AD =BC ,∵E 为BC 中点,∴BE =EC ,∴△ABE ≌△DCE (SAS),∴AE =DE ,∵y =x (P 在ED 上), y =32-4x (P 在AD 上),125当点P 运动至点D 时,可联立得,,{y =125x y =32-4x )解得x =5,∴AE +ED =2x =10,∴AE =ED =5,当点P 运动一周回到点A 时,y =0,∴y =32-4x =0, 解得x =8,∴AE +DE +AD =16,∴AD =BC =6,∴BE =3,在Rt △ABE 中,AB ==4,22-BE AE 如解图②,过点B 作BN ⊥AE 于N ,则BN =,125第3题解图②∴y =x (0<x ≤2.5),125∴y =.{125x (0<x ≤5)32-4x (5≤x ≤8))4.如图,四边形ABCD 是边长为1的正方形,点E 在AD 边上运动,且不与点A 和点D 重合,连接CE ,过点C 作CF ⊥CE 交AB 的延长线于点F ,EF 交BC 于点G .(1)求证:△CDE ≌△CBF ;(2)当DE = 时,求CG 的长;12(3)连接AG ,在点E 运动过程中,四边形CEAG 能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.第4题图(1)证明:如解图,在正方形ABCD 中,DC =BC ,∠D = ∠CBA = ∠CBF = ∠DCB = 90°,第4题解图∴∠1+∠2= 90°,∵CF ⊥CE ,∴∠2+∠3= 90°,∴∠1= ∠3,在△CDE 和△CBF 中,,{∠D = ∠CBFDC =BC ∠1= ∠3)∴△CDE ≌△CBF (ASA);(2)解:在正方形ABCD 中,AD ∥BC ,∴△GBF ∽△EAF ,∴= ,BG AE BF AF由(1)知,△CDE ≌△CBF ,∴BF = DE = ,12∵正方形的边长为1,∴AF =AB +BF = ,32AE =AD -DE = ,12∴=,BG 121232∴BG =,16∴CG =BC -BG = ;56(3)解:不能.理由:若四边形CEAG 是平行四边形,则必须满足AE ∥CG ,AE = CG ,∴AD -AE =BC -CG ,∴DE =BG ,由(1)知,△CDE ≌△CBF ,∴DE =BF ,CE =CF ,∴△GBF 和△ECF 是等腰直角三角形,∴∠GFB = 45°,∠CFE = 45°,∴∠CFA = ∠GFB +∠CFE = 90°,此时点F 与点B 重合,点D 与点E 重合,与题目条件不符,∴点E 在运动过程中,四边形CEAG 不能是平行四边形.5. 如图,在正方形ABCD 中,点E ,G 分别是边AD ,BC 的中点,AF =AB .14(1)求证:EF ⊥AG ;(2)若点F ,G 分别在射线AB ,BC 上同时向右、向上运动,点G 运动速度是点F 运动速度的2倍,EF ⊥AG 是否成立(只写结果,不需说明理由)?(3)正方形ABCD 的边长为4,P 是正方形ABCD 内一点,当S △PAB =S △OAB 时,求△PAB周长的最小值.第5题图(1)证明:∵四边形ABCD 是正方形,∴AD =AB =BC ,∠EAF =∠ABG =90°,∵点E ,G 分别是边AD ,BC 的中点,AF =AB ,14∴=,=,AE AB 12AF BG 12∴=,AE AB AF BG又∵∠EAF =∠ABC =90°,∴△AEF ∽△BAG ,∴∠AEF =∠BAG ,又∵∠BAG +∠EAO =90°,∴∠AEF +∠EAO =90°,∴∠EOA =90°,即EF ⊥AG ;(2)解:EF ⊥AG 仍然成立;(3)解:如解图,过点O 作MN ∥AB 分别交AD 、BC 于点M ,N ,连接PA,第5题解图∵P 是正方形ABCD 内一点,当S △PAB =S △OAB ,∴点P 在线段MN 上(不含端点),作点A 关于MN 的对称点A ′,连接BA ′交MN 于点P ,此时PA +PB =PA ′+PB =BA ′最小,即△PAB 的周长最小.∵正方形ABCD 的边长为4,∴AE =AD =2,AF =AB =1,1214∴EF ==,22AF AE 5OA ==,AE ·AF EF 255∵∠AMO =∠EOA ,∠EAO =∠EAO ,∴△EOA ∽△OMA ,∴=,AEOA OA AM ∴OA 2=AM ·AE ,∴AM ==,AE OA 225∴A ′A =2AM =,45∴BA ′==,22'AB A A 4265故△PAB 周长的最小值为4+.42656.如图,在Rt △ABC 中,∠ACB =90°,∠A =45°,AB =4cm.点P 从点A 出发,以2cm/s 的速度沿边AB 向终点B 运动.过点P 作PQ ⊥AB 交折线ACB 于点Q ,D 为PQ 中点,以DQ 为边向右侧作正方形DEFQ .设正方形DEFQ 与△ABC 重叠部分图形的面积是y (cm 2),点P 的运动时间为x (s).(1)当点P 不与点B 重合时,求点F 落在边BC 上时x 的值;(2)当0<x <2时,求y 关于x 的函数解析式;(3)直接写出边BC 的中点落在正方形DEFQ 内部时x 的取值范围.第6题图解:(1)如解图①,延长FE 交AB 于点G ,由题意,得AP =2x ,∵D 为PQ 中点,∴DQ =DP =x ,∵四边形DEFQ 为正方形,∴DQ =DE =GP =x ,∵FG ⊥AB ,∠B =45°,∴△FGB 是等腰直角三角形,∴BG =FG =PQ =2x ,∴AP +PG +BG =AB ,即2x +x +2x =4,∴x =,45第6题解图①(2)当0<x ≤时,y =S 正方形DEFQ =DQ 2=x 2,45∴y =x 2,(0<x ≤)45如解图②,当<x ≤1时,设BC 交QF 于点M ,BC 交EF 于点N ,过点C 作CH 45⊥AB 于点H ,交FQ 于点K ,则CH =2,∵PQ =AP =2x ,∴CK =2-2x ,∴MQ =2CK =4-4x ,∴FM =x -(4-4x )=5x -4,∴y =S 正方形DEFQ -S △MNF =DQ 2-FM 2,12∴y =x 2-(5x -4)2=-x 2+20x -8,12232∴y =-x 2+20x -8 (<x ≤1) ,23245第6题解图②如解图③,当1<x <2时,PQ =PB =4-2x ,∴DQ =2-x ,∴y =S △DEQ =DQ 2,12∴y =(x -2)2,12∴y =x 2-2x +2(1<x <2),12第6题解图③(3)1<x <.32【解法提示】当Q 与C 重合时,E 为BC 的中点,2x =2,∴x =1;当Q 为BC的中点时,BQ =,PB =1,∴AP =3,∴2x =3,∴x =,∴x 的取值范围是2321<x <.327.如图,在平面直角坐标系中,直线y =-x +3与x 轴、y 轴分别交于A 、B 两34点,点P 、Q 同时从点A 出发,运动时间为t 秒.其中点P 沿射线AB 运动,速度为每秒4个单位长度,点Q 沿射线AO 运动,速度为每秒5个单位长度.以点Q 为圆心,PQ 为半径作⊙Q .(1)求证:直线AB 是⊙Q 的切线;(2)过点A 左侧x 轴上的任意一点C (m ,0),作直线AB 的垂线CM ,垂足为点M ,若CM 与⊙Q 相切于点D ,求m 与t 的函数关系式(不需写出自变量的取值范围);(3)在(2)的条件下,是否存在点C ,直线AB 、CM 、y 轴与⊙Q 同时相切,若存在,请直接写出此时点C 的坐标,若不存在,请说明理由.第7题图(1)证明:如解图,连接QP ,∵y =-x +3交坐标轴于A ,B 两点,34∴A (4,0),B (0,3),∴OA =4,OB =3,AB ==5,22OB OA ∵AQ =5t ,AP =4t ,在△APQ 与△AOB 中,==t ,==t ,AQ AB 5t 5AP AO 4t 4∴=,AQ AB AP AO又∵∠PAQ =∠OAB ,∴△APQ ∽△AOB ,∴∠APQ =∠AOB =90°,又∵PQ 为⊙Q的半径,∴AB 为⊙Q 的切线;第7题解图①(2)解:①当直线CM 在⊙Q 的左侧与⊙Q 相切时,如解图①,连接DQ ,∵AP ⊥QP ,AP =4t ,AQ =5t ,∴PQ =3t ,∴易得四边形DQPM 为正方形,∴MP =DQ =QP =3t ,∴cos ∠BAO ===,MA AC PA QA 45又∵MA =MP +PA =3t +4t =7t ,AC =AO -CO =4-m ,∴=,∴m ==-t +4;7t 4-m 4516-35t 4354②当直线CM 在⊙Q 的右侧与⊙O 相切时,如解图②,连接DQ ,PQ ,由①易得MA =PA -PM =4t -3t =t,第7题解图②AC =4-m ,∴=,t 4-m 45∴m =-t +4;54综上所述,m 与t 的函数关系式为m =-t +4或m =-t +4;35454(3)解:存在,点C 的坐标为(-,0)或(,0)或(-,0)或(,0).3827827232【解法提示】①如解图③,当⊙Q 在y 轴的右侧与y 轴相切,∴OQ =QP =3t ,∴OA =OQ +QA =3t +5t =8t =4,∴t =,12第1题解图③则m =-t +4=-,35438∴C 1(-,0);38m =-t +4=,54278∴C 2(,0);278②如解图④,当⊙Q 在y 轴的左侧与y 轴相切,OA =AQ -OQ =5t -3t =2t =4,∴t =2,第7题解图④则m =-t +4=-,354272∴C 3(-,0);272m =-t +4=,5432∴C 4(,0).32综上所述,点C 的坐标为(-,0)或(,0)或(-,0)或(,0).38278272328.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AB =8,∠BAD =60°.点E 从点A 出发,沿AB 以每秒2个单位长度的速度向终点B 运动.当点E 不与点A 重合时,过点E 作EF ⊥AD 于点F ,作EG ∥AD 交AC 于点G ,过点G 作GH ⊥AD 交AD (或AD 的延长线)于点H ,得到矩形EFHG .设点E 运动的时间为t 秒.(1)求线段EF 的长(用含t 的代数式表示);(2)求点H 与点D 重合时t 的值;(3)设矩形EFHG 与菱形ABCD 重叠部分图形的面积为S 平方单位,求S 与t 之间的函数关系式.第8题图解:(1)由题意可知AE =2t ,0≤t ≤4,∵EF ⊥AD ,∠BAD =60°,∴sin ∠BAD ==,EF AE 32∴EF =AE =t ;323(2)如解图①,∵点H 与点D 重合,菱形ABCD 中,∠DAC =∠BA =30°,AD 12=AB =8,∴在Rt △ADG 中,DG =AD ·tan30°=8×=,33833∴在矩形FEGD 中,EF =DG =,833由(1)知EF ==t ,8333∴t =;83第8题解图①(3)①当0<t ≤时,点H 在AD 上,83∵AE =2t ,∠BAD =60°,∠DAC =30°,∴EF =t ,AH =HG =EF =3t ,AF =t ,333∴FH =AH -AF =2t ,∴S =EF ·FH =t ·2t =2t 2;33②如解图②,当<t ≤4时,点H 在AD 的延长线上,83设GH 与CD 交于点M ,由(2)知∠DAC =30°,∴在菱形ABCD 中,∠BAC =30°,∵EG ∥AD ,∴∠AGE =∠DAC =30°,∴∠BAC =∠AGE ,∴AE =EG ,∵AE =2t ,EF =t ,∠BAD =60°,3∴在Rt △AFE 中,AF =AE ·cos60°=2t ×=t ,12∴DF =8-t ,∵AE =EG =FH =2t ,∴DH =2t -(8-t )=3t -8,∵AB ∥CD ,∴∠HDM =∠BAD =60°,∴在Rt △DHM 中,HM =DH ·tan60°=(3t -8),3则DH =3t -8,HM =(3t -8),3第8题解图②∴S =S 矩形HGEF -S △DHM =EF ·FH -DH ·HM =2t 2-(3t -8)·(3t -8)123123=2t 2-(9t 2-48t +64)332=2t 2-t 2+24t -32393233=-t 2+24t -32,53233∴S 与t 之间的函数关系为S=⎧<≤⎪⎪⎨⎪+-<≤⎪⎩2280383(4).3t t。
九年级中考压轴——动点问题集锦1、已知等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上沿AB方向以1厘米/秒的速度向B点运动。
过点M、N分别作AB边的垂线,与△ABC的其它边交于P、Q两点,线段MN运动的时间为t秒。
1) 当四边形MNQP为矩形时,有MN=QP,即MN在运动t秒后,线段QP的长度为3+t。
因为三角形ABC是等边三角形,所以三角形ABC的高等于边长的一半,即2根号3.因此,四边形MNQP的面积为2根号3*t平方+2t。
2) 四边形MNQP的面积为S,运动时间为t。
因为三角形ABC是等边三角形,所以三角形ABC的高等于边长的一半,即2根号3.因此,四边形MNQP的高为2根号3.由于四边形MNQP是矩形,所以MN=QP=3+t,PQ=2根号3.因此,S=PQ*MN=2根号3*(3+t)。
函数关系式为S=2根号3*t+6根号3,t的取值范围为t≥0.2、在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=42,∠B=45度。
动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动。
设运动的时间为t 秒。
1) 因为三角形ABD和三角形CBD相似,所以BD=AB-AD=39.由于三角形BCD是直角三角形,所以BC=BD/根号2=39/根号2.2) 当MN∥AB时,由于三角形BMD和三角形BAC相似,所以BD/AB=MD/MN,即39/42=2t/(3+t),解XXX13秒。
3) 当△MNC为等腰三角形时,由于三角形MNC和三角形ABD相似,所以CN/AD=MN/BD,即CN/3=(3+t)/39,XXX13秒。
3、在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(6,0),点B的坐标为(4,3),点C在y轴的正半轴上。
动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点。
参考答案与详解1.【解答】解:(1)∵CD⊥AB,∴∠ADC=∠ADB=90°,∵在Rt△ACD中,AD==3,∴BD=AB﹣AD=5﹣3=2,∴在Rt△BCD中,tan∠B===2;(2)当点M落在BC边上时,如图1,由题意得:AP=3t,tan∠CAB=,∴PQ=PN=MN=4t,BN=2t,∴3t+4t+2t=5,t=;(3)分三种情况:①当0<t≤时,如图1,正方形PQMN与△ABC重叠部分是正方形PQMN,∴S=PQ2=(4t)2=16t2;②当N与B重合时,如图2,AP=3t,PQ=PB=4t,∴3t+4t=5,t=,当<t<时,如图3,正方形PQMN与△ABC重叠部分是五边形EQPNF,③当≤t<1时,如图4,正方形PQMN与△ABC重叠部分是梯形EQPB,∴AP=3t,PN=4t,∴BN=7t﹣5,PB=4t﹣(7t﹣5)=﹣3t+5,在Rt△APQ中,AQ=5t,∴QC=5﹣5t,∵AC=AB,∴∠ACB=∠ABC,∵QE∥AB,∴∠QEC=∠ABC,∴∠QEC=∠ACB,∴QE=QC=5﹣5t,∴S=S梯形QPBE=(QE+PB)×PQ,=(5﹣5t+5﹣3t)×4t=﹣16t2+20t;综上所述,S与t之间的函数关系式为:.(4)如图2,当t=时,CQ=QG=5﹣5t=,∴GM=4t﹣=,∴QG=GM,∴S△QGB=S△GMB,∴S梯形GQPB:S△GMB=3:1,当P与D重合时,t=1,如图5,则S△CDB:S四边形CBNM=×2×4:(42﹣×2×4),=1:3,∴<t≤,1≤t<.2.【解答】解:(1)在Rt△ABC中,∵∠C=90°,AB=10,BC=6,∴AC===8,∵CQ=t,∴AQ=8﹣t(0≤t≤4).(2)①当PQ∥BC时,=,∴=,∴t=s.②当PQ∥AB时,=,∴=,∴t=3,综上所述,t=s或3s时,当PQ与△ABC的一边平行.(3)①如图1中,a、当0<t<时,重叠部分是四边形PEQF.S=PE•EQ=3t•(8﹣4t﹣t)=﹣16t2+24t.b、如图2中,当<t≤2时,重叠部分是四边形PNQE.S=S四边形PEQF﹣S△PFN=(16t2﹣24t)﹣•[5t﹣(8﹣t)]•[5t﹣(8﹣t)]=.c、如图3中,当2<t≤3时,重叠部分是五边形NPBQ.S=S四边形PBCF﹣S△FNM=t•[6﹣3(t﹣2)]﹣•[t﹣4(t﹣2)]•[t﹣4(t﹣2)]=﹣t2+32t﹣24.②a、如图4中,当DE:DQ=1:2时,DF将矩形PEQF分成两部分的面积比为1:2.则有(4﹣4t):(4﹣t)=1:2,解得t=s,b、如图5中,当NE:PN=1:2时,DF将矩形PEQF分成两部分的面积比为1:2.∴DE:DQ=NE:FQ=1:3,∴(4t﹣4):(4﹣t)=1:3,解得t=s,综上所述,当t=s或s时,DF将矩形PEQF分成两部分的面积比为1:2.3.【解答】解:(1)①∵四边形ABCD是矩形,∴∠B=90°,∴AC====15;故答案为:15;②∵四边形ABCD是矩形,∴∠D=90°,AD=BC=3,CD=AB=6,∵EF⊥AC,∴∠APF=90°=∠D,∵∠PAF=∠DAC,∴△APF∽△ADC,∴=,即=,解得:PF=8t;故答案为:8t;(2)当点F与点D重合时,如图1所示:∵∠APD=∠ADC=90°,∠PAD=∠DAC,∴△APD∽△ADC,∴=,即=,解得:t=;(3)分情况讨论:①当0<t≤时,如图2所示:由(1)②得:PF=8t,同理:PE=2t,∴EF=10t,∴l=4(8t+2t)=40t;②当<t≤3时,如图3所示:EF=10t=,l=4×=30.③当3<t<时,如图4所示:同(1)①得:△CPF∽△ABC∽△EPC,∴=,=,即=,=,解得:PF=(15﹣4t),PE=2(15﹣4t),∴EF=PF+PE=(15﹣4t),∴l=4×(15﹣4t)=﹣40t+150;(4)如图3所示:对角线AC所在的直线将正方形EFGH分成两部分图形的面积比为1:2时,则PE:PF=1:2,或PF:PE=1:2,①PE:PF=1:2时,∵EF=,∴PF=EF=5,同理可证:△CPF∽△CDA,∴=,即=,解得:PF=(15﹣4t),∴(15﹣4t)=5,解得:t=;②PF:PE=1:2时,PF=EF=,则(15﹣4t)=,解得:t=;综上所述,对角线AC所在的直线将正方形EFGH分成两部分图形的面积比为1:2时t的值为或.4.【解答】解:(1)∵在菱形ABCD中,∠B=60°,∴∠D=∠B=60°,AD=AB=CD=4,△ACD是等边三角形,∴∠CAD=60°,∵PQ⊥AC,∴△APQ是等腰三角形,∴PF=QF,PF=PA•sin60°=2t×=,∴PQ=2t;(2)当点M落在边BC上时,如图2所示:由题意得:△PDN是等边三角形,∴PD=PN,∵PN=PQ=×2t=3t,∴PD=3t,∵PA+PD=AD,即2t+3t=4,解得:t=.(3)当0<t≤时,如图1所示:PQ=2t,PN=PQ=×2t=3t,S=矩形PQMN的面积=PQ×PN=2t×3t=6t2;当<t<1时,如图3所示:记PN与CD的交点为E,MN与CD的交点为F,∵△PDE是等边三角形,∴PE=PD=AD﹣PA=4﹣2t,∠FEN=∠PED=60°,∴NE=PN﹣PE=3t﹣(4﹣2t)=5t﹣4,∴FN=NE=(5t﹣4),∴S=矩形PQMN的面积﹣2△EFN的面积=6t2﹣2××(5t﹣4)2=﹣19t2+40t﹣16,即S=﹣19t2+40t﹣16;(4)分两种情况:当0<t≤时,如图4所示:记OM与PN的交点为H,∵△ACD是等边三角形,∴AC=AD=4,∵O是AC的中点,∴OA=2,OG是△MNH的中位线,∴OG=3t﹣(2﹣t)=4t﹣2,NH=2OG=8t﹣4,∴△MNH的面积=MN×NH=×2t×(8t﹣4)=×6t2,解得:t=;当<t≤2时,如图5所示:记OM与PQ的交点为E,AC与PQ的交点为F,∵AC∥QM,∴△OEF∽△MEQ,∴=,即=,解得:EF=,∴EQ=t+,∴△MEQ的面积=×3t×(t+)=×6t2,解得:t=;综上所述,当直线OM将矩形PQMN分成两部分图形的面积比为1:2时,t的值为或.5.【解答】解:(1)如图1中,当点N落在边DC上时,∵△DEC是等腰直角三角形,∴当点P与D重合时,点N落在CD上,∵PE=DE=4,∴t==2s时,点N落在边DC上;(2)①如图2中,当0<t≤2时,重叠部分是正方形EMPN,S=PE2=2t2;②如图3中,当2<t≤4时,重叠部分是五边形EFDGM,S=×42×+•(2t)2×﹣(2t﹣4)2=﹣t2+8t﹣4;③如图4中,当t>4时,重叠部分是四边形EFDA,S=8+4=12.综上所述,S=(3)①如图5中,设EM交BD于G,当EG=2GM时,∵EG=2,∴GM=,∴EN=3,∴PE=EM=6,∴t==3s.②如图6中,当MG=2GE时,MG=4,EM=6,PE=12,t==6s.综上所述,t=3s或6s时,正方形PMEN被直线BD分成2:1两部分;6.【解答】解:(1)∵△PQN与△ABC都是等边三角形,∴当点N落在边BC上时,点Q与点B重合.∴DQ=3∴2t=3.∴t=;(2)∵当点N到点A、B的距离相等时,点N在边AB的中线上,∴PD=DQ,当0<t<时,此时,PD=t,DQ=2t∴t=2t∴t=0(不合题意,舍去),当≤t<3时,此时,PD=t,DQ=6﹣2t∴t=6﹣2t,解得t=2;综上所述,当点N到点A、B的距离相等时,t=2;(3)由题意知:此时,PD=t,DQ=2t当点M在BC边上时,∴MN=BQ∵PQ=MN=3t,BQ=3﹣2t∴3t=3﹣2t∴解得t=如图①,当时,S△PNQ=PQ2=t2;∴S=S菱形PQMN=2S△PNQ=t2,如图②,当时,设MN、MQ与边BC的交点分别是E、F,∵MN=PQ=3t,NE=BQ=3﹣2t,∴ME=MN﹣NE=PQ﹣BQ=5t﹣3,∵△EMF是等边三角形,∴S△EMF=ME2=(5t﹣3)2.;(4)MN、MQ与边BC的交点分别是E、F,此时,<t<,t=1或.7.【解答】解:(1)∵∠C=90°,AC=4,BC=2,∴AB==2,如图2,当D与C重合时,CP⊥AB,cos∠A=,即,AP=,tan∠A=,即,∴PD=t,∴当0<t≤时,如图1,PE=2PD=2×t=t,如图3,AP=t,∴PB=2﹣t,tan∠DBP=,即==2,PD=4﹣2t,当<t≤2时,如图3,PE=2PD=2(4﹣2t)=8﹣4t;(2)当点F落在BC上时,如图4,BE=2﹣2t,EF=PD=t,∵EF=2BE,∴t=2×,t=(秒);(3)当0<t≤时,如图1,矩形PEFD与△ABC重叠部分图形是矩形PEFD,S=PD•PE==;如图5,当E与B重合时,PB=2PD,则2﹣t=2×,t=1,当1<t≤时,如图6,cos∠A=,即,AD=t,∴CD=4﹣t,∵DM∥AB,∴∠CDM=∠A,∴cos∠A=cos∠CDM=,即,DM=2﹣t,S=t=﹣+5t;综上,S与t之间的函数关系式是:S=.(4)①如图1,当0<t≤1时,过Q作QH⊥AB于H,∵AP=t,BQ=2t,∴PE=t,PD=t,BH=t,∴EH=BE﹣BH=2﹣2t﹣t=2﹣t,∵矩形PEFD面积是△QEF面积的4倍,∴=4×,t=0(舍)或;②当1<t≤2时,如图7,过Q作QH⊥AB于H,∵PE=t,PB=2﹣t,∴BE=PE﹣PB=t﹣(2﹣t)=2t﹣2,∵BQ+CQ=2t,∴BQ=4﹣2t,∴BH==,∵矩形PEFD面积是△QEF面积的4倍,∴=4×[+2t﹣2],t=0(舍)或;综上,t的值是秒或秒.8.【解答】解:(1)如图1,在Rt△ABC中,AB=6,BC=8,D、E分别为边AB、AC的中点,∴AD=AB=3,DE=BC=4,当点P在线段EA上运动时,PE=t﹣AD﹣DE=t﹣7(7<t<12);(2分)(2)分两种情况:①当0<t≤3时,如图2,∵PN∥BC,∴△APN∽△ABC,∴,∴,∴PN=,∵四边形PNQM是正方形,∴PN=PB=,∵AP+PB=AB,∴t+=6,∴t=,(3分)②当3<t≤7时,如图3,∵PE=PQ=BD=3,∵DP+PE=DE,∴t﹣3+3=4,∴t=4,(4分)综上所述,当点N落在AC边上时,t的值是秒或4秒;(3)分三种情况:①当≤t≤3时,如图4,S=PB2=(6﹣t)2=t2﹣12t+36;(5分)②当3<t≤4时,如图5,S=PQ2=32=9;(6分)③当7≤t<12时,如图1,由题意得:PE=t﹣7,∴AP=5﹣(t﹣7)=12﹣t,∵PQ∥AB,∴△CPQ∽△CAB,∴,∴,∴PQ=,∵△PNF∽△CBA,∴=,∴=,∴FN=,S=PQ2﹣PN•NF=[(t﹣2)]2﹣×××(t﹣2)2=;(8分)(4)分两种情况:①当S△EFC:S四边形ABFE=1:2时,即S△EFC:S△ABC=1:3,∴S△ABC=3S△EFC,过E作EG⊥BC于G,∴×6×8=3××3×FC,∴FC==,由(2)得:PK=t,同理得:AK=,∴KN=PN﹣PK=6﹣t﹣t=6﹣,KE=5﹣,∵KN∥FC,∴,∴KN•EC=KE•FC,∴5(6﹣)=,t=;②如图7,当S△AEK:S四边形BKEC=1:2时,即S△AEK:S△ABC=1:3,∴S△ABC=3S△AEK,∴×6×8=3××4×AK,∴AK=4,由(3)知:FN=,∴FM=MN﹣FN=﹣=,∵sin∠C=,∴FC==,∴EF=5﹣FC=,∵FN∥AK,∴,∴FN•AE=EF•AK,∴5×=4×,∴t=;(10分)综上所述,t的值为或.9.【解答】解:(1)由题意得:答案为:(2﹣t);(2)如图1,当点F落在边AD上时,t的值秒;(3)分两种情况:①当0<t≤时,Q在BD上,如图1,过P作PM⊥BD于M,则△BPM是等腰直角三角形,∵PB=t,∴PM=t,∴S=DQ•PM=2t•t=2t2;②当<t≤1时,Q在BD上,如图3,过Q作QH⊥AB于H,∵BQ=2﹣2t,∴QH=(2﹣2t),∵PF∥BD,∠ADB=90°,∴∠ANP=90°,∵AP=2﹣t,∴AN=PN=2﹣t,∴S=S△ADB﹣S△ANP﹣S△PBQ=﹣=t2+t.③当1<t≤2时,如图4,Q在BC上,同②知:AN=PN=2﹣t,∵EQ∥BD,DE∥BQ,∴四边形BDEQ是平行四边形,∠DEQ=90°,∴EQ=BD=2,BQ=DE=2t﹣2,∵EN=DN+DE=2﹣(2﹣t)+(2t﹣2)=3t﹣2,S=﹣=﹣=﹣t2+11t﹣6;综上,S与t之间的函数关系式为:S=;(4)存在两种情况:①当FQ过BD的中点O时,如图5,则OB=OD=1,∵∠DOM=∠BOQ,∠MDO=∠OBQ,∴△MDO≌△QBO(ASA),∴BQ=DM=DE=2t﹣2,∴MN=EN﹣2DM=(3t﹣2)﹣2(2t﹣2)=2﹣t,∵AN=PN=2﹣t,∴FN=t,∵∠NFM=∠BOQ,∴tan∠NFM=tan∠BOQ,即,∴,2t2﹣t﹣2=0,t=或;②当Q在BD的中点上时,如图6,则2t=1,t=;综上,t=秒或t=秒.10.【解答】解:(1)当0<t≤时,h=2t.当<t≤4时,h=3﹣(2t﹣3)=﹣t+.(2)当点E落在AC边上时,DQ∥AC,∵AD=DB,∴CQ=QB,∴2t=,∴t=.(3)①如图1中,当≤t<时,作PH⊥AB于H,则PH=PA•sinA=t,DQ=﹣2t,∴S=t•(﹣2t)=﹣t2+t.②如图2中,当<t≤4时,同法可得S=t•(2t﹣)=t2﹣t.(4)当点E落在直线CD上时,CD将▱PEQD分成的两部分图形面积相等.有两种情形:①当点E在CD上,且点Q在CB上时(如图3所示),过点E作EG⊥CA于点G,过点D作DH⊥CB于点H,易证Rt△PGE≌Rt△DHQ,∴PG=DH=2,∴CG=2﹣t,GE=HQ=CQ﹣CH=2t﹣,∵CD=AD,∴∠DCA=∠DAC∴在Rt△CEG中,tan∠ECG===,∴t=.②当点E在CD上,且点Q在AB上时(如图4所示),过点E作EF⊥CA于点F,∵CD=AD,∴∠CAD=∠ACD.∵PE∥AD,∴∠CPE=∠CAD=∠ACD,∴PE=CE,∴PF=PC=,PE=DQ=﹣2t,∴在Rt△PEF中,cos∠EPF===,11.【解答】解:(1)如图1故答案为:.(2)①如图2,∵四边形PQMN是正方形,∴∠BQM=90°,∵∠B=45°,∴BQ=MQ,即7﹣t=2t,解得t=,故当0<t≤时,S=(2t)2=4t2;②如图3,∵∠BQF=90°,∠B=45°∴BQ=FQ=7﹣t,∠BFQ=∠MFE=45°,则MF=MQ﹣QF=3t﹣7,∵∠M=90°,∴ME=MF=3t﹣7,则S=(2t)2﹣×(3t﹣7)2=﹣t2+21t﹣(<t<);综上,S=.(3)S△ABC=AB•CG=×14×8=56,①如图4,作HR⊥AB于点R,∵四边形PQMN为正方形,且PM为对角线,∴∠HPB=∠B=45°,∴HR=PB=×(14﹣7+t)=,∵PM将△ABC面积平分,∴S△PBH=S△ABC,则•(7+t)•=×56,解得t=﹣7+4(负值舍去);②如图5,作KT⊥AB于T,设KT=4m,由tanA==知AT=3m,∵∠KQT=45°,∴KT=QT=4m,则AQ=3m+4m=7m,又AQ=14﹣(7﹣t)=7+t,则7m=7+t,∴m=,∵直线NQ将△ABC面积平分,∴S△AKQ=S△ABC,即×7m×4m=×56,整理,得:m2=2,则()2=2,解得:t=﹣7+7(负值舍去),综上,t的值为4﹣7或7﹣7.12.【解答】解:(1)当0<t≤3时,PD=3﹣t.当3<t≤7时,PD=t﹣3.(2)①当点N在AC上时,解得t=.②当点N在BC上时,解得t=5综上所述,满足条件的t的值为s或5s.(3)①如图4中,当0<t≤时,重叠部分是五边形EFPDM,s=S正方形MDPN﹣S△NEF=(3﹣t)2﹣•(3﹣t﹣t)2=﹣②如图5或6中,当<t≤5时,重叠部分是正方形PDMN,s=t2﹣6t+9③如图7中,当5<t≤7时,重叠部分是五边形EFPDM,s=S正方形MNPD﹣S△EFN=(t﹣3)2﹣•[(t﹣3)﹣(7﹣t)]2=﹣t2+14t﹣41.综上所述,s=.(4)如图8中,当点N′落在中线AE上时,作EK⊥BC于K,N′J⊥AB于J.∵JN′∥EK,∴=,则有=,解得t=1.如图9中,当点N′落在中线BG上时,作GK⊥BC于K,N′J⊥AB于J.∵N′J∥GK,∴=,∴=,解得t=.如图10中,当点N′落在中线CF上时,∵MN′∥DF,∴=,∴=,解得t=.综上所述,满足条件的t的值为1s或s或s.13.【解答】解:(1)由题意得,BQ=2t,当0≤t≤3时,QC=6﹣2t,当3<t≤6时,QC=2t﹣6;(2)∵△ABC为等边三角形,∴∠A=60°,当PQ⊥AC时,∠QPA=30°,∴AQ=AP,即t=2×(12﹣2t),解得,t=;(3)作QH⊥AB于H,如图①,在Rt△QBH中,QH=BQ•sinB=t,则S=×PB×QH=×(6﹣t)×t=﹣t2+3t;如图②,在Rt△QAH中,QH=AQ•sinA=×(12﹣2t)=6﹣t,则S=×PB×QH=×(6﹣t)×(6﹣t)=(6﹣t)2;(4)当点Q为AC的中点时,△APQ的面积=△PCQ的面积,即12﹣2t=3,解得,t=,如图①,作CE⊥AB于E,则CE=AC•sinA=×6=3,∴△ABC的面积=×6×3=9,=,∴△BPC的面积=9﹣t,∴△APC的面积=t,=,∴△APQ的面积=3t﹣t2,∴△PCQ的面积=t2﹣t,当△APQ的面积=△PCB的面积时,9﹣t=3t﹣t2,整理得,t2﹣t+4=0,△=1﹣16=﹣15<0,方程无解,当△CPQ的面积=△PCB的面积时,t2﹣t=9﹣t,解得,t1=3,t2=﹣3(舍去),综上所述,在△APQ、△PCQ、△PBC中,其中的某两个三角形面积相等时,t=或t=3.14.【解答】解:(1)在Rt△ABC中,AB===5,故答案为5.(2)如图1中,∵PA∥MN,PN∥AM,∴四边形PAMN是平行四边形,∴MN=PA=x,AM=PN==x,当点N在BC上时,sinA==,=,∴x=.(3)①当0≤t≤时,如图1,,,∴y=PN+MN+PM=x+x+x=4x.②当<t<时,如图2,y=4x﹣EN﹣NF+EF==,EN=PN﹣PE==,∴.③当≤t≤5时,如图3,y=PM+PE+EM==,∴.(4)如图4中,当点G是AC中点时,满足条件∵PN∥AG∴,∴,∴如图5中,当点D是AB中点时,满足条件.∵MN∥AD∴,∴,∴综上所述,满足条件的x的值为或.15.【解答】解:(1)连结AQ、MD,∵当AP=PD时,四边形AQDM是平行四边形,∴3t=3﹣3t,解得:t=,∴t=s时,四边形AQDM是平行四边形.(2)∵四边形ABCD是平行四边形,∴AB∥CD,∴△AMP∽△DQP,∴=,∴=,∴AM=t,即在P、Q运动的过程中,总有CQ=AM;(3)∵MN⊥BC,∴∠MNB=90°,∵∠B=45°,∴∠BMN=45°=∠B,∴BN=MN,∵BM=AB+AM=1+t,在Rt△BMN中,由勾股定理得:BN=MN=(1+t),∵四边形ABCD是平行四边形,∴AD∥BC,∵MN⊥BC,∴MN⊥AD,设四边形ANPM的面积为y,∴y=×AP×MN=×3t×(1+t)=t2+t(0<t<1).假设存在某一时刻t,四边形ANPM的面积是平行四边形ABCD的面积的一半,∴t2+t=×3×,整理得:t2+t﹣1=0,解得:t1=,t2=(舍去),∴当t=s时,四边形ANPM的面积是平行四边形ABCD的面积的一半.16.【解答】解:(1)当点Q与点C重合时,∵PQ⊥AB,△ABC是等腰直角三角形,∴AP=BP=AB=4,∴4÷=4(s),即当点Q与点C重合时,t=4;故答案为:4;(2)①当0<t≤4时,如图①中,设PR、PQ分别交AB于点E、F,则重叠部分为△PEF,∵AP=t,∴EF=PE=t,∴S=S△PEF=•PE•EF=t2.②当4<t≤时,如图②中,设PR、RQ分别交AB于E、G,则重叠部分为四边形PEGQ.∵PQ=PC=8﹣t,∴PR=16﹣2t,∴RE=PR﹣PE=16﹣3t,∴S=S△PRQ﹣S△REG=(8﹣t)2﹣(16﹣3t)2=﹣t2+32t﹣64.③当<t<8时,如图③中,则重合部分为△PRQ,∴S=S△PRQ=PQ2=(8﹣t)2=t2﹣16t+64.(3)分情况讨论:①如图④所示:根据三角形的面积关系得:AM=BM=AB=4,根据等腰直角三角形的性质得:PM=PB=BM,∴AP=AB=6,∴t=6,解得:t=6;②如图⑤所示:同②得:t=;③如图⑥所示:点M不可能是AC中点,此种情形不存在.综上所述:点R与△ABC的顶点的连线平分△ABC面积时t的值为6或.17.【解答】解:(1)故答案为:①25;②3t.(2)当▱PQMN为矩形时,∠NPQ=90°,∵PN⊥AB,∴PQ∥AB,∴由题意可知AP=CQ=5t,CP=20﹣5t,∴,解得t=,即当▱PQMN为矩形时t=.(3)当▱PQMN△ABC重叠部分图形为四边形时,有两种情况,Ⅰ.如解图(3)1所示.▱PQMN在三角形内部时.延长QM交AB于G点,由(1)题可知:cosA=sinB=,cosB=,AP=5t,BQ=15﹣5t,PN=QM=3t.∴AN=AP•cosA=4t,BG=BQ•cosB=9﹣3t,QG=BQ•sinB=12﹣4t,∵.▱PQMN在三角形内部时.有0<QM≤QG,∴0<3t≤12﹣4t,∴0<t.∴NG=25﹣4t﹣(9﹣3t)=16﹣t.∴当0<t时,▱PQMN与△ABC重叠部分图形为▱PQMN,S与t之间的函数关系式为S=PN•NG=3t•(16﹣t)=﹣3t2+48t.Ⅱ.如解图(3)2所示.当0<QG<QM,▱PQMN与△ABC重叠部分图形为梯形PQMG 时,即:0<12﹣4t<3t,解得:,▱PQMN与△ABC重叠部分图形为梯形PQMG的面积S===.综上所述:当0<t时,S=﹣3t2+48t.当,S=.(4)当过点P且平行于BC的直线经过▱PQMN一边中点时,有两种情况,Ⅰ.如解题图(4)1,PR∥BC,PR与AB交于K点,R为MN中点,过R点作RH⊥AB,∴∠PKN=∠HKR=∠B,NK=PN•cot∠PKN=3t=,∵NR=MR,HR∥PN∥QM,∴NH=GH=,HR=,∴GM=QM﹣QG=3t﹣(12﹣4t )=7t﹣12.HR=.∴KH=HR•cot∠HKR==,∵NK+KH=NH,∴,解得:t=,Ⅱ.如解题图(4)2,PR∥BC,PR与AB交于K点,R为MQ中点,过Q点作QH⊥PR,∴∠HPN=∠A=∠QRH,四边形PCQH为矩形,∴HQ=QR•sin∠QRH=∵PC=20﹣5t,∴20﹣5t=,解得t=.综上所述:当t=或时,点P且平行于BC的直线经过▱PQMN一边中点,18.【解答】解:(1)当点Q在AB上时,∴;,当点Q在AC上时,.(2)当点R落在AC上时,解得.(3)如图1中,当时,重叠部分是△PQR,可得.如图4中,当时,重叠部分是四边形PQNM.可得.如图5中,当时,重叠部分是△PQM.可得.(4)①如图6中,当点R落在△ABC的中位线MN上时,作RH⊥PM.则四边形PQRH是矩形,易证RP=RM,∵RH⊥PM,∴PH=HM=RQ,∴PM=2RQ,∴﹣t=2•t,解得t=.②如图7中,当点R落在△ABC的中位线MN上时,易知BQ=,可得,t=.③如图8中,当点R落在△ABC的中位线MN上时,易知:PQ=可得:(5﹣t)=,解得t=④如图9中,当点R落在△ABC的中位线MN上时,易知RQ=BM=,可得t=,解得t=.综上所述,满足条件的t的值为:,,,.19.【解答】解:(1)如图1中,在Rt△BPQ中,∵∠BPQ=90°,∠B=30°,BP=t,∴PQ=BP•tan30°=t.(2)①如图1中,当0<t≤2时,重叠部分是△PQM,S=t2.②如图2中,当2<t<3时,重叠部分是四边形PQFE,S=S△PQM﹣S△EFM=t2﹣(3t﹣6)2=﹣2t2+9t﹣9,综上所述,S=.(3)①如图3﹣1中,当点M落在中线AE上时,作MH⊥BC于H.∵MH∥AC,∴=,∴=,解得t=②如图3﹣2中,当点M落在中线CK上时,t==.③如图3﹣3中,当点M落在中线CK上时,由PM=PC•cos30°,可得:[3﹣(t﹣3)]=•(t﹣3),解得t=5.④如图3﹣4中,当点M落在中线BF上时,作MH⊥AC于H.∵MH∥BC,∴=,∴=,解得t==,综上所述,满足条件的t的值为s或s或5s或s.20.解:(1)当M与D重合时,如图1,由题意得:AP=4x,此时4x=3.6,x=,∴当0<x≤时,如图2,M在CD的延长线上,DM=﹣5x+;②当<x<时,如图3,M在边CD上,DM=8﹣(﹣5x)=5x﹣;(2)∵四边形ABCD是矩形,∴AB∥CD,∴△MPC∽△NPA,∴=()2=,∴=,∴=,∴x=;(3)分三种情况:①当0<x≤时y=20x;②当<x≤时,△MEN与矩形ABCD重合部分图形是△MEN,,y=18;③当<x<时,△MEN与矩形ABCD重合部分图形是四边形MEBG,y=18﹣BN﹣GN+BG=18﹣(5x﹣8)﹣+=﹣+;综上,y与x之间的函数关系式为:y=;(4)分两种情况:①当F在∠ACB的平分线上,如图6,过F作GH∥AB,交AC于H,交BC于G,∴GH⊥BC,∵PF⊥PC,∴∠CFP=∠CFG,∴CG=CP=10﹣4x,∵F是PN的中点,FH∥AN,∴AH=PH=2x,∴CH=10﹣2x,∵∠CHG=∠CAB,∴sin∠CHG=sin∠CAB=,∴=,x=;②当F在∠ABC的平分线上,如图7,过F作GH∥AB,交AC于H,交BC于G,过H 作HQ⊥AB于Q,同理得:AH=2x,sin∠HAQ=,HQ=BG=1.2x,∵BF平分∠ABC,∴∠GBF=45°,∴FG=BG=1.2x,由①知:FH是△PAN的中位线,∴FH=AN=x,∴GH=FH+FG=2.5x+1.2x=3.7x,∵cos∠CHG=,∴=,x=,综上,x的值是秒或秒.21.【解答】解:(1)如图1中,.故答案为9t.(2)如图2中,点A′落在BC边上时,t=.(3)①如图1中,当0<t≤时,重叠部分是△PMA′,S=•3t•4t=6t2②如图3中,当<t≤时,重叠部分是四边形PMTS.S=S△PMA′﹣S△TSA′=6t2﹣•(9t﹣8)2=﹣48t2+96t ﹣.③如图4中,<t≤2时,重叠部分是△PBS.S=×(8﹣4t)2=6t2﹣24t+24,综上所述,S=.(3)如图5中,当直线CA′平分∠PA′M时,设CA′交AB于Q,作QE⊥AC于E,交PA′于G.∵∠A′MQ=∠A′GQ=90°,∠QA′M=∠QA′G,A′Q=A′Q,∴△A′QM≌△A′QG,∴A′M=A′G=3t,∴PG=PA′﹣A′G=2t,∴QG=QM=t,PQ=t,∵PA′∥AC,∴=,∴=,∴t=s.如图6中,当CM平分∠PMA′时,作CE⊥AB于E.∵CE==,∴BE==,∵∠CME=45°,∴CE=EM=,∴BM=EM﹣EB=﹣=,∴AM=9t=10+,∴t=s.综上所述,t=s或s时,点C和△PA′M中一个顶点的直线平分△PA′M的内角.22.【解答】解:(1)由题意得:BP=2t如图1,过A作AD⊥BC于D,①当点Q在线段AB上时,即0<t≤1时,PQ=t;②当点Q在线段AC上时,即1<t<2时PQ=PC==2﹣t;(2)点M在△ABC内部时t的取值范围是<t<2;(3)分三种情况:①0<t≤1时,如图5,正方形PQMN与△ABC重叠部分图形是四边形DNPQ,BP=2t,PQ=PN=MD=t,∴BN=2t﹣t=t,∴DN=t=DM,∴S=S正方形MNPQ﹣S△MDQ==;②当1<t<时,如图6,正方形PQMN与△ABC重叠部分图形是五边形ODNPQ,∵PQ=PN=MN=2﹣t,∴BN=BP﹣PN=2t﹣(2﹣t)=3t﹣2,∵tan∠B=,DN=BN=,∴DM=MN﹣DN=2﹣t﹣=3﹣t,∵tan∠MOD=tan∠B==,∴OM=2MD,∴S=S正方形MNPQ﹣S△MDO=(2﹣t)2﹣=(2﹣t)2﹣=﹣+11t﹣5;③当≤t<2时,如图7,正方形PQMN与△ABC重叠部分图形是正方形MNPQ,S=PQ2=(2﹣t)2=t2﹣4t+4;综上,S与t之间的函数关系式为:S=;(4)存在四种情况:①如图8,M在中位线MQ上,则Q是AB的中点,BQ=,∴BP=1=2t,t=;②如图9,M在中位线MT上,则T是BC的中点,BT=2,∴MT∥AC,∴∠C=∠BTM,∴tan∠BTM===,∴NT=BP,∵BP+TN﹣BT=PN,∴2t+2t﹣2=t,t=;③如图10,M在中位线MQ上,∴Q是AC的中点,同理得CP=1=4﹣2t,t=;④如图11,M在中位线MT上,T是BC的中点,CP=TN=4﹣2t,PQ=PN=2﹣t,∵CT=TN+PN+PC,∴2=2(4﹣2t)+2﹣t,t=;综上,t的值是秒或秒或秒或秒.23.【解答】解:(1)如图1中,作EM⊥AC于M.∵∠ACB=90°,AC=8,BC=6,∴AB===10,∵DH⊥AB,∴∠DHA=∠C=90°,∵∠A=∠A,∴△AHD∽△ACB,∴=,∴=,∴AH=4t,∴AE=2AH=8t,∵EM∥BC,∴=,∴=,∴EM=t,∴sin∠EDG===.(2)如图2中,由(1)可知:DM==t,∵AD+DM+CM=8,∴5t+t+5t=8,解得t=.(3)①如图3﹣1中,当0<t≤时,重叠部分是菱形DEFG,S=DG•EM=5t×t=24t2.②如图3﹣2中,当≤t<时,重叠部分是四边形DEMC,S=•(EM+CD)•CM=[8﹣5t+(10﹣8t)]•t=﹣t2+t.③如图3﹣3中,当≤t<时,重叠部分是三角形DCM,S=•(8﹣5t)2•=(8﹣5t)2.(4)①当点P落在DF上时,如图4﹣1中,易证AD=DC=4,t=.②如图4﹣2中,当点P落在FG上时,作CM⊥EG于M.由△PBE≌△PCM,可得BE=CM=10﹣8t,CG=(10﹣8t),∴10t=8+(10﹣8t),解得t=.综上所述,满足条件的t的值为或s.24.【解答】解:(1)当t=2s时,则CP=2×2=4=BC,即点P与点B重合,OQ=2,如图1,∴AQ=OA﹣OQ=4﹣2=2,且AP=OC=3,∴tan∠QPA==;(2)当线段PQ与线段AB相交于点M,则可知点Q在线段OA上,点P在线段CB的延长线上,如图2,则CP=2t,OQ=t,∴BP=PC﹣CB=2t﹣4,AQ=OA﹣OQ=4﹣t,∵PC∥OA,∴△PBM∽△QAM,∴=,且BM=2AM,∴=2,解得t=3,∴当线段PQ与线段AB相交于点M,且BM=2AM时,t为3s;(3)当0≤t≤2时,如图3,由题意可知CP=2t,∴S=S△PCQ=×2t×3=3t;当2<t≤4时,设PQ交AB于点M,如图4,由题意可知PC=2t,OQ=t,则BP=2t﹣4,AQ=4﹣t,同(3)可得==,∴BM=•AM,∴3﹣AM=•AM,解得AM=,∴S=S四边形BCQM=S矩形OABC﹣S△COQ﹣S△AMQ=3×4﹣×t×3﹣×(4﹣t)×=24﹣﹣3t;当t>4时,设CQ与AB交于点M,如图5,由题意可知OQ=t,AQ=t﹣4,∵AB∥OC,∴=,即=,解得AM=,∴BM=3﹣=,∴S=S△BCM=×4×=;综上可知S=;(4)如图6,∵∠OAD=∠OAB=45°,OA=4,∴D(0,4),设直线AD解析式为y=kx+b,代入,得:,解得,∴直线AD解析式为y=﹣x+4,由题意知C(0,3),P(2t,3),Q(t,0),∴CP的中点坐标为(t,3),CQ中点坐标为(,),PQ中点坐标为(t,),若直线AD经过CP中点,则﹣t+4=3,解得t=1;若直线AD经过CQ中点,则﹣+4=,解得t=5;若直线AD经过PQ中点,则﹣t+4=,解得t=;综上,∠OAB的角平分线经过△CQP边上中点时的t值为1或5或.25.【解答】解:(1)如图1中,故答案为t.(2)如图2中,当D与点C重合时,∵PQ⊥PD,PR⊥CD,∴∠QPD=∠PRQ=∠PRD=90°,∵∠PCR+∠CPR=90°,∠CPR+∠DPR=90°,∴∠DPR=∠PCR,∴△CPR∽△PDR,∴=,∴PR2=CR•DR,∴(t)2=(5﹣t)•t,解得t=3.∴t=3s时,C,Q重合.(3)①当0<t≤3时,如图3中,S=•PR•QR=•t•(t﹣t)=t2.②当3<t≤时,如图3﹣1中,S=•PR•CR=•t•(5﹣t)=﹣t2+2t.综上所述,S=.(4)①如图4﹣1中,当点P在线段AB的垂直平分线上时,设AB的垂直平分线交AB于N,交BC于M.易知BM=BN=,PM=PD,∴DM=BM+BD=,∵PR⊥DM,∴DR=DM=,∴t=,∴t=.②如图4﹣2中,当点P在线段BC的垂直平分线上时,DR=CR=,可得t =,解得t=.③如图4﹣3中,当点P在线段AC的垂直平分线上时,PR=CM=,可得t=,解得t =.综上所述,满足条件的t的值为s或s或s.26.【解答】解:(1)∵在Rt△ABC中,∠C=90°,AC=6,BC=8,∴当0<t≤3时,点Q在线段AC上运动,CQ=6﹣2t,当3<t≤7时,点Q在线段BC上运动,CQ=2t﹣6;(2)∵在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB==10,当点M落在边BC上时,如图1,∵QM∥AB,∴△CQM∽△CAB,∴==,∴CQ=QM,∵PM∥AC,QM∥AB,∴四边形APMQ是平行四边形,∴QM=AP=t,∴6﹣2t=t,解得:t=;(3)如图2,当0<t<时,S=2t•t=t2,如图3,当5<t<7时,S=[10﹣t﹣(14﹣2t)]×(14﹣2t)=﹣t2+t﹣63;综上所述,S与t之间的函数关系式为:S=;(4)①当0<t≤3时,当Q在线段AC上运动时,即AQ=2t,AP=t,∴AQ=2AP,②如图4,当点Q在线段BC上运动时,PM=2PN,即(14﹣2t)=2[10﹣t﹣(14﹣2t)],解得:t=,如图5,当点Q在线段BC上运动时,2PM=PN,即2×(14﹣2t)=[10﹣t﹣(14﹣2t)],解得:t=,∴当▱PMQN的一边是它邻边2倍时,t的取值范围为:0<t≤3或或.27.【解答】解:(1)如图1,∵∠C=90°,AC=8厘米,BC=6厘米,∴AB=10(cm),∴cosA=,sinA=,tanA=,设AP=5x,∴PA′=AD=APcos∠A=×5x=4x,CP=8﹣5x,∴cos∠CPA′=cos∠A===,∴x=,(2)①当0<x≤,如图2,∴PA′=AD=APcosA=3x,∴A′D=AP=5x,∴y=4x+3x+5x=12x,②当<x≤时,如图3∴PE===,DF=DB×cosA=8﹣x,∴y=3x++8﹣x+x﹣6=12﹣x,即:当0<x≤时,y=12x,当<x≤时,y=﹣x+12;(3)同(1)一样有,sinB=,cosB=,tanB=,①当A′B′⊥AB时,如图6,∴DH=PA'=AD=4x,HE=B′Q=EB=3x,∵AB=2AD+2EB=2×4x+2×3x=10,∴x=,∴A′B′=QE﹣PD=4x﹣3x=x=.②当A′B′⊥BC时,如图7,∴B′E=5x,DE=10﹣7x,∴cosB==,∴x=.③当A′B′⊥AC时,如图8,DA'=PA=5x,DE=×5x=x,∴4x+x+3x=10,∴x=.④当Q,P都到达C后,如图9,∵A′B′∥AB且AB=A′B′=10,此时t=s.28.【解答】解:(1)如图1,过D作DM⊥AB于M,EG=t;(2)t=4;(3)当点G在DC上时,存在三种情况:①当4≤t<6时,G在DC上,E在F的左边,如图3,矩形EFHG与四边形ABCD重叠部分是矩形EFHG,,∴S=EF•EG=4×(12﹣2t)=﹣8t+48;②当6<t≤8时,如图4,G在DC上,E在F的右边,矩形EFHG与四边形ABCD重叠部分是矩形EFHG,∴S=EF•EG=4×(2t﹣12)=8t﹣48;③当8<t≤12时,如图5,矩形EFHG与四边形ABCD重叠部分是五边形EFMDG,∵AF=BE=t﹣(2t﹣12)=12﹣t,Rt△AFM中,∠AMF=30°,∴FM=AF=(12﹣t),∴HM=4﹣FM=4﹣(12﹣t)=t﹣8,∴DH=t﹣8,∴S=S矩形EFHG﹣S△DHM=8t﹣48﹣=8t﹣48﹣=﹣;综上,S(cm2)与t(秒)的函数关系式为:S=;(4)分三种情况:①当BD∥FG时,如图6,∴,即,t=3;②当AC∥EH时,如图7,则∠FEH=∠BAC,tan∠BAC=tan∠FEH=,即,t=;③当BD∥EH时,如图8,∠CDB=∠GHE,∴tan∠CDB=tan∠GHE,∴,∵BC=EG,∴CD=GH,即CG=DH,由(3)知DH=t﹣8,∴t﹣8=12﹣t,t=10;综上,t的值为3秒或秒或10秒.29.【解答】解:(1)故答案为:2t;(2)∵以每秒2个单位长度的速度沿边AB向点B运动,过点P作PD⊥AB交折线AC、CB于点D,以PD为边在PD右侧作正方形PDEF,∴△APD是等腰直角三角形,AP=PD,过点C作CK⊥AB于K,交QG于点H,如图1所示:则CH⊥QG,∵△ABC是等腰直角三角形,∴CK=AB=×10=5,当点E与点N重合时,CH+QN+EF=CK=5,∵△CQG是等腰直角三角形,∴△CHQ是等腰直角三角形,∴CQ=CH,此时,CQ=t,AP=DP=EF=2t,∴CH===t,QG=QN=CQ=×t=2t,∴t+2t+2t=5,解得:t=1;(3)由题意得:正方形PDEF与正方形QGMN重叠部分图形是正方形,(4)当正方形PDEF与正方形QGMN完全重合时,3t=5,t=;分两种情况:①当1<t≤时,如图2所示:由(1)得:QG=GM=2t,△CQG是等腰直角三角形,由(2)得:EF=2t,CH=t,CK=5,∴S=[2t﹣(5﹣3t)]2=(5t﹣5)2=25t2﹣50t+25,即S与t之间的函数关系式为S=25t2﹣50t+25;②当<t<5时,如图3所示:S=(5﹣t)2=t2﹣10t+25,即S=t2﹣10t+25;(4)分三种情况:①当EM⊥BC时,如图4所示:由题意得:(5﹣2t)=10﹣2t,解得:t=0,不合题意舍去;②当EM⊥AC时,如图5所示:由题意得:×3t=10﹣2t,解得:t=;③当EM⊥AB时,正方形PDEF与正方形QGMN重合,此时t=;综上所述,当直线EM与△ABC的边垂直时,t的值为或.30.【解答】解:(1)如图1中,∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠CAD=∠CAB=∠DAB=60°,∴△ADC,△ABC都是等边三角形,∵PE⊥AB,PA=2t,∴∠PEA=90°,∠APE=30°,∴AE=PA=t,∴BE=AB﹣AE=4﹣t.(2)当点P与点O重合时,PA=OA=2=2t,∴t=1时,点P与点O重合.(3)当0<t≤1时,如图1中,重叠部分是四边形PEAF,S=2××t×t=t2.当1<t≤2时,如图2中,重叠部分是五边形AEMNF,S=S四边形PEAF﹣S△PMN=t2﹣()2=﹣t2+t﹣.(4)如图4﹣1中,当PQ′⊥BC时,易知PC=2CQ′,可得4﹣2t=2×6t,解得t=.如图4﹣2中,当点Q与点F重合时,PQ⊥AB,则有:6t+t=8,t=如图4﹣3中,当点Q与点E重合时,PQ′⊥AD,则有:6t=8+t,t=,综上所述,满足条件的t的值为s或s或s.31.【解答】解:(1)∵PD⊥AB,∴∠APD=90°,∵∠A=60°,PA=t,∴PD=PA=.故答案为t.(2)①当AD=DC时,2t=1,t=.②当CD=DB时,AP=4﹣,t=,综上所述,满足条件的t的值为或.(3)当0<t<1时,如图1中,∵DE∥AB,∴=,∴=,∴DE=4﹣4t,∴S=•DE•DP=﹣2t2+2t.当1<t<4时,如图2中,。
初三动点问题的方法归纳总结初三动点问题的方法归纳总结一、引言初三是学生成长道路上的关键一年,学习任务繁重,考试压力大,如何有效地解决动点问题,是许多初三学生和家长头疼的难题。
本文将探讨初三动点问题的方法,帮助学生和家长更好地理解和应对这一问题。
二、什么是初三动点问题初三动点问题是指学习过程中出现的难点、疑惑或不理解的知识点。
这些问题如果得不到妥善解决,将会成为学习的绊脚石,影响学生成绩和学习兴趣。
三、高效解决初三动点问题的方法1. 积极主动地寻求帮助在学习过程中,遇到动点问题时,首先要积极主动地寻求帮助。
可以向老师请教,组织学习小组共同讨论,或者上网查阅资料。
不要因为自尊心而不愿意主动求助,更不能因为害怕别人笑话而把问题憋在心里。
2. 找准问题的根源解决问题的第一步是找准问题的根源。
动点问题可能是由于基础不扎实、学习方法不当、对知识点理解不透彻等原因造成的。
只有找准问题的根源,才能有针对性地解决问题。
3. 多角度思考,多种方法尝试对动点问题,不要一棍子打死,要运用多角度思考、多种方法尝试的策略。
可以从不同的角度去理解知识点,尝试不同的学习方法,找到最适合自己的解决办法。
4. 善于总结和归纳解决动点问题并不是一蹴而就的过程,需要不断总结和归纳。
将解决问题的经验和方法进行总结,形成自己的学习方法论和问题解决策略,以便于在今后的学习中更好地应对各种问题。
四、我对初三动点问题的个人观点和理解初三动点问题是学习过程中的常见现象,但并非不可逾越的障碍。
只要学生和家长能够正确看待和积极应对,便能够有效解决动点问题,取得更好的学习成绩。
关键在于要有正确的学习态度和方法,积极主动地解决问题,善于总结和归纳解决问题的经验。
初三是一个学习的关键阶段,只有克服各种困难,才能够迎接更大的挑战。
五、总结初三动点问题是学习过程中难免遇到的问题,但只要学生能够积极主动地寻求帮助,找准问题的根源,多角度思考,善于总结和归纳,便能够有效解决这一问题。
2023年中考九年级数学高频考点拔高训练--三角形的动点问题1.如图,在边长为12cm的等边三角形ABC中,点P从点A开始沿AB边向点B以每秒钟1cm的速度移动,点Q从点B开始沿BC边向点C以每秒钟2cm的速度移动.若P、Q分别从A、B同时出发,其中任意一点到达目的地后,两点同时停止运动,求:(1)经过6秒后,BP=cm,BQ=cm;(2)经过几秒后,△BPQ是直角三角形?(3)经过几秒△BPQ的面积等于10 cm2?2.如图1,A、B两点的坐标分别为(a,0),(b,0),且a、b满足(a+2)2+ |b−8|=0,C的坐标为(3,c)(1)判断△ABC的形状.(2)动点P从点A出发,以1个单位/ s的速度在线段AC上运动,另一动点Q从点C出发,以3个单位/ s的速度在射线CB上运动,运动时间为t.①如图2,若AC=13,直线PQ交x轴于H,当PH=QH时,求t的值.②如图3,若c=5,当Q运动到BC中点时,M(3,m)为AQ上一点,连CM,作CN⊥AQ交AB于N.试探究AM和CN的数量关系,并给出证明. 3.如图,OC、AB互相垂直,已知OA=8,OC=6,且AB=AC.(1)求OB的长;(2)如图②,若点E为边AC的中点,动点M从点B出发以每秒2个单位长度的速度沿线段BA向点A匀速运动,设点M运动的时间为t(秒);①若△OME的面积为1,求t的值;②如图③,在点M运动的过程中,△OME能否成为直角三角形?若能,求出此时t的值,并写出相应的OM的长;若不能,请说明理由.4.已知,在平面直角坐标系中,三角形ABC三个顶点的坐标分别为A(a,0),B(b,4),C(2,c),BC//x轴,且a、b满足√a+b−1+|2a−b+10|= 0.(1)则a=;b=;c=;(2)如图1,在y轴上是否存在点D,使三角形ABD的面积等于三角形ABC 的面积?若存在,请求出点D的坐标;若不存在,请说明理由;(3)如图2,连接OC交AB于点M,点N(n,0)在x轴上,若三角形BCM的面积小于三角形BMN的面积,直接写出n的取值范围是.5.如图1,△ABC中,CD△AB于D,且AD:BD:CD=2:3:4,(1)试说明△ABC是等腰三角形;(2)已知S△ABC=160cm2,如图2,动点M从点A出发以每秒2cm的速度沿线段AB向点B运动,同时动点N从点B出发以相同速度沿线段BC向点C运动,当其中一点到达终点时整个运动都停止.设点M运动的时间为t(秒),①若△DMN的边与AC平行,求t的值;②若点E是边BC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.6.如图,在Rt△ABC中,△ACB=90°,AC=8,BC=6,DE是△ABC的中位线,点F 是BC边上的一个动点,连结AF交BD于点H,交DE于点G。
人教版九年级数学中考动点问题专项练习例题1. 抛物线223y x x =-++与x 轴相交于A 、B 两点(点A 在B 的左侧),与y轴相交于点C ,顶点为D .⑴ 直接写出A 、B 、C 三点的坐标和抛物线的对称轴;⑵ 连接BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF DE ∥交抛物线于点F ,设点P 的横坐标为;① 用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形?② 设BCF ∆的面积为S ,求S 与m 的函数关系式. 【答案】⑴()10A -,,()30B ,,()03C ,.抛物线的对称轴是:1x =.⑵①设直线BC 的函数关系式为:y kx b =+. 把()()3003B C ,,,分别代入得:303.k b b +=⎧⎨=⎩,解得:13k b =-=,. 所以直线BC 的函数关系式为:3y x =-+. 当1x =时,132y =-+=,∴()12E ,. 当x m =时,3y m =-+, ∴()3P m m -+,.在223y x x =-++中,当1x =时,4y =. ∴()14D ,当x m =时,223y m m =-++∴()223F m m m -++,.∴线段422DE =-=,线段()222333PF m m m m m =-++--+=-+. ∵PF DE ∥∴当PF ED =时,四边形PEDF 为平行四边形. 由232m m -+=解得:1221m m ==,.(不合题意,舍去). 因此,当2m =时,四边形PEDF 为平行四边形.②设直线PF 与x 轴交于点M ,由()30B ,,()00O ,,可得:3OB OM MB =+=. ∵BPF CPE S S S ∆∆=+.即()11112222S PF BM PF OM PF BM OM PF OB =⋅+⋅=⋅+=⋅.∴()()221393303222S m m m m m =⨯-+=-+≤≤.例题2. 如图,已知抛物线(1)2)0y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.【答案】(1)∵抛物线2(1))0y a x a =-+≠经过点()20A -,,∴09a =+a =∴二次函数的解析式为:2y =+(2)∵D 为抛物线的顶点∴(1D 过D 作DN OB ⊥于N ,则DN =,3AN =,∴6AD ==∴60DAO ∠=︒∵OM AD ∥①当AD OP =时,四边形DAOP 是平行四边形 ∴6OP =∴()6t s =②当DP OM ⊥时,四边形DAOP 是直角梯形 过O 作OH AD ⊥于H ,2AO =,则1AH =(如果没求出60DAO ∠=°可由Rt Rt OHA DNA △∽△求1AH =) ∴5OP DH ==,()5t s =③当PD OA =时,四边形DAOP 是等腰梯形 ∴2624OP AD AH =-=-=∴()4t s =综上所述:当6t =、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形.(3)由(2)及已知,60OC OB COB OCB =∠=,,°△是等边三角形 则62OB OC AD OP t BQ t =====,,,∴()6203OQ t t =-<< 过P 作PE OQ ⊥于E,则PE =∴113322263(62)BCPQ t S t -=⨯⨯⨯-⨯=233633228t ⎛⎫-+⎪⎝⎭ 当32t =时,BCPQ S 的面积最小值为6338 ∴此时33324OQ OP OE ==,=,∴39334443PE QE ===- ∴222233933442PE QE PQ ⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭=例题3. 已知⊙O 的半径为3,⊙P 与⊙O 相切于点A ,经过点A 的直线与⊙O 、⊙P 分别交于点B 、C ,cos ∠BAO =13.设⊙P 的半径为x ,线段OC 的长为y .(1)求AB 的长;(2)如图1,当⊙P 与⊙O 外切时,求y 与x 之间的函数关系式,并写出函数的定义域;(3)当∠OCA =∠OPC 时,求⊙P 的半径.图1 【答案】(1)如图2,作OE ⊥AB ,垂足为E ,由垂径定理,得AB =2AE .在Rt △AOE 中,cos ∠BAO =13AE AO =,AO =3,所以AE =1.所以AB =2.(2)如图2,作CH ⊥AP ,垂足为H . 由△OAB ∽△P AC ,得AO AP AB AC =.所以32x AC =.所以23AC x =. 在Rt △ACH 中,由cos ∠CAH =13,得1322AH AC CH==. 所以1239AH AC x ==,224239CH AC x ==. 在Rt △OCH 中,由OC 2=OH 2+CH 2,得222422()(3)99y x x =++. 整理,得23649813y x x =++.定义域为x >0.图2 图3(3)①如图3,当⊙P 与⊙O 外切时,如果∠OCA =∠OPC ,那么△OCA ∽△OPC .因此OA OCOC OP =.所以2OC OA OP =⋅. 解方程236493(3)813x x x ++=+,得154x =.此时⊙P 的半径为154.②如图4,图5,当⊙P 与⊙O 内切时,同样的△OAB ∽△P AC ,23AC x =. 如图5,图6,如果∠OCA =∠OPC ,那么△ACO ∽△APC .所以AO ACAC AP =.因此2AC AO AP =⋅. 解方程22()33x x =,得274x =.此时⊙P 的半径为274.图4 图5 图6例题4. 如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(0,4),点B 的坐标为(4,0),点C的坐标为(-4,0),点P在射线AB上运动,连结CP与y轴交于点D,连结BD.过P、D、B三点作⊙Q,与y轴的另一个交点为E,延长DQ交⊙Q于F,连结EF、BF.(1)求直线AB的函数解析式;(2)当点P在线段AB(不包括A、B两点)上时.①求证:∠BDE=∠ADP;②设DE=x,DF=y,请求出y关于x的函数解析式;(3)请你探究:点P在运动过程中,是否存在以B、D、F为顶点的直角三角形,满足两条直角边之比为2∶1?如果存在,求出此时点P的坐标;如果不存在,请说明理由.图1【答案】(1)直线AB的函数解析式为y=-x+4.(2)①如图2,∠BDE=∠CDE=∠ADP;②如图3,∠ADP=∠DEP+∠DPE,如图4,∠BDE=∠DBP+∠A,因为∠DEP=∠DBP,所以∠DPE=∠A=45°.所以∠DFE=∠DPE=45°.因此△DEF是等腰直角三角形.于是得到2y x=.图2 图3 图4(3)①如图5,当BD∶BF=2∶1时,P(2,2).思路如下:由△DMB∽△BNF,知122BN DM==.设OD=2m,FN=m,由DE=EF,可得2m+2=4-m.解得23m=.因此4(0,)3D.再由直线CD与直线AB求得交点P(2,2).②如图6,当BD∶BF=1∶2时,P(8,-4).思路同上.图5 图6例题5. 在Rt △ABC 中,∠C =90°,AC =6,53sin =B ,⊙B 的半径长为1,⊙B 交边CB 于点P ,点O 是边AB 上的动点.(1)如图1,将⊙B 绕点P 旋转180°得到⊙M ,请判断⊙M 与直线AB 的位置关系;(2)如图2,在(1)的条件下,当△OMP 是等腰三角形时,求OA 的长; (3)如图3,点N 是边BC 上的动点,如果以NB 为半径的⊙N 和以OA 为半径的⊙O 外切,设NB =y ,OA =x ,求y 关于x 的函数关系式及定义域.图1 图2 图3【答案】(1) 在Rt △ABC 中,AC =6,53sin =B ,所以AB =10,BC =8.过点M 作MD ⊥AB ,垂足为D .在Rt △BMD 中,BM =2,3sin 5MD B BM==,所以65MD =.因此MD >MP ,⊙M 与直线AB 相离. 图4(2)①如图4,MO ≥MD >MP ,因此不存在MO =MP 的情况.②如图5,当PM =PO 时,又因为PB =PO ,因此△BOM 是直角三角形.在Rt △BOM 中,BM =2,4cos 5BO B BM==,所以85BO =.此时425OA =.③如图6,当OM =OP 时,设底边MP 对应的高为OE .在Rt △BOE 中,BE =32,4cos 5BE B BO==,所以158BO =.此时658OA =.图5 图6(3)如图7,过点N 作NF ⊥AB ,垂足为F .联结ON . 当两圆外切时,半径和等于圆心距,所以ON =x +y .在Rt △BNF 中,BN =y ,3sin 5B =,4cos 5B =,所以35NF y =,45BF y =.在Rt △ONF 中,4105OF AB AO BF x y =--=--,由勾股定理得ON 2=OF 2+NF 2. 于是得到22243()(10)()55x y x y y +=--+.整理,得2505040x y x -=+.定义域为0<x <5.图7 图8例题6. 如图1,甲、乙两人分别从A 、B 两点同时出发,点O 为坐标原点.甲沿AO 方向、乙沿BO 方向均以每小时4千米的速度行走,t 小时后,甲到达M 点,乙到达N 点.(1)请说明甲、乙两人到达点O 前,MN 与AB 不可能平行;(2)当t 为何值时,△OMN ∽△OBA ?(3)甲、乙两人之间的距离为MN 的长.设s =MN 2,求s 与t 之间的函数关系式,并求甲、乙两人之间距离的最小值. 图1【答案】 (1)当M 、N 都在O 右侧时,24122OM t t OA-==-,642163ON t t OB-==-,所以OM ON OAOB≠.因此MN 与AB 不平行.(2)①如图2,当M 、N 都在O 右侧时,∠OMN >∠B ,不可能△OMN ∽△OBA .②如图3,当M 在O 左侧、N 在O 右侧时,∠MON >∠BOA ,不可能△OMN ∽△OBA .③如图4,当M 、N 都在O 左侧时,如果△OMN ∽△OBA ,那么ON OA OMOB=.所以462426t t -=-.解得t =2.图2 图3 图4(3)①如图2,24OM t =-,12OH t =-,2)MH t =-.(64)(12)52NH ON OH t t t =-=---=-.②如图3,42OM t =-,21OH t =-,1)MH t =-.(64)(21)52NH ON OH t t t =+=-+-=-.③如图4,42OM t =-,21OH t =-,1)MH t =-.(21)(46)52NH OH ON t t t =-=---=-.综合①、②、③,s 222MN MH NH ==+22221)(52)16322816(1)12t t t t t ⎤=-+-=-+=-+⎦. 所以当t =1时,甲、乙两人的最小距离为12千米.例题7. 已知点 (1,3)在函数ky x=(0x >)的图像上,矩形ABCD 的边BC 在x 轴上,E 是对角线BD 的中点,函数ky x=(0x >)的图像经过A 、E 两点,若45ABD ∠=︒,求E 点的坐标.【解析】点(1,3)在函数k y x=的图像上,3k =.又E 也在函数k y x =的图像上,故设E 点的坐标为(m ,3m). 过E 点作EF x ⊥轴于F ,则3EF m=. 又E 是对角线BD 的中点,62AB CD EF m===. 故A 点的纵坐标为6m ,代入3y x =中,得A 点坐标为 (2m ,6m). 因此22m mBF OF OB m =-=-=.由45ABD ∠=︒,得45EBF ∠=︒,BF EF =. 即有32m m=.解得m =而0m >,故m =则E 点坐标为【答案】例题8. 如图,11POA ∆、212PA A ∆都是等腰直角三角形,点1P 、2P 在函数4y x=(0x >)的图像上,斜边1OA 、12A A 、都在x 轴上,求点2A 的坐标.【解析】分别过点1P 、2P 做x 轴的垂线,根据题意易得1PC OC =,21P D A D =,14PC OC ⋅=,24P D OD ⋅=,得2OA =,所以2A(0).【答案】2A(0).例题9. 如图所示,()()111222P x y P x y ,,,,……,()n n n P x y ,在函数()90y x x=>的图象上,11OP A ∆,212P A A ∆,323P A A ∆,…,1n n n P A A -∆,…都是等腰直角三角形,斜边1121n n OA A A A A -,,…,都在x 轴上,则12n y y y +++=…______________.【解析】由已知易得()133P ,,则13y =,点2P 横坐标为26y +, 那么可得()2269y y +=,解得23y =,同理点3P横坐标为3y,那么可得()339y y =,解得3y =依此类推,n P的纵坐标为n y =∴1233n y y y +++=+++……【答案】例题10. 如图,P 是函数12y x=(0x >)图象上一点,直线1y x =-+交x 轴于点A ,交y 轴于点B ,PM Ox ⊥轴于M ,交AB 于E ,PN Oy ⊥轴于N ,交AB 于F.求AF BE ⋅的值.【解析】设点P (x ,y ),过点E 、F 分别作x 轴的垂线,21AF BE xy ⋅==. 【答案】1例题11. 已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与BC ,重合),过F 点的反比例函数(0)ky k x=>的图象与AC 边交于点E .(1)求证:AOE △与BOF △的面积相等; (2)记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少?(3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.【答案】(1)证明:设11()E x y ,,22()F x y ,,AOE △与FOB △的面积分别为1S ,2S ,由题意得11k y x =,22k y x =. ∴1111122S x y k ==,2221122S x y k ==.∴12S S =,即AOE △与FOB △的面积相等.(2)由题意知:E F ,两点坐标分别为33k E ⎛⎫ ⎪⎝⎭,,44k F ⎛⎫ ⎪⎝⎭,, ∴11121222EOF AOE BOF ECF ECF ECF AOBC S S S S S k k S k S =---=---=--△△△△△△矩形∴2112S k k =-+. 当161212k =-=⎛⎫⨯- ⎪⎝⎭时,S 有最大值.131412S -==⎛⎫⨯- ⎪⎝⎭最大值.(3)解:设存在这样的点F ,将沿EF 对折后,C 点恰好落在OB 边上的M 点,过点E 作EN OB ⊥,垂足为N .由题意得:3EN AO ==,143EM EC k ==-,134MF CF k ==-,∵90EMN FMB FMB MFB ∠+∠=∠+∠= ∴EMN MFB ∠=∠.又∵90ENM MBF ∠=∠=, ∴ENM MBF △∽△. ∴EN EM MB MF= ∴11414312311331412k k MB k k ⎛⎫-- ⎪⎝⎭==⎛⎫-- ⎪⎝⎭ ∴94MB =.222MB BF MF +=,解得218k =.∴21432k BF ==∴存在符合条件的点F ,它的坐标为21432⎛⎫⎪⎝⎭,.例题12. 如图,点()1A m m +,,()31B m m +-,都在反比例函数ky x=的图象上. (1)求m k ,的值;(2)如果M 为x 轴上一点,N 为y 轴上一点, 以点A B M N ,,,为顶点的四边形是平行四边形,试求直线MN 的函数表达式.【解析】(1)由题意可知,()()()131m m m m +=+-.解,得3m =.∴()()3462A B ,,,;∴4312k =⨯=.(2)存在两种情况,如图:①当M 点在x 轴的正半轴上,N 点在y 轴的正半轴上时,设1M 点坐标为()10x ,,1N 点坐标为()10y ,. ∵ 四边形11AN M B 为平行四边形,∴线段11N M 可看作由线段AB 向左平移3个单位,再向下平移2个单位得到的(也可看作向下平移2个单位,再向左平移3个单位得到的).由(1)知A 坐标为(3,4),B 坐标为(6,2),∴1N 点坐标为042(,-),即102N (,); 1M 点坐标为(6-3,0),即1M (3,0).设直线11M N 的函数表达式为12y k x =+,把30x y ==,代入,解得123k =-. ∴ 直线11M N 的函数表达式为223y x =-+.②当M 点在x 轴的负半轴上,N 点在y 轴的负半轴上时,设2M 点坐标为20x (,),2N 点坐标为20y (,).∵11221122AB N M AB M N AB N M AB M N ∥,∥,=,=,∴1221122N M M N N M M N ∥,=. ∴线段22M N 与线段11N M 关于原点O 成中心对称. ∴2M 点坐标为(-3,0),2N 点坐标为(0,-2).设直线22M N 的函数表达式为22y k x =-,把30x y =-=,代入,解得223k =-,∴ 直线M 2N 2的函数表达式为223y x =--.所以,直线MN 的函数表达式为223y x =-+或223y x =--.【答案】(1)3m =,12k =;(2)223y x =-+或223y x =--。
中考动点专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式例1(2000年²上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长. 解:HM NG POAB图1xy二、应用比例式建立函数解析式例2(2006年²山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由. 解:例3(2005年²上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F. (1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.(3)当BF=1时,求线段AP 的长. 解:(AE D C B 图2A3(2)三、应用求图形面积的方法建立函数关系式例4(2004年²上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域. (2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
九年级上册动点题一、与二次函数有关的动点题。
题1:已知二次函数y = -x^2+2x + 3,设点P为该二次函数图象上的一个动点,当点P 到x轴的距离为4时,求点P的坐标。
解析:因为点P到x轴的距离为4,所以| y|=4。
1. 当y = 4时:方程-x^2+2x + 3=4,即x^2-2x + 1 = 0。
对于一元二次方程ax^2+bx + c = 0(这里a = 1,b=-2,c = 1),根据求根公式x=frac{-b±√(b^2)-4ac}{2a},Δ=b^2-4ac=(-2)^2-4×1×1 = 0。
解得x = 1,此时点P的坐标为(1,4)。
2. 当y=-4时:方程-x^2+2x + 3=-4,即x^2-2x 7 = 0。
这里a = 1,b=-2,c=-7,Δ=b^2-4ac=(-2)^2-4×1×(-7)=32。
根据求根公式x=(-b±√(Δ))/(2a)=(2±√(32))/(2)=1±2√(2)。
此时点P的坐标为(1 + 2√(2),-4)和(1-2√(2),-4)。
题2:二次函数y = x^2-2x 3的图象与x轴交于A、B两点(A在B左侧),与y轴交于点C,点M为抛物线上一动点,若△ MBC的面积等于△ ABC的面积,求点M的坐标。
解析:1. 先求A、B、C三点的坐标:对于y = x^2-2x 3,令y = 0,则x^2-2x 3 = 0,因式分解得(x 3)(x+1)=0,解得x=-1或x = 3,所以A(-1,0),B(3,0)。
令x = 0,得y=-3,所以C(0,-3)。
那么△ ABC的面积S_△ ABC=(1)/(2)× AB× OC,AB = 3 (-1)=4,OC = 3,所以S_△ ABC=(1)/(2)×4×3 = 6。
2. 设点M的坐标为(m,m^2-2m 3)。
九年级中考数学动点问题压轴题专题训练1.如图1, 在平面直角坐标系中, 四边形OABC各顶点的坐标分别为O(0, 0), A(3, 3 ), B(9, 5 ), C(14, 0). 动点P与Q同时从O点出发, 运动时间为t秒, 点P沿OC方向以1单位长度/秒的速度向点C运动, 点Q沿折线OA-AB-BC运动, 在OA, AB, BC上运动的速度分别为3, , (单位长度/秒). 当P, Q中的一点到达C点时, 两点同时停止运动.(1)求AB所在直线的函数表达式.(2)如图2, 当点Q在AB上运动时, 求△CPQ的面积S关于t的函数表达式及S的最大值.(3)在P, Q的运动过程中, 若线段PQ的垂直平分线经过四边形OABC的顶点, 求相应的t值.图1 图22.如图, 抛物线y=-x2+bx+c与x轴交于A, B两点(A在B的左侧), 与y轴交于点N, 过A点的直线l:y=kx+n与y轴交于点C, 与抛物线y=-x2+bx+c的另一个交点为D, 已知A(-1, 0), D(5, -6), P 点为抛物线y=-x2+bx+c上一动点(不与A, D重合).(1)求抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时, 过P点作PE∥x轴交直线l于点E, 作PF ∥y轴交直线l于点F, 求PE+PF的最大值;(3)设M为直线l上的点, 探究是否存在点M, 使得以点N, C, M, P为顶点的四边形为平行四边形.若存在, 求出点M的坐标;若不存在, 请说明理由.3.如图, 在平面直角坐标系中, 抛物线y=ax2+bx+c经过A(-2, -4 )、O(0, 0)、B(2, 0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点, 求AM+OM的最小值.4.设直线l1: y=k1x+b1与l2: y=k2x+b2, 若l1⊥l2, 垂足为H, 则称直线l1与l2是点H的直角线.(1)已知直线①;②;③;④和点C(0, 2), 则直线_______和_______是点C的直角线(填序号即可);(2)如图, 在平面直角坐标系中, 直角梯形OABC的顶点A(3, 0)、B(2, 7)、C(0, 7), P为线段OC上一点, 设过B、P两点的直线为l1, 过A、P两点的直线为l2, 若l1与l2是点P的直角线, 求直线l1与l2的解析式.5.如图①, 在平面直角坐标系xOy中, 已知抛物线y=ax2-2ax-8a与x轴相交于A, B两点(点A在点B的左侧), 与y轴交于点C(0, -4).(1)点A的坐标为, 点B的坐标为, 线段AC的长为, 抛物线的解析式为.(2)点P是线段BC下方抛物线上的一个动点.如果在x轴上存在点Q, 使得以点B, C, P, Q为顶点的四边形是平行四边形, 求点Q的坐标.①6.如图, 已知抛物线(b是实数且b>2)与x轴的正半轴分别交于点A.B(点A位于点B是左侧), 与y轴的正半轴交于点C.(1)点B的坐标为______, 点C的坐标为__________(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P, 使得四边形PCOB的面积等于2b, 且△PBC是以点P为直角顶点的等腰直角三角形?如果存在, 求出点P的坐标;如果不存在, 请说明理由;(3)请你进一步探索在第一象限内是否存在点Q, 使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在, 求出点Q的坐标;如果不存在, 请说明理由.7.如图, 已知A.B是线段MN上的两点, , , . 以A为中心顺时针旋转点M, 以B为中心逆时针旋转点N, 使M、N两点重合成一点C, 构成△ABC, 设.(1)求x的取值范围;(2)若△ABC为直角三角形, 求x的值;(3)探究: △ABC的最大面积?8.如图, 已知抛物线y=-x2+bx+c经过A(0, 1)、B(4, 3)两点.(1)求抛物线的解析式;(2)求tan∠ABO的值;(3)过点B作BC⊥x轴, 垂足为C, 在对称轴的左侧且平行于y轴的直线交线段AB于点N, 交抛物线于点M, 若四边形MNCB为平行四边形, 求点M的坐标.9.在平面直角坐标系中, 反比例函数与二次函数y=k(x2+x-1)的图象交于点A(1,k)和点B(-1,-k).(1)当k=-2时, 求反比例函数的解析式;(2)要使反比例函数与二次函数都是y随x增大而增大, 求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q, 当△ABQ是以AB为斜边的直角三角形时, 求k的值.10.如图, 已知抛物线y=ax2+bx+4(a≠0)的对称轴为直线x=3, 抛物线与x轴相交于A, B两点, 与y轴相交于点C, 已知B点的坐标为(8, 0).(1)求抛物线的解析式;(2)点M为线段BC上方抛物线上的一点, 点N为线段BC上的一点, 若MN∥y 轴, 求MN的最大值;(3)在抛物线的对称轴上是否存在点Q, 使△ACQ为等腰三角形?若存在, 求出符合条件的Q点坐标;若不存在, 请说明理由.11.如图, 直线y=2x+6与反比例函数y=(k>0)的图象交于点A(m, 8), 与x轴交于点B, 平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M, 交AB于点N, 连接BM.(1)求m的值和反比例函数的解析式;(2)观察图象, 直接写出当x>0时不等式2x+6->0的解集;(3)直线y=n沿y轴方向平移, 当n为何值时, △BMN的面积最大?最大值是多少?12.如图, 在平面直角坐标系xOy中, 顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B, AO=BO=2, ∠AOB=120°.(1)求这条抛物线的表达式;(2)连结OM, 求∠AOM的大小;(3)如果点C在x轴上, 且△ABC与△AOM相似, 求点C的坐标.13.在直角梯形OABC中, CB//OA, ∠COA=90°, CB=3, OA=6, BA=. 分别以OA.OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.(1)求点B的坐标;(2)已知D.E分别为线段OC.OB上的点, OD=5, OE=2EB, 直线DE交x轴于点F. 求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点, 在x轴上方的平面内是否存在另一点N, 使以O、D、M、N为顶点的四边形是菱形?若存在, 请求出点N的坐标;若不存在, 请说明理由.14.如图, 已知一次函数y=-x+7与正比例函数的图象交于点A, 且与x轴交于点B. (1)求点A和点B的坐标;(2)过点A作AC⊥y轴于点C, 过点B作直线l//y轴. 动点P从点O出发, 以每秒1个单位长的速度, 沿O—C—A的路线向点A运动;同时直线l从点B出发, 以相同速度向左平移, 在平移过程中, 直线l交x轴于点R, 交线段BA或线段AO于点Q. 当点P到达点A时, 点P和直线l都停止运动. 在运动过程中, 设动点P运动的时间为t秒.①当t为何值时, 以A.P、R为顶点的三角形的面积为8?②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在, 求t的值;若不存在, 请说明理由.15.如图, 二次函数y=a(x2-2mx-3m2)(其中a、m是常数, 且a>0, m>0)的图像与x轴分别交于A.B(点A位于点B的左侧), 与y轴交于点C(0,-3), 点D在二次函数的图像上, CD//AB, 联结AD. 过点A作射线AE交二次函数的图像于点E, AB平分∠DAE.(1)用含m的式子表示a;(2)求证: 为定值;(3)设该二次函数的图像的顶点为F.探索:在x轴的负半轴上是否存在点G, 联结GF, 以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在, 只要找出一个满足要求的点G即可, 并用含m的代数式表示该点的横坐标;如果不存在, 请说明理由.16.如图, 二次函数y=-x2+4x+5的图象的顶点为D, 对称轴是直线l, 一次函数y= x+1的图象与x轴交于点A, 且与直线DA关于l的对称直线交于点B.(1)点D的坐标是.(2)直线l与直线AB交于点C, N是线段DC上一点(不与点D, C重合), 点N的纵坐标为n.过点N作直线与线段DA, DB分别交于点P, Q, 使得△DPQ与△DAB 相似.①当n= 时, 求DP的长;②若对于每一个确定的n的值, 有且只有一个△DPQ与△DAB相似, 请直接写出n的取值范围.17.已知直线y=3x-3分别与x轴、y轴交于点A, B, 抛物线y=ax2+2x+c经过点A, B. (1)求该抛物线的表达式, 并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l, 点B关于直线l的对称点为C, 若点D在y 轴的正半轴上, 且四边形ABCD为梯形.①求点D的坐标;②将此抛物线向右平移, 平移后抛物线的顶点为P, 其对称轴与直线y=3x-3交于点E, 若, 求四边形BDEP的面积.18.如图, 在平面直角坐标系xOy中, 二次函数y=-x2+2x+8的图象与一次函数y=-x+b的图象交于A.B两点, 点A在x轴上, 点B的纵坐标为-7.点P是二次函数图象上A.B两点之间的一个动点(不与点A.B重合), 设点P的横坐标为m, 过点P作x轴的垂线交AB于点C, 作PD ⊥AB于点D.(1)求b及sin∠ACP的值;(2)用含m的代数式表示线段PD的长;(3)连接PB, 线段PC把△PDB分成两个三角形, 是否存在适合的m值, 使这两个三角形的面积之比为1∶2?如果存在, 直接写出m的值;如果不存在, 请说明理由.19.如图, 抛物线与x轴交于A.B两点(点A在点B的左侧), 与y轴交于点C.(1)求点A.B的坐标;(2)设D为已知抛物线的对称轴上的任意一点, 当△ACD的面积等于△ACB 的面积时, 求点D的坐标;(3)若直线l过点E(4, 0), M为直线l上的动点, 当以A、B、M为顶点所作的直角三角形有且只有三个时, 求直线l的解析式.20.已知平面直角坐标系中两定点A(-1, 0)、B(4, 0), 抛物线y=ax2+bx-2(a≠0)过点A.B, 顶点为C, 点P(m, n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时, 求m的取值范围;(3)若m>, 当∠APB为直角时, 将该抛物线向左或向右平移t(0<t<)个单位, 点C、P平移后对应的点分别记为C′、P′, 是否存在t, 使得顺次首尾连接A、B、P′、C′所构成的多边形的周长最短?若存在, 求t的值并说明抛物线平移的方向;若不存在, 请说明理由.2021中考数学压轴专题训练之动点问题-答案一、解答题(本大题共20道小题)1.【答案】【思维教练】(1)设一次函数解析式, 将已知点A、B的坐标值代入求解即可;(2)S △CPQ=·CP·Qy, CP=14-t, 点Q在AB上, Qy即为当x=t时的y值, 代入化简得出S与t的函数关系式, 化为顶点式得出最值;(3)垂直平分线过顶点需以时间为临界点分情况讨论, 当Q在OA上时, 过点C;当Q在AB上时, 过点A;当Q在BC上时, 过点C和点B, 再列方程并求解.解图1解: (1)把A(3, 3 ), B(9, 5 )代入y=kx+b,得, 解得,∴y=33x+23;(3分)(2)在△PQC中, PC=14-t,∵OA==6且Q在OA上速度为3单位长度/s,AB==4 且Q点在AB上的速度为单位长度/s,∴Q在OA上时的横坐标为t, Q在AB上时的横坐标为t,PC边上的高线长为33t+2 3.(6分)所以S=(14-t)( t+2 )=-t2+t+14 (2≤t≤6).当t=5时, S有最大值为.(7分)解图2(3)①当0<t ≤2时, 线段PQ 的中垂线经过点C(如解图1). 可得方程(332t )2+(14-32t )2=(14-t )2.解得t1= , t2=0(舍去), 此时t = .(8分)解图3②当2<t ≤6时, 线段PQ 的中垂线经过点A(如解图2).可得方程(33)2+(t -3)2=[3(t -2)]2.解得t1= , ∵t2= (舍去), 此时t = .③当6<t ≤10时,(1)线段PQ 的中垂线经过点C(如解图3).可得方程14-t =25- t, 解得t = .(10分)解图4(2)线段PQ 的中垂线经过点B(如解图4).可得方程(53)2+(t -9)2=[52(t -6)]2.解得t1= , t2= (舍去).此时t=38+2027.(11分)综上所述, t的值为, , , .(12分)【难点突破】解决本题的关键点在于对PQ的垂直平分线过四边形顶点的情况进行分类讨论, 在不同阶段列方程求解.2.【答案】[分析] (1)将点A, D的坐标分别代入直线表达式、抛物线的表达式, 即可求解;(2)设出P点坐标, 用参数表示PE, PF的长, 利用二次函数求最值的方法.求解;(3)分NC是平行四边形的一条边或NC是平行四边形的对角线两种情况, 分别求解即可.解:(1)将点A, D的坐标代入y=kx+n得:解得:故直线l的表达式为y=-x-1.将点A, D的坐标代入抛物线表达式,得解得故抛物线的表达式为:y=-x2+3x+4.(2)∵直线l的表达式为y=-x-1,∴C(0, -1), 则直线l与x轴的夹角为45°, 即∠OAC=45°,∵PE∥x轴, ∴∠PEF=∠OAC=45°.又∵PF∥y轴, ∴∠EPF=90°, ∴∠EFP=45°.则PE=PF.设点P坐标为(x, -x2+3x+4),则点F(x, -x-1),∴PE+PF=2PF=2(-x2+3x+4+x+1)=-2(x-2)2+18,∵-2<0, ∴当x=2时, PE+PF有最大值, 其最大值为18.(3)由题意知N(0, 4), C(0, -1), ∴NC=5,①当NC是平行四边形的一条边时, 有NC∥PM, NC=PM.设点P坐标为(x, -x2+3x+4), 则点M的坐标为(x, -x-1),∴|yM-yP|=5, 即|-x2+3x+4+x+1|=5,解得x=2±或x=0或x=4(舍去x=0),则点M坐标为(2+ , -3- )或(2- , -3+ )或(4, -5);②当NC是平行四边形的对角线时, 线段NC与PM互相平分.由题意, NC的中点坐标为0, ,设点P坐标为(m, -m2+3m+4),则点M(n', -n'-1),∴0= = ,解得:n'=0或-4(舍去n'=0), 故点M(-4, 3).综上所述, 存在点M, 使得以N, C, M, P为顶点的四边形为平行四边形, 点M的坐标分别为:(2+ , -3- ), (2- , -3+ ), (4, -5), (-4, 3).3.【答案】(1)。