九年级数学圆的切线的性质及判定练习题
- 格式:doc
- 大小:174.65 KB
- 文档页数:3
切线的性质与判定知识点:三角形内切圆画法:三角形的外接圆与三角形的内切圆三角形的外接圆:经过三角形三个顶点的圆叫三角形的外接圆三角形外接圆的圆心叫三角形的外心三角形的外心到三角形三个顶点的距离相等三角形的外心是三角形三边中垂线的交点三角形的内切圆:与三角形三边都相切的圆叫三角形的内切圆三角形内切圆的圆心叫三角形的内心三角形的内心到三角形三边的距离相等三角形的内心是三角形三角平分线的交点切线长定理:从圆外一点可以引圆的____条切线,它们的________相等.这一点和______平分_______.直角三角形内切圆半径与三边关系公式:任意三角形面积、周长与内切圆半径关系公式:例1.如图,已知C为⊙O上一点,DA交⊙O于B,∠DCB=∠CAB.求证:DC为⊙O的切线.CA B DO例2.如图,已知在Rt△ABC中,∠C=900,点C在AC上,CD为⊙O直径,⊙O切AB于E,若BC=5,AC=12,求⊙O的半径.BEA COD例3.如图,已知⊙O内切于△ABC,∠BOC=1050,∠ACB=900,AB=20cm.求BC、AC的长.例4.如图,∠PAQ 是直角,半径为5的⊙O 与AP 相切于点T,与AQ 相交于两点B 、C. (1)BT 是否平分∠OBA?证明你的结论; (2)若已知AT=4,试求AB 的长.例5.如图,P 为⊙O 外一点,PO 交⊙O 于C,过⊙O 上一点A 作弦AB ⊥PO 于E,若∠EAC=∠CAP , 求证:PA 是⊙O 的切线.课堂同步:1.在Rt △ABC 中,∠A=900,点O 在BC 上,以O 为圆心的⊙O 分别与AB 、AC 相切于E 、F ,若AB=a ,AC=b ,则⊙O 的半径为( )A.abB.ab b a + C.b a ab + D.2ba + 2.正方形ABCD 中,AE 切以BC 为直径的半圆于E ,交CD 于F ,则CF:FD=( ) A.1:2 B.1:3 C.1:4 D.2:53.如图,过⊙O 外一点P 作⊙O 的两条切线PA 、PB,切点分别为A 、B,连结AB,在AB 、PB 、PA 上分别取一点D 、E 、F,使AD=BE,BD=AF,连结DE 、DF 、EF,则∠EDF=( ) A.900-∠P B.900-21∠P C.1800-∠P D.450-21∠P 4.如图,直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有______个.第4题图 第5题图 第6题图 第7题图 5.如图,已知PA 、PB 是⊙O 的切线,A 、B 是切点,∠APB=780,点C 是⊙O 上异于A 、B 的任一点, 则∠ACB=6.如图,以O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切于点C,若大圆半径为10cm,小圆半径为6cm,则弦AB 的长为_______cm .7.如图,⊙O 内切于Rt △ABC,∠C=900,D 、E 、F 是切点,若∠BOC=1050,AB=4cm,则∠OBC=________, ∠BAC=_____,BC=______,AC=______,内切圆半径r=_____。
A Ol圆的切线的性质及判定综合运用知识点:切线的性质定理:圆的切线垂直于经过切点的 . 几何符号语言表达:∵ l 是⊙O 的 ,OA 是 , ∴ l ⊥OA切线的判定:经过半径的 并且 的直线是圆的切线。
几何符号语言表达: ∵ OA 是 ,OA ⊥l 于A , ∴ l 是⊙O 的 。
归纳:证明切线添加辅助线的方法:1)直线与圆的公共点已知时,连半径,证 (应用判定方法3)2)直线与圆公共点不确定时,过圆心作直线的垂线段,再证明 (方法2)一、典型例题例1.如图,AB 是⊙O 的直径,ED 切⊙O 于点C ,AD 交⊙O 于点F ,∠AC 平分∠BAD ,连接BF . (1)求证:AD ⊥ED ;(2)若CD=4,AF=2,求⊙O 的半径.利用判定定理时,要注意直线须具备以下两个条件,缺一不可:(1)直线经过半径的 ;(2)直线与这半径 。
▲判断一条直线是圆的切线的方法:1.利用切线的定义:与圆有 公共点的直线是圆的切线。
2.利用d 与r 的关系作判断:圆心到直线的距离等于 (即d r)的直线是圆的切线。
3.利用切线的判定定理:经过半径的 并且 这条半径的直线是圆的切线。
例2.如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,分别与AC、BC交于点M、N.(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.例3.如图,在△ABC中,AB=AC=10,BC=12,试求△ABC的内切圆的半径.例4.如图,已知抛物线y=mx2+2mx+c(m≠0),与y轴交于点C(0,﹣4),与x轴交于点A(﹣4,0)和点B.(1)求该抛物线的解析式;(2)若P是线段OC上的动点,过点P作PE∥OA,交AC于点E,连接AP,当△AEP的面积最大时,求此时点P的坐标;(3)点D为该抛物线的顶点,⊙Q为△ABD的外接圆,求证⊙Q与直线y=2相切.二、综合训练1.如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE=2,DE=8,则AB 的长为( )A .2B .4C .6D .82.已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB=8cm ,则AC 的长为( )A .25cmB .45cmC .25cm 或45cm D. 23cm 或43cm3.已知⊙O 的面积为2π,则其内接正三角形的面积为( )A .33B .36C .323D .6234.如图,在平面直角坐标系中,⊙O 的半径为1,则直线2-=x y 与⊙O 的位置关系是( )A .相离B .相切C .相交D .以上三种情况都有可能5.若⊙O 的半径等于5cm ,P 是直线l 上的一点,OP=5cm ,则直线l 与圆的位置关系是( )A .相离B .相切C .相交D .相切或相交6.已知⊙O 的面积为9πcm 2,若点O 到直线l 的距离为πcm ,则直线l 与⊙O 的位置关系是( ) A .相交 B .相切 C .相离 D .无法确定7.如图,A 、B 、C 、D 四个点均在⊙O 上,∠AOD=70°,AO ∥DC ,则∠B 的度数为( )A .40°B .45°C .50°D .55°8.如图所示,P是⊙O外一点,PA,PB分别和⊙O切于A,B两点,C是上任意一点,过C作⊙O的切线分别交PA,PB于D,E.若△PDE的周长为12,则PA的长为()A.12 B.6 C.8 D.49.⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为.,10.如下左图,AB是⊙O的直径,OA=1,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若BD=21则∠ACD= °.11.如上右图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB于点G,则FG的长为.12.如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;13.如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF是等腰三角形;14. 如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠P AE,过,垂足为D.C作CD PA(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.三、课外作业: 1.如图,BD 为圆O 的直径,直线ED 为圆O 的切线,A 、C 两点在圆上,AC 平分∠BAD 且交BD 于F 点.若∠ADE=190,则∠AFB 的度数为( )A.97°B.104°C.116°D.142°第1题图 第2题图2.如图,在平面直角坐标系中,正方形ABCD 的顶点A 、C 分别在y 轴、x 轴上,以AB 为弦的⊙M 与x 轴相切.若点A 的坐标为(0,8),则圆心M 的坐标为( )A.(-4,5)B.(-5,4)C.(5,-4)D.(4,-5)3.如图,正三角形的内切圆半径为1,那么这个正三角形的边长为( )A.2B.3C.3D.32第3题图4.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连接BC.若∠A=400,则∠C= .5.如图,∠ABC=900,O 为射线BC 上一点,以点O 为圆心,OB 21长为半径作⊙O ,当射线BA 绕点B 按顺时针方向旋转 时与⊙O 相切.第4题图 第5题图6.已知AB 是⊙O 的直径,AP 是⊙O 的切线,A 是切点,BP 与⊙O 交于点C.(1)如图①,若2AB =,30P ∠=︒,求AP 的长(结果保留根号);(2)如图②,若D 为AP 的中点,求证直线CD 是⊙O 的切线.7.如图,已知直线ABC 与⊙O 相交于B,C 两点,E 是的中点,D 是⊙O 上一点,若∠EDA=∠AMD . 求证:AD 是⊙O 的切线.。
北师大版九年级数学下册第三章圆3.6.3:切线的性质与判定压轴题同步练习1、如图,已知O 是正方形ABCD 对角线AC 上一点,以O 为圆心、OA 的长为半径的⊙O 与BC 相切于M,与AB、AD 分别相交于E、F.(1)求证:CD 与⊙O 相切;(2)若正方形ABCD 的边长为1,求⊙O 的半径;(3)对于以点M、E、A、F 以及CD 与⊙O 的切点为顶点的五边形的五条边,从相等关系考虑,你可以得出什么结论?请给出证明.2、如图,点A 在⊙O 外,射线AO 与⊙O 交于F、G 两点,点H 在⊙O 上,弧FH=弧GH,点D 是弧FH 上一个动点(不运动至F),BD 是⊙O 的直径,连接AB,交⊙O 于点C,连接CD,交AO 于点E,且OA=,OF=1,设AC=x,AB=y.(1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)若DE=2CE,求证:AD 是⊙O 的切线;(3)当DE,DC 的长是方程x2﹣ax+2=0 的两根时,求sin∠DAB 的值.3、如图,以Rt△BCF 的斜边BC 为直径作⊙O,A 为弧BF上一点,且=,AD⊥BC,垂足为D,过A 作AE∥BF 交CB 的延长线于E.求证:(1)AE 是⊙O 切线;(2)(3)若⊙O 直径为d,则.4、已知:如图,AB 是⊙O 的直径,BC 是⊙O 的弦,⊙O 的割线PDE 垂直于AB 于点F,交BC 于点G,∠A=∠BCP.(1)求证:PC 是⊙O 的切线;(2)若点C 在劣弧上运动,其他条件不变,问应再具备什么条件可使结论BG2=BF•BO 成立?(要求画出示意图并说明理由)(3)在满足问题(2)的条件下,你还能推出哪些形如BG2=BF•BO 的正确结论?(要求:不再标注其他字母,找结论的过程中所作的辅助线不能出现在结论中,不写推理过程,写出不包括BG2=BF•BO 的7 个结论)5、如图,AB 是⊙O 的直径,⊙O 过CB 的中点D,直线FE 过点D,且FE⊥AC 于E,FB 切⊙O 于B,P 是线段DF 上一动点,过P 作PN⊥AB 于N,PN 与⊙O 交于点Q,与DB 交于点M.(1)求证:FE 是⊙O 的切线;(2)若∠C=30°,AB=2,设DP=x,MN=y,求y 与x 之间的函数关系式,并指出自变量x 的取值范围;(3)在(2)中,当x 为何值时,PQ:PN=1:5.6、如图,B 为线段AD 上一点,△ABC 和△BDE 都是等边三角形,连接CE 并延长交AD 的延长线于点F,△ABC 的外接圆⊙O 交CF 于点M.(1)求证:BE 是⊙O 的切线;(2)求证:AC2=CM•CF;(3)若CM=,MF=,求BD;(4)若过点D 作DG∥BE 交EF 于点G,过G 作GH∥DE 交DF 于点H,则易知△DGH 是等边三角形.设等边△ABC、△BDE、△DGH 的面积分别为S1、S2、S3,试探究S1、S2、S3 之间的等量关系,请直接写出其结论.7、如图,AB 为圆O 的直径,C 为圆O 上一点,AD 和过C 点的直线互相垂直,垂足为D,且AC 平分∠DAB,延长AB 交DC 于点E.(1)判定直线DE 与圆O 的位置关系,并说明你的理由;(2)求证:AC2=AD•AB;(3)以下两个问题任选一题作答.(若两个问题都答,则以第一问的解答评分)①若CF⊥F,试讨论线段CF、CE 和DE 三者的数量关系;②若EB=5,求图中阴影部分的面积.8、如图,AB 是⊙O 的直径,BC 是⊙O 的弦,⊙O 的割线PDE 垂直AB 于点F,交BC 于点G,连接PC,∠BAC=∠BCP,求解下列问题:(1)求证:CP 是⊙O 的切线.(2)当∠ABC=30°,BG=2,CG=4时,求以PD、PE 的长为两根的一元二次方程.(3)若(1)的条件不变,当点C 在劣弧AD 上运动时,应再具备什么条件可使结论BG2=BF•BO 成立?试写出你的猜想,并说明理由.9、如图,在平面直角坐标系中,矩形ABCO 的面积为15,边OA 比OC 大2.E 为BC 的中点,以OE 为直径的⊙O′交x 轴于D 点,过点D 作DF⊥AE 于点F.(1)求OA、OC 的长;(2)求证:DF 为⊙O′的切线;(3)小明在解答本题时,发现△AOE 是等腰三角形.由此,他断定:“直线BC 上一定存在除点E 以外的点P,使△AOP 也是等腰三角形,且点P 一定在⊙O′外”.你同意他的看法吗?请充分说明理由.10、已知:AB 是⊙O 的直径,点C 是⊙O 外的一点,点E 是AC 上一点,AB=2.(1)如图1,点D 是BC 的中点,当DE 也AC 满足什么关系时,DE 是⊙O 的切线?请说明理由.(2)如图2,AC 是⊙O 的切线,点E 是AC 的中点DE∥AB.①求的值;②求阴影部分的面积.11、如图所示,在直角梯形ABCD 中,∠D=∠C=90°,AB=4,BC=6,AD=8,点P、Q 同时从A 点出发,分别做匀速运动,其中点P 沿AB、BC 向终点C 运动,速度为每秒2 个单位,点Q 沿AD 向终点D 运动,速度为每秒1 个单位,当这两点中有一个点到达自己的终点时,另一个点也停止运动,设这两个点从出发运动了t 秒.(1)动点P 与Q 哪一点先到达自己的终点?此时t 为何值;(2)当O<t<2 时,写出△PQA 的面积S 与时间t 的函数关系式;(3)以PQ 为直径的圆能否与CD 相切?若有可能,求出t 的值或t 的取值范围;若不可能,请说明理由.12、如图,形如三角板的△ABC 中,∠ACB=90°,∠ABC=45°,BC=12cm,形如矩形量角器的半圆O 的直径DE=12cm,矩形DEFG 的宽EF=6cm,矩形量角器以2cm/s 的速度从左向右运动,在运动过程中,点D、E 始终在BC 所在的直线上,设运动时间为x(s),矩形量角器和△ABC 的重叠部分的面积为S(cm2).当x=0(s)时,点E 与点C 重合.(图(3)、图(4)、图(5)供操作用).(1)当x=3 时,如图(2),S= cm2,当x=6 时,S= cm2,当x=9 时,S= cm2;(2)当3<x<6 时,求S 关于x 的函数关系式;(3)当6<x<9 时,求S 关于x 的函数关系式;(4)当x 为何值时,△ABC 的斜边所在的直线与半圆O 所在的圆相切?13、如图,A 是以BC 为直径的⊙O 上一点,于点D,AD⊥BC 过点B 作⊙O 的切线,与CA 的延长线相交于点E,G 是AD 的中点,连接CG 并延长与BE 相交于点F,延长AF 与CB 的延长线相交于点P.(1)求证:BF=EF;(2)求证:PA 是⊙O 的切线;(3)若FG=BF,且⊙O 的半径长为,求BD 和FG 的长度.14、如图,已知BC 是⊙O 的弦,A 是⊙O 外一点,△ABC 为正三角形,D 为BC 的中点,M 为⊙O 上一点,并且∠BMC=60°.(1)求证:AB 是⊙O 的切线;(2)若E,F 分别是边AB,AC 上的两个动点,且∠EDF=120°,⊙O 的半径为2,试问BE+CF 的值是否为定值?若是,求出这个定值;若不是,请说明理由.15、如图,以BC 为直径的⊙O 交△CFB 的边CF 于点A,BM 平分∠ABC 交AC 于点M,AD⊥BC 于点D,AD 交BM 于点N,ME⊥BC 于点E,AB2=AF•AC,cos∠ABD=35,AD=12.(1)求证:△ANM≌△ENM;(2)求证:FB 是⊙O 的切线;(3)证明四边形AMEN 是菱形,并求该菱形的面积S.16、如图1 所示,在△ABC 中,AB=AC=2,∠A=90°,O 为BC 的中点,动点E 在BA 边上自由移动,动点F 在AC 边上自由移动.(1)点E,F 的移动过程中,△OEF 是否能成为∠EOF=45°的等腰三角形?若能,请指出△OEF 为等腰三角形时动点E,F 的位置;若不能,请说明理由;(2)当∠EOF=45°时,设BE=x,CF=y,求y 与x 之间的函数解析式,写出x 的取值范围;(3)在满足(2)中的条件时,若以O 为圆心的圆与AB 相切(如图2),试探究直线EF 与⊙O 的位置关系,并证明你的结论.17、如图,⊙O 的半径为1,正方形ABCD 顶点B 坐标为(5,0),顶点D 在⊙O 上运动.(1)当点D 运动到与点A、O 在同一条直线上时,试证明直线CD 与⊙O 相切;(2)当直线CD 与⊙O 相切时,求CD 所在直线对应的函数关系式;(3)设点D 的横坐标为x,正方形ABCD 的面积为S,求S 与x 之间的函数关系式,并求出S 的最大值与最小值.18、如图,在平面直角坐标系中,直线y=与x 轴、y 轴分别交于A、B 两点,将△ABO 绕原点O 顺时针旋转得到△A′B′O,并使OA′⊥AB,垂足为D,直线AB 与线段A´B´相交于点G.动点E 从原点O 出发,以1 个单位/秒的速度沿x 轴正方向运动,设动点E 运动的时间为t 秒.(1)求点D 的坐标;(2)连接DE,当DE 与线段OB′相交,交点为F,且四边形DFB′G 是平行四边形时,(如图2)求此时线段DE 所在的直线的解析式;(3)若以动点为E 圆心,以E,连接A′E,t 为何值时,Tan∠EA′B′=?并判断此时直线A′O 与⊙E 的位置关系,请说明理由.。
初三数学圆的切线练习题圆的切线是数学中的一个基本概念,对于初三学生来说,掌握圆的切线的性质和求解方法十分重要。
下面将给出几道关于圆的切线的练习题,帮助初三学生更好地理解和掌握圆的切线的知识。
题1:已知圆C的半径为r,点A是圆上的一个定点,过点A作圆C的一条切线,切线与圆C的切点为B。
设点M是切点B关于点A的对称点,连接AM。
证明:AM的中垂线与BM重合。
解析:首先,我们可以明确题目中给出的条件:一条过点A的切线与圆C的切点为B。
根据切线的性质,切线与半径所构成的角是直角。
因此,在三角形ABO(O为圆C的圆心)中,BO与AO垂直。
由于点M是切点B关于点A的对称点,所以AM与AB互相垂直。
因此,AM的中垂线与BM重合,即AM的中垂线也与AO重合。
题2:已知圆C的半径为r,点P是圆外一点,用直尺和铅笔求圆C的切线。
解析:根据圆的性质,过一点外一点的切线只有两条。
为了求得切线,我们可以使用以下的方法:步骤1:用直尺连接点P和圆心O,并延长直线PO交圆C于点A。
步骤2:以点O为圆心,OP为半径画一个圆,与圆C交于点B和点C。
步骤3:连接点P与点B,并延长线段PB。
步骤4:线段PB即为所求的切线。
题3:已知圆C内接于正方形ABCD,正方形的边长为a,求圆C 的半径和正方形边长的关系。
解析:首先,由于圆C内接于正方形ABCD,所以图形的中心点O 即为圆心。
连接圆心O与圆上的任意一点,得到半径r。
连接正方形的对角线,则线段一半的长度为圆C的半径r。
由于线段的长度等于正方形的边长的一半,所以有r = a/2。
题4:已知直径为20cm的圆C,过圆心O作一条与圆C相交于点A和点B的直径为d的弦。
求弦AB的长度。
解析:根据题意可知,弦AB的长度等于圆C的直径d的长度。
由于直径为20cm,所以弦AB的长度也为20cm。
题5:已知点A在圆C上,圆C的半径为r。
点A与圆心O之间的距离为d。
若点A到切点B的距离为m,求切线的长度。
初三圆的切线练习题及答案圆的切线是数学中的重要概念,初三学生需要通过练习来巩固和掌握相关的知识。
下面是一些圆的切线练习题及答案,供初三学生参考。
题目一:已知圆O的半径为6cm,A为圆上一点,B为圆上与A相对应的点,且AB为圆的直径。
点C为圆上任意一点,点D为OC的垂足。
求证:OC是∠ACD的平分线。
(解析)解:首先,连接OD、AD。
由于AB是圆的直径,所以∠BAD为直角。
因为AO、OD都是半径,所以AO=OD。
又因为∠OAD=∠ODA,所以△AOD是等腰三角形。
根据等腰三角形的性质,可知∠DAO=∠DOA。
又因为∠DAB=90°,所以∠ODA+∠DAB=90°。
所以∠ODA+∠DAB=∠DAO+∠DOA。
整理得到∠ODA=∠DAO。
因此,OC是∠ACD的平分线。
已知圆O的半径为8cm,切线AB与半径OC相交于点D,且CD = 14cm。
求证:AD = 2BD。
(解析)解:首先,连接OD、AO、BO。
根据切线与半径的性质,可知∠ODB=90°,∠OAB=90°。
所以△ODB与△OAB共边且有一个角是90°,因此△ODB≌△OAB。
根据等腰三角形的性质,可知OD=OA。
设AD=x,BD=y。
根据勾股定理可得:x²+y²=OD²①由于△ODB≌△OAB,所以AD=2y。
根据勾股定理可得:(2y)²+y²=OA²②由于OD=OA,所以OD²=OA²。
代入上式,得到:化简得到:x²=2y²由于AD=2y,所以x=2y。
所以AD=2BD。
答案一:OC是∠ACD的平分线。
答案二:AD = 2BD。
通过以上的练习题及答案,初三学生可以加强对圆的切线性质的理解与掌握。
希望同学们通过不断地练习与思考,能够熟练运用相关知识解决实际问题。
祝大家学习进步!。
第2课时切线的判定与性质1.过圆上一点可以作圆的______条切线;过圆外一点可以作圆的_____条切线;•过圆内一点的圆的切线______.2.以三角形一边为直径的圆恰好与另一边相切,则此三角形是_______.3.下列直线是圆的切线的是()A.与圆有公共点的直线 B.到圆心的距离等于半径的直线C.垂直于圆的半径的直线 D.过圆直径外端点的直线4.OA平分∠BOC,P是OA上任意一点(O除外),若以P为圆心的⊙P与OC相切,那么⊙P与OB的位置位置是() A.相交 B.相切 C.相离 D.相交或相切5.△ABC中,∠C=90°,AB=13,AC=12,以B为圆心,5为半径的圆与直线AC的位置关系是()A.相切 B.相交 C.相离 D.不能确定6.如图,AB是半径⊙O的直径,弦AC与AB成30°角,且AC=CD.(1)求证:CD是⊙O的切线;(2)若OA=2,求AC的长.7.如图,AB是半圆O的直径,AD为弦,∠DBC=∠A.(1)求证:BC是半圆O的切线;(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长.8.如图,AB为⊙O的直径,弦CD⊥AB于点M,过点B作BE∥CD,交AC•的延长线于点E,连结BC.(1)求证:BE为⊙O的切线;(2)如果CD=6,tan∠BCD=12,求⊙O的直径.9.在直角坐标系中,⊙M的圆心坐标为M(a,0),半径为2,如果⊙M与y轴相离,那么a的取值范围是______.10.菱形的对角线相交于O,以O为圆心,以点O到菱形一边的距离为半径的⊙O•与菱形其它三边的位置关系是() A.相交 B.相离 C.相切 D.无法确定11.平面直角坐标系中,点A(3,4),以点A为圆心,5为半径的圆与直线y=-x的位置关系是()A.相离 B.相切 C.相交 D.以上都有可能12.如图,已知:△ABC内接于⊙O,点D在OC的延长线上,sin=12,∠D=30°.(1)求证:AD是⊙O的切线;(2)若AC=6,求AD的长.13.已知:如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于B•点,OC=BC,AC=12 OB.(1)求证:AB是⊙O的切线;(2)若∠ACD=45°,OC=2,求弦CD的长.14.如图,P为⊙O外一点,PO交⊙O于C,过⊙O上一点A作弦AB⊥PO于E,若∠EAC=∠CAP,求证:PA是⊙O的切线.15.如图,A是以BC为直径的⊙O上一点,AD⊥BC于点D,过点B作⊙O的切线,与CA的延长线相交于点E,G是AD的中点,连结OG并延长与BE相交于点F,延长AF•与CB的延长线相交于点P.(1)求证:BF=EF;(2)求证:PA是⊙O的切线;(3)若FG=BF,且⊙O的半径长为32,求BD和FG的长度.答案:1.1,2,不存在 2.直角三角形 3.B 4.B 5.A 6.(1)略(2)37.(1)略(2)928.(1)略(2)1529.a>2或a<-210.C 11.C 12.(1)略(2)3.(1)略(262 14.提示:连结OA,证OA⊥AP15.(1)略(2)略(3),FG=3专项训练二概率初步一、选择题1.(徐州中考)下列事件中的不可能事件是( )A.通常加热到100℃时,水沸腾 B.抛掷2枚正方体骰子,都是6点朝上C.经过有交通信号灯的路口,遇到红灯 D.任意画一个三角形,其内角和是360°2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )A.25% B.50% C.75% D.85%3.(2016·贵阳中考)2016年5月,为保证“中国大数据产业峰会及中国电子商务创新发展峰会”在贵阳顺利召开,组委会决定从“神州专车”中抽调200辆车作为服务用车,其中帕萨特60辆、狮跑40辆、君越80辆、迈腾20辆,现随机从这200辆车中抽取1辆作为开幕式用车,则抽中帕萨特的概率是( )A.110B.15C.310D.254.(金华中考)小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14B.13C.12D.345.在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A.12B.13C.14D.166.现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( )A.13B.16C.19D.1127.分别转动图中两个转盘一次,当转盘停止转动时,两个指针分别落在某个数所表示的区域,则两个数的和是2的倍数或3的倍数的概率等于( )A.316B.38C.58D.1316第7题图第8题图8.(2016·呼和浩特中考)如图,△ABC是一块绿化带,将阴影部分修建为花圃,已知AB=15,AC=9,BC=12,阴影部分是△ABC的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.16B.π6C.π8D.π5二、填空题9.已知四个点的坐标分别是(-1,1),(2,2),⎝ ⎛⎭⎪⎫23,32,⎝ ⎛⎭⎪⎫-5,-15,从中随机选取一个点,在反比例函数y =1x 图象上的概率是________.10.(黄石中考)如图所示,一只蚂蚁从A 点出发到D ,E ,F 处寻觅食物.假定蚂蚁在每个岔路口都可能随机选择一条向左下或右下的路径(比如A 岔路口可以向左下到达B 处,也可以向右下到达C 处,其中A ,B ,C 都是岔路口).那么,蚂蚁从A 出发到达E 处的概率是________.11.(贵阳中考)现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.12.(荆门中考)荆楚学校为了了解九年级学生“一分钟内跳绳次数”的情况,随机选取了3名女生和2名男生,则从这5名学生中,选取2名同时跳绳,恰好选中一男一女的概率是________.13.(重庆中考)点P 的坐标是(a ,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是________.14.★从-1,1,2这三个数字中,随机抽取一个数记为a ,那么,使关于x 的一次函数y =2x +a 的图象与x 轴、y 轴围成的三角形的面积为14,且使关于x 的不等式组⎩⎨⎧x +2≤a ,1-x ≤2a有解的概率为________.三、解答题15.(南昌中考)在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.(1)先从袋子中取出m (m >1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A ,请完成下列表格:(2)先从袋子中取出m 个红球,再放入m 个一样的黑球并摇匀,随机摸出1个黑球的概率等于45,求m 的值.16.(菏泽中考)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是________; (2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是________; (3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.17.(丹东中考)甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;(2)若两人抽取的数字之和为2的倍数,则甲获胜;若抽取的数字之和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.18.一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.参考答案与解析1.D 2.B 3.C 4.A 5.A 6.C 7.C8.B 解析:∵AB =15,BC =12,AC =9,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径为12+9-152=3,∴S △ABC =12AC ·BC =12×12×9=54,S 圆=9π,∴小鸟落在花圃上的概率为9π54=π6. 9.12 10.12 11.15 12.35 13.15 14.1315.解:(1)4 2或3(2)根据题意得6+m 10=45,解得m =2,所以m 的值为2. 16.解:(1)14 解析:第一道肯定能对,第二道对的概率为14,所以锐锐通关的概率为14; (2)16 解析:锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为13,第二道题对的概率为12,所以锐锐能通关的概率为12×13=16; (3)锐锐将每道题各用一次“求助”,分别用A ,B 表示剩下的第一道单选题的2个选项,a ,b ,c 表示剩下的第二道单选题的3个选项,树状图如图所示.共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为16.17.解:(1)所有可能出现的结果如下表,从表格可以看出,总共有9种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有3种,所以两人抽取相同数字的概率为13; (2)不公平.从表格可以看出,两人抽取数字之和为2的倍数有5种,两人抽取数字之和为5的倍数有3种,所以甲获胜的概率为59,乙获胜的概率为13.∵59>13,∴甲获胜的概率大,游戏不公平.2 3 5 22 23 2 5 2 32 3 3 3 5 3 52 53 5 5 518.解:(1)0.33(2)图略,当x 为4时,数字和为9的概率为212=16≠13,所以x 不能取4;当x =6时,摸出的两个小球上数字之和为9的概率是13.。
(苏科版)九年级上册数学《第2章对称图形圆》专题切线的性质与判定的综合运用(共30题)(基础题&提升题&压轴题)1.(2022秋•斗门区期末)如图,AB为⊙O的直径,P在BA的延长线上,C为圆上一点,且∠ACP=∠OBC.(1)求证:PC与⊙O相切;(2)若P A=4,PC=BC,求⊙O的半径.2.(2023•太平区二模)如图,在Rt△ABC中,∠ACB=90°,以BD为直径的半圆交BC于点F,点E是边AC和半圆的公共点,且满足DE=EF.(1)求证:AC是⊙O的切线;(2)若∠A=30°,AB=9,求BF的长度.3.如图,AB是⊙O的直径,点C在⊙O上,△ABC的外角平分线BD交⊙O于D,DE∥AC交CB的延长线于E.(1)求证:DE是⊙O的切线;(2)若∠A=30°,BD=3,求BC的长.4.(2023•东港区校级三模)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点E,点D在AB 上,且以AD为直径的⊙O经过点E.(1)求证:BC是⊙O的切线;(2)当AD=3BD,且BE=4时,求⊙O的半径.5.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.以BC为直径的⊙O交AC于D,E是AB的中点,连接ED并延长交BC的延长线于点F.(1)求证:DE是⊙O的切线;(2)求DB的长.6.(2023•鲁山县一模)如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,点D是AB延长线上的一点,AE⊥CD交DC的延长线于E,CF⊥AB于点F,且CE=CF.(1)求证:DE是⊙O的切线;(2)若AB=8,BD=4,求AE的长.7.(2022秋•嘉祥县校级期末)已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若AE⊥BC,垂足为M,⊙O的半径为10,求AE的长.8.(2023•莱芜区模拟)如图,在△ADC中,AC=CD,∠D=30°,点B是AD上一点,∠ACB的角平分线CE交以AB为直径的⊙O于点E,过点B作BF⊥EC,垂足为F,⊙O恰好过点C.(1)求证:CD是⊙O切线;(2)若AC=4√3,求CF的长.9.如图,AB是⊙O的直径,C为⊙O上的一点,点D为BĈ的中点,DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若AE=8,DE=4,求⊙O的半径.10.如图,在Rt△ABC中,∠ACB=90°,D为边AC上的点,以AD为直径作⊙O,连接BD并延长交⊙O 于点E,连接CE.(1)若CE=BC,求证:CE是⊙O的切线.(2)在(1)的条件下,若CD=2,BC=4,求⊙O的半径.11.如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CD,AD交⊙O于E点,BĈ=CÊ,F为⊙O上一点,AF∥CD.(1)求证:CD是⊙O的切线;(2)AC=5,AF=6,求⊙O的半径.12.如图,已知,BE是⊙O的直径,BC切⊙O于B,弦DE∥OC,连接CD并延长交BE的延长线于点A.(1)证明:CD是⊙O的切线;(2)若AD=2,AE=1,求CD的长.13.(2023•鞍山二模)如图,在△ABC中,以AB为直径作⊙O,⊙O恰好经过点C,点D为半圆AB中点,连接CD,过D作DE∥AB交AC延长线于点E.(1)求证:DE为⊙O切线:(2)若AC=4,CD=√2,求⊙O的半径长.14.(2023•新余一模)⊙O是△ABC的外接圆,OC∥AB,延长OC至D点.(1)如图1,若OC=CD,且B为弧AC的中点,求证:BD是⊙O的切线;(2)如图2,若BD是⊙O的切线,且BD=3,CD=1,求圆的半径及弦AB的长.15.(2023•云梦县校级三模)如图,在Rt△ABC中,∠C=90°,在AC上取一点D,以AD为直径作⊙O,与AB相交于点E,作线段BE的垂直平分线MN交BC于点N,连接EN.(1)求证:EN是⊙O的切线;(2)若AC=3,BC=4,⊙O的半径为1,求线段EN的长.16.(2023•榆阳区一模)如图,BP为⊙O的直径,点A为PB延长线上一点,点C是⊙O上一点,过点C 作CE⊥BO交BO于点D,交⊙O于点E,连接OE,CB,∠ACB=∠ECB.(1)求证:AC为⊙O的切线;(2)若AB=3,BD=1,求CE的长度.17.(2023•乌鲁木齐一模)如图,AB是⊙O的直径,AD和CD分别切⊙O于A、E两点,BC与⊙O有公共点B,且EC=BC.(1)求证:BC是⊙O的切线;(2)若AB=12,AD=8,求BC的长.18.(2022秋•同心县期末)如图,在△ABC中,BD平分∠ABC交AC于点D,以点D为圆心、AD的长为半径的⊙D与AB相切于点A,与AC相交于点E.(1)求证:BC是⊙D的切线;(2)若AB=5,BC=13,求AC和AD的长.19.(2022秋•蔡甸区期末)如图,Rt△ABC中,∠BAC=90°,点D为斜边BC的中点,以AD为直径作⊙O,分别与边AB、AC交于点E、F,过点E作EG⊥BC,垂足为G.(1)求证:EG是⊙O的切线;(2)已知⊙O的半径为6,若AF=8,求BE的长.20.(2023•鱼峰区模拟)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC,AC边于点D、F.过点D作DE⊥CF于点E.(1)求证:DE是⊙O的切线;(2)若⊙O半径为5,且AF﹣DE=2,求EF的长.21.(2023•漳平市一模)如图,AB为⊙O的直径,弦CD⊥AB于点E,CF⊥AF于点F,且CF=CE.(1)求证:CF是⊙O的切线;(2)若∠D=30°,AB=10,求CD的长.22.(2023•怀远县校级模拟)AB是△ABC的外接圆⊙O的直径,P是半径OB上一点,PE⊥AB交BC于F,交AC的延长线于E,D是EF的中点,连接CD;(1)求证:CD是⊙O的切线;(2)连OD交BC于G,若G为OD的中点,AC=6,求CE的长.23.(2023•桑植县模拟)如图,AB是⊙O的直径,点C是劣弧BD中点,AC与BD相交于点E.连接BC,∠BCF=∠BAC,CF与AB的延长线相交于点F.(1)求证:CF是⊙O的切线;(2)求证:∠ACD=∠F;(3)若AB=10,BC=6,求AD的长.24.如图,直线AB经过⊙O上的点C,直线AO与⊙O于点E和点D,OB与⊙O交于点F,连接DF,DC.已知OA=OB,CA=CB,DE=10,DF=6.(1)求证:①直线AB是⊙O的切线;②∠EDC=∠FDC;(2)求CD的长.25.(2022秋•华容区期末)如图1,AB为⊙O直径,CB与⊙O相切于点B,D为⊙O上一点,连接AD、OC,若AD∥OC.(1)求证:CD为⊙O的切线;(2)如图2,过点A作AE⊥AB交CD延长线于点E,连接BD交OC于点F,若AB=3AE=12,求BF 的长.26.(2023•高青县二模)如图,△ABC内接于⊙O,BC为⊙O的直径,点A是弧MC的中点,CD交⊙O 于M,CD交AB于E,DB=DE.(1)求证:DB是⊙O的切线;(2)求证:∠D=2∠ACD;(3)若DB=6,DC=10,求ME的长.27.如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与⊙O交于点F连接DF、DC.已知OA=OB,CA=CB.(1)求证:直线AB是⊙O的切线;(2)求证:∠FDC=∠EDC;(3)已知:DE=10,DF=8,求CD的长.28.如图,△ABC内接于⊙O,CD是⊙O的直径,AB与CD交于点E,点P是CD延长线上的一点,AP =AC,且∠B=2∠P.(1)求证:P A是⊙O的切线;(2)若PD=√3,求⊙O的直径;(3)在(2)的条件下,若点B等分半圆CD,求DE的长.29.(2023•南海区校级模拟)如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE ⊥PO交PO延长线于点E,连接OC,PB,已知PB=6,DB=8,∠EDB=∠EPB.(1)求证:PB是⊙O的切线;(2)求⊙O的半径.(3)连接BE,求BE的长.30.已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,作OF∥AB交BC于点F,连接EF.(1)求证:OF⊥CE(2)求证:EF是⊙O的切线;(3)若⊙O的半径为3,∠EAC=60°,求AD的长.。
新人教版初三九年级上册数学第二十四章圆知识点及练习题(附答案)试卷并且可以用于解决一些圆的问题。
在圆O中,圆心角∠XXX和∠AEB相等,则弦AB和DE相等,弦BC和BD相等,弦AC和AD相等,且弦心距相等。
七、切线与切点1、切线定义:过圆上一点的直线称为圆的切线;2、切点定义:圆上与切线相切的点称为切点;3、定理:切线垂直于半径,切点在切线上,且切点到圆心的距离等于半径长。
在圆O中,点A在圆上,线段AB是圆O上的一条切线,点B是切点,且AB垂直于半径OA,AB上的点与圆心O的距离等于半径OA的长度。
参考答案:一、圆的概念集合形式的概念:圆是到定点的距离等于定长的点的集合。
圆的外部是到定点的距离大于定长的点的集合,圆的内部是到定点的距离小于定长的点的集合。
轨迹形式的概念:圆是到定点的距离等于定长的点的轨迹,以定点为圆心,定长为半径的圆。
垂直平分线是到线段两端距离相等的点的轨迹,角的平分线是到角两边距离相等的点的轨迹,到直线的距离相等的点的轨迹是平行于这条直线且到这条直线的距离等于定长的两条直线,到两条平行线距离相等的点的轨迹是平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系点在圆内的距离小于半径,点在圆上的距离等于半径,点在圆外的距离大于半径。
三、直线与圆的位置关系直线与圆相离的距离大于半径,直线与圆相切的距离等于半径,直线与圆相交的距离小于半径。
四、圆与圆的位置关系圆与圆外离的距离大于两圆半径之和,圆与圆外切的距离等于两圆半径之和,圆与圆相交的距离在两圆半径之差和之和之间,圆与圆内切的距离等于两圆半径之差,圆与圆内含的距离小于两圆半径之差。
五、垂径定理垂径定理是指垂直于弦的直径平分弦且平分弦所对的弧。
推论1包括平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧,弦的垂直平分线经过圆心并且平分弦所对的两条弧,平分弦所对的一条弧的直径垂直平分弦并且平分弦所对的另一条弧。
六、圆心角定理圆心角定理是指同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。
2021年九年级数学中考复习专题之圆:切线的判定与性质(一)一.选择题1.下列说法中,正确的是()A.圆的切线垂直于经过切点的半径B.垂直于切线的直线必经过切点C.垂直于切线的直线必经过圆心D.垂直于半径的直线是圆的切线2.如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,m的值为()A.4或﹣4 B.4﹣或4+C.﹣4+或4+ D.4﹣或4+ 3.如图,直线l1∥l2,⊙O与l1和l2分别相切于点A和点B.点M和点N分别是l1和l2上的动点,MN沿l1和l2平移.⊙O的半径为1,∠1=60°.下列结论错误的是()A.B.l1和l2的距离为2C.若∠MON=90°,则MN与⊙O相切D.若MN与⊙O相切,则4.如图,∠ACB=60°,半径为3的⊙O切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离为()A.3 B.3C.6πD.5.如图,AB是⊙O的直径,=,过点C作BD的垂线交BD的延长线于点E,交BA 的延长线于点F,已知AB=2,∠F=30°,则四边形ABEC的面积是()A.2B.C.D.6.如图,⊙O的半径为3,四边形ABCD是⊙O的内接四边形,∠A=60°,∠D=110°,的度数是70°,直线l与⊙O相切于点A.在没有滑动的情况下,将⊙O沿l向右滚动,使O点向右移动70π,则此时⊙O与直线l相切的切点所在的劣弧是()A.B.C.D.7.已知抛物线y=a(x﹣3)2+(a≠0)过点C(0,4),顶点为M,与x轴交于A,B两点.如图所示以AB为直径作圆,记作⊙D,下列结论:①抛物线的对称轴是直线x =3;②点C在⊙D外;③直线CM与⊙D相切.其中正确的有()A.0个B.1个C.2个D.3个8.如图,在等边△ABC中,点O在边AB上,⊙O过点B且分别与边AB、BC相交于点D、E,F是AC上的点,判断下列说法错误的是()A.若EF⊥AC,则EF是⊙O的切线B.若EF是⊙O的切线,则EF⊥ACC.若BE=EC,则AC是⊙O的切线D.若BE=EC,则AC是⊙O的切线9.如图,在矩形ABCD中,BC=8,以AB为直径作⊙O,将矩形ABCD绕点B旋转,使所得矩形A'BC'D'的边C'D'与⊙O相切,切点为E,边A'B与⊙O相交于点F.若BF=8,则CD长为()A.9 B.10 C.8D.1210.如图,在矩形ABCD中,AD=80cm,AB=40cm,半径为8cm的⊙O在矩形内且与AB、AD均相切.现有动点P从A点出发,在矩形边上沿着A→B→C→D的方向匀速移动,当点P到达D点时停止移动;⊙O在矩形内部沿AD向右匀速平移,移动到与CD相切时立即沿原路按原速返回,当⊙O回到出发时的位置(即再次与AB相切)时停止移动.已知点P与⊙O同时开始移动,同时停止移动(即同时到达各自的终止位置).当⊙O到达⊙O1的位置时(此时圆心O1在矩形对角线BD上),DP与⊙O1恰好相切,此时⊙O移动了()cm.A.56 B.72 C.56或72 D.不存在二.填空题11.直线l经过点A(4,0),B(0,2),若⊙M的半径为1,圆心M在x轴上,当⊙M 与直线l相切时,则点M的坐标.12.如图,在矩形ABCD中,AB=3,BC=4,P是对角线AC上的动点,以点P为圆心,PC长为半径作⊙P.当⊙P与矩形ABCD的边相切时,CP的长为.13.如图,Rt△ABC中,∠C=90°,AC=8,BC=16,点D在边BC上,点E在边AB 上,沿DE将△ABC折叠,使点B与点A重合,连接AD,点P是线段AD上一动点,当半径为5的⊙P与△ABC的一边相切时,AP的长为.14.如图,以△ABC的边AB为直径的⊙O恰好过BC的中点D,过点D作DE⊥AC于E,连结OD,则下列结论中:①OD∥AC;②∠B=∠C;③2OA=AC;④DE是⊙O的切线;⑤∠EDA=∠B,正确的序号是.15.如图,直线y=x﹣3交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P 为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是.三.解答题16.如图,三角形ABC中,AC=10,AB=12.以BC为直径作⊙O交AB于点D,交AC于点G,D为AB的中点,DF⊥AC,垂足为F,交CB的延长线于点E.(1)求证:直线EF是⊙O的切线;(2)求sin∠E的值.17.如图,圆O的直径AB=12cm,C为AB延长线上一点,点P为中点,过点B作弦BD∥CP,连接PD.(1)求证:CP与圆O相切;(2)若∠C=∠D,求四边形BCPD的面积.18.如图,在△ABC中,以AC为直径的⊙O交BC于点D,过点D作DE⊥AB于点E,延长DE交CA的延长线于点F,延长BA交⊙O于G,且∠BAF=2∠C.(1)求证:DE为⊙O的切线;(2)若tan∠EFC=,求的值.19.如图,点B为⊙O外一点,点A为⊙O上一点,点P为OB上一点且BP=BA,连接AP并延长交⊙O于点C,连接OC,OC⊥OB.(1)求证:AB是⊙O的切线;(2)若OB=10,⊙O的半径为8.求AP的长.20.如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE、DE、BD,BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC,求证:四边形OEDB是菱形.参考答案一.选择题1.解:A、圆的切线垂直于经过切点的半径;故本选项正确;B、经过圆心且垂直于切线的直线必经过切点;故本选项错误;C、经过切点且垂直于切线的直线必经过圆心;故本选项错误;D、经过半径的外端且垂直于这条半径的直线是圆的切线;故本选项错误;故选:A.2.解:在y=﹣x+1中,令x=0,则y=1,令y=0,则x=,∴A(0,1),B(,0),∴AB=2;如图,设⊙M与AB相切与C,连接MC,则MC=2,MC⊥AB,∵∠MCB=∠AOB=90°,∠ABO=∠CBM,∴△BMC~△BAO,∴=,即=,∴BM=4,∴OM=4﹣,或OM=4+.∴m=﹣4,m=4+.故选:C.3.解:如图1,过点N作NC⊥AM于点C,∵直线l1∥l2,⊙O与l1和l2分别相切于点A和点B,⊙O的半径为1,∴CN=AB=2,∵∠1=60°,∴MN==,故A与B正确;如图3,若∠MON=90°,连接NO并延长交MA于点C,则△AOC≌△BON,故CO=NO,△MON≌△MOM′,故MN上的高为1,即O到MN的距离等于半径.故C正确;如图2,∵MN是切线,⊙O与l1和l2分别相切于点A和点B,∴∠AMO=∠1=30°,∴AM=;∵∠AM′O=60°,∴AM′=,∴若MN与⊙O相切,则AM=或;故D错误.故选:D.4.解:设⊙O与CA相切于点P,此时和CB相切于点D,连接OC,OD、OP.∵⊙O与CA相切,⊙O与CB相切,∴∠OCD=∠ACB=30°,∵OP=OD=3,∴CD=3.故选:B.5.解:连接OD、OC、BC,如图:∵AB是⊙O的直径,AB=2,∴∠ACB=90°,OA=OB=AB=1,∵BE⊥FE,∠F=30°,∴∠ABC=90°﹣∠F=60°,∵OB=OD,∴△OBD是等边三角形,∴∠BOD=60°,∵=,∴∠AOC=∠COD=60°,∵OA=OC,∴△AOC是边长为1的等边三角形,∴AC=OA=1,∠OAC=60°,∴∠ABC=90°﹣60°=30°,∴BC=AC=,∠CBE=60°﹣30°=30°,∴CE=BC=,BE=CE=,∴四边形ABEC的面积=△ABC的面积+△BCE的面积=×1×+××=;故选:B.6.解:连结OC、OD、OA,如图,∵∠D=110°,∴∠B=180°﹣∠D=70°,∴∠AOC=2∠B=140°,∵∠A=60°,∴∠BOD=120°,∵的度数是70°,∴∠COD=70°,∴∠AOD=70°,∠BOC=50°,∴AD弧的长度==π,∴BC弧的长度==π,∵70π=6π•12﹣2π,而2π>π,∴向右移动了70π,此时与直线l相切的弧为.故选:C.7.解:由抛物线y=a(x﹣3)2+可知:抛物线的对称轴x=3,故①正确;∵抛物线y=a(x﹣3)2+过点C(0,4),∴4=9a+,解得:a=﹣,∴抛物线的解析式为y=﹣(x﹣3)2+,令y=0,则﹣(x﹣3)2+=0,解得:x=8或x=﹣2,∴A(﹣2,0),B(8,0);∴AB=10,∴AD=5,∴OD=3∵C(0,4),∴CD==5,∴CD=AD,∴点C在圆上,故②错误;由抛物线y=a(x﹣3)2+可知:M(3,),∵C(0,4),∴直线CM为y=x+4,直线CD为:y=﹣x+4,∴CM⊥CD,∵CD=AD=5,∴直线CM与⊙D相切,故③正确;故选:C.8.解:A、如图,连接OE,则OB=OE,∵∠B=60°∴∠BOE=60°,∵∠BAC=60°,∴∠BOE=∠BAC,∴OE∥AC,∵EF⊥AC,∴OE⊥EF,∴EF是⊙O的切线∴A选项正确B、∵EF是⊙O的切线,∴OE⊥EF,由A知:OE∥AC,∴AC⊥EF,∴B选项正确;C、∵∠B=60°,OB=OE,∴BE=OB,∵BE=CE,∴BC=AB=2BO,∴AO=OB,如图,过O作OH⊥AC于H,∵∠BAC=60°,∴OH=AO≠OB,∴C选项错误;D、如图,∵BE=EC,∴CE=BE,∵AB=BC,BO=BE,∴AO=CE=OB,∴OH=AO=OB,∴AC是⊙O的切线,∴D选项正确.故选:C.9.解:连接OE,延长EO交BF于点M,∵C'D'与⊙O相切,∴∠OEC′=90°,又矩形A'BC'D'中,A'B∥C'D',∴∠EMB=90°,∴BM=FM,∵矩形ABCD绕点B旋转所得矩形为A′BC′D′,∴∠C′=∠C=90°,AB=CD,BC=B′C=8,∴四边形EMBC'为矩形,∴ME=8,设OB=OE=x,则OM=8﹣x,∵OM2+BM2=OB2,∴(8﹣x)2+42=x2,解得x=5,∴AB=CD=10.故选:B.10.解:存在这种情况,设点P移动速度为v1cm/s,⊙O2移动的速度为v2cm/s,由题意,得==,如图②:设直线OO1与AB交于E点,与CD交于F点,⊙O1与AD相切于G点,若PD与⊙O1相切,切点为H,则O1G=O1H.易得△DO1G≌△DO1H,∴∠ADB=∠BDP.∵BC∥AD,∴∠ADB=∠CBD∴∠BDP=∠CBD,∴BP=DP.设BP=xcm,则DP=xcm,PC=(80﹣x)cm,在Rt△PCD中,由勾股定理,得PC2+CD2=PD2,即(80﹣x)2+402=x2,解得x=50,此时点P移动的距离为40+50=90(cm),∵EF∥AD,∴△BEO1∽△BAD,∴=,即=,EO1=64cm,OO1=56cm.①当⊙O首次到达⊙O1的位置时,⊙O移动的距离为40cm,此时点P与⊙O移动的速度比为==,∵≠,∴此时PD与⊙O1不能相切;②当⊙O在返回途中到达⊙O1位置时,⊙O移动的距离为2(80﹣16)﹣56=72(cm),∴此时点P与⊙O移动的速度比为==,此时PD与⊙O1恰好相切.此时⊙O移动了72cm,故选:B.二.填空题(共5小题)11.解:∵直线l经过点A(4,0),B(0,2),∴AB==2,设M坐标为(m,0)(m>0),即OM=m,若M′在A点左侧时,AM′=4﹣m,当AB是⊙O的切线,∴∠M′C′A=90°,∵∠M′AC′=∠BAO,∠M′C′A=∠BOA=90°,∴△M′AC′∽△BAO,∴=,即=,解得:m=4﹣,此时M′(4﹣,0);若M在A点右侧时,AM=m﹣4,同理△AMN∽△BAO,则有=,即=,解得:m=4+.此时M(4+,0),综上所述,M(4﹣,0)或(4+,0),故答案为:M(4﹣,0)或(4+,0),12.解:作PE⊥AD于E,PF⊥AB于F,在Rt△ABC中,AC==5,由题意可知,⊙P只能与矩形ABCD的边AD、AB相切,当⊙P与AD相切时,PE=PC,∵PE⊥AD,CD⊥AD,∴PE∥CD,∴△APE∽△ACD,∴=,即=,解得,CP=,当⊙P与AB相切时,PF=PC,∵PF⊥AB,CB⊥AB,∴PF∥BC,∴△APE∽△ACD,∴=,即=,解得,CP=,综上所述,当⊙P与矩形ABCD的边相切时,CP的长或,故答案为:或.13.解:设BD=x,由折叠知AD=BD=x,CD=16﹣x,在Rt△ACD中,由勾股定理得,x2=82+(16﹣x)2,解得,x=10,∴BD=10,∵AB=,∴AE=BE=AB=4,∴DE=,∴点P是线段AD上运动时,⊙P不可能与AB相切,分两种情况:①当⊙P与AC相切时,过点P作PF⊥AC于点F,如图1,∴PF=5,PF∥CD,∴△APF∽△ADC,∴,即,∴;②⊙P与BC相切时,过点P作PG⊥BC于点G,如图2,∴PG=5,PG∥AC,∴△DPG∽△DAC,∴,即,∴DP=,∴AP=10﹣,综上,AP的长为或.14.解:连接AD,∵D为BC中点,点O为AB的中点,∴OD为△ABC的中位线,∴OD∥AC,①正确;∵AB是⊙O的直径,∴∠ADB=90°=∠ADC,即AD⊥BC,又BD=CD,∴△ABC为等腰三角形,∴∠B=∠C,②正确;∵DE⊥AC,且DO∥AC,∴OD⊥DE,∵OD是半径,∴DE是⊙O的切线,∴④正确;∴∠ODA+∠EDA=90°,∵∠ADB=∠ADO+∠ODB=90°,∴∠EDA=∠ODB,∵OD=OB,∴∠B=∠ODB,∴∠EDA=∠B,∴⑤正确;∵D为BC中点,AD⊥BC,∴AC=AB,∵OA=OB=AB,∴OA=AC,∴③正确,故答案为:①②③④⑤.15.解:∵直线y=x﹣3交x轴于点A,交y轴于点B,∴令x=0,得y=﹣3,令y=0,得x=3,∴A(3,0),B(0.﹣3),∴OA=3,OB=3,∴AB=6,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,∵∠ADP=∠AOB=90°,∠PAD=∠BAO,∴△APD∽△ABO,∴=,∴=,∴AP=2,∴OP=3﹣2或OP=3+2,∴P(3﹣2,0)或P(3+2,0),故答案为(3﹣2,0)或P(3+2,0).三.解答题(共5小题)16.证明:(1)连接OD、CD,∵BC是直径,∴CD⊥AB,∵AC=BC,∴D是AB的中点,∵O为CB的中点,∴OD∥AC,∵DF⊥AC,∴OD⊥EF,∴直线EF是⊙O的切线;(2)连BG,∵BC是直径,∴∠BDC=90°,∴CD===8,∵AB•CD=2S△ABC=AC•BG,∴BG==,∴CG===,∵BG⊥AC,DF⊥AC,∴BG∥EF.∴∠E=∠CBG,∴sin∠E=sin∠CBG===.17.(1)证明:连接OP,交BD于点E,∵点P为的中点.∴BD⊥OP,∵BD∥CP,∴∠OEB=∠OPC=90°∴PC⊥OP,∴CP与⊙O相切于点P;(2)解:∵∠C=∠D,∵∠POB=2∠D,∴∠POB=2∠C,∵∠CPO=90°,∴∠C=30°,∵BD∥CP,∴∠C=∠DBA,∴∠D=∠DBA,∴BC∥PD,∴四边形BCPD是平行四边形,∵PO=AB=6,∴PC=6,∵∠ABD=∠C=30°,∴OE=OB=3,∴PE=3,∴四边形BCPD的面积=PC•PE=6×3=18.18.解:(1)连接OD,∵OC=OD,∴∠C=∠ODC,∵∠BAF=2∠C,∠BAF=∠B+∠C,∴∠B=∠C,∴∠B=∠ODC,∴AB∥OD,∵DE⊥AB,∴OD⊥DF,∴DE为⊙O的切线;(2)过O作OH⊥AG于点H,则AH=GH,EF∥OH,∴∠AOH=∠EFA,∵tan∠EFC=,∴tan∠AOH==,∴设AH=3x,则AG=2AH=6x,OH=4x,∴,∴AC=2AO=10x,OD=OA=5x,∵tan∠EFC==,设AE=3y,则EF=4y,∴AF=,∵AE∥OD,∴△AEF∽△ODF,∴,即,∴,∴AE=3y=2x,∴BE=AB﹣AE=10x﹣2x=8x,∴=.19.(1)证明:∵BP=BA,OA=OC,∴∠BAP=∠BPA,∠PAO=∠C,∵OC⊥OB,∴∠COP=90°,∴∠OPC+∠C=90°,∵∠OPC=∠BPA,∴∠BAP=∠OPC,∴∠BAP+∠OAP=90°,即∠BAO=90°,∴AB⊥OA,又∵OA为⊙O的半径,∴AB是⊙O的切线;(2)解:如图,作BD⊥AP于点D,∵⊙O的半径为8,∴CO=OA=8,由(1)得:∠BAO=90°,∴AB===6,∴BP=BA=6,∴OP=OB﹣BP=4,在Rt△CPO中,OP=4,CO=8,∴CP===4,∵BA=BP,BD⊥AP,∴AD=PD,∠BDP=90°=∠COP,∵∠BPD=∠CPO,∴△BPD∽△CPO,∴=,即=,解得:PD=,∴AP=2PD=.20.证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°,∵∠A=∠DEB,∠DEB=∠DBC,∴∠A=∠DBC,∵∠DBC+∠ABD=90°,∴BC是⊙O的切线;(2)∵OE∥BD,∴∠OEB=∠DBE,∵OE=OB,∴∠OEB=∠OBE,∴∠OBE=∠DBE,∵BF=BC,∠ADB=90°,∴∠CBD=∠EBD,∵∠DEB=∠DBC,∴∠EBD=∠DBE,∴∠DEB=∠OBE,∴ED∥OB,∵ED∥OB,OE∥BD,OE=OB,∴四边形OEDB是菱形.。
初中数学圆中切线的判定与性质综合应用专项练习题3(附答案详解)1.如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长AD到E,且有∠EBD=∠CAB.⑴求证:BE是⊙O的切线;⑵若BC=3,AC=5,求圆的直径AD的长.2.如图,AB是⊙O的直径,点D,E在⊙O上,∠A=2∠BDE,点C在AB的延长线上,∠C=∠ABD.(1)求证:CE是⊙O的切线;(2)若⊙O的半径长为5,BF=2,求EF的长.⊥,垂足为点,E DA 3.如图,四边形ABCD内接于O,BD是O的直径,AE CD∠.平分BDE(1)AE是O的切线吗?请说明理由;AE=求BC的长.(2)若4,4.如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,AE平分∠BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,⊙F与y轴相交于另一点G.(1)求证:BC是⊙F的切线;(2)若点A、D的坐标分别为A(0,﹣1),D(2,0),求⊙F的半径;(3)试探究线段AG 、AD 、CD 三者之间满足的等量关系,并证明你的结论.5.如图,A 是半径为12cm 的O 上的定点,动点P 从A 出发,以2πcm/s 的速度沿圆周逆时针运动,当点P 回到A 地立即停止运动.(1)如果90POA ∠=,求点P 运动的时间;(2)如果点P 是OA 延长线上的一点,AB OA =,那么当点P 运动的时间为2s 时,判断直线OA 与O 的位置关系,并说明理由.6.如图,AB 为⊙O 的直径,C 为圆外一点,AC 交⊙O 于点D ,BC 2=CD•CA ,弦ED=弦BD ,BE 交AC 于F.(1)求证:BC 为⊙O 切线;(2)判断△BCF 的形状并说明理由;(3)已知BC=15,CD=9,求tan ∠ADE 的值.7.如图,AB 是⊙O 的直径, BC 交⊙O 于点D ,E 是BD 的中点,连接AE 交BC 于点F ,∠ACB =2∠EAB .(1)判断直线AC 与⊙O 的位置关系,并说明理由;(2)若3cos4C=,8AC=,求BF的长.8.如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,E为BC的中点,连接DE并延长交AC的延长线于点F.(1)求证:D E是⊙O的切线;(2)若CF=2,DF=4,求⊙O直径的长.9.如图,在Rt△ABC中,∠ACB=90°.∠ABC的平分线交AC于点O,以点O为圆心,OC为半径.在△ABC同侧作半圆O.(1)求证:AB与⊙O相切;(2)若AB=5,AC=4,求⊙O的半径.10.如图,AB是⊙O的直径,BM切⊙O于点B,点P是⊙O上的一个动点(点P不与A,B两点重合),连接AP,过点O作OQ∥AP交BM于点Q,过点P作PE⊥AB于点C,交QO的延长线于点E,连接PQ,OP,AE.(1)求证:直线PQ为⊙O的切线;(2)若直径AB的长为4.①当PE=时,四边形BOPQ为正方形;②当PE=时,四边形AEOP为菱形.11.如图,在三角形ABC中,AB=10,AC=BC=13,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF⊥AC,于点F,交CB的延长线于点E.(1)求证:DF是⊙O的切线;(2)求cos∠ADF的值.12.如图,线段AB经过⊙O的圆心O,交⊙O于A、C两点,BC=1,AD为⊙O的弦,连结BD,∠BAD=∠ABD=30°.(1)求证:直线BD是⊙O的切线;(2)求⊙O的半径长.13.如图,在△ABC中,AB=AC=10,tan∠A=43,点O是线段AC上一动点(不与点A,点C重合),以OC为半径的⊙O与线段BC的另一个交点为D,作DE⊥AB于E.(1)求证:DE是⊙O的切线;(2)当⊙O与AB相切于点F时,求⊙O的半径;(3)在(2)的条件下,连接OB交DE于点M,点G在线段EF上,连接GO.若∠GOM =45°,求DM和FG的长.14.如图,AB是⊙O的直径,点D在AB的延长线上,C、E是⊙O上的两点,CE=CB,∠BCD=∠CAE,延长AE交BC的延长线于点F.(1)求证:CD是⊙O的切线;(2)求证:CE=CF;(3)若BD=1,CD=2,求弦AC的长.15.已知:△ABC内接于⊙O,过点A作直线EF.(1)如图甲,AB为直径,要使EF为⊙O的切线,还需添加的条件是(写出两种情况,不需要证明):①或②;(2)如图乙,AB是非直径的弦,若∠CAF=∠B,求证:EF是⊙O的切线.(3)如图乙,若EF是⊙O的切线,CA平分∠BAF,求证:OC⊥AB.16.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)求证:2=⋅;AD AB AF(3)若BE=8,sinB=513,求AD的长,17.在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.18.已知:如图,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB.(1)求证:BD是⊙O的切线;(2)当AB=10,BC=8时,求BD的长.19.如图,在O中,AB为直径,点C、D都在O上,且BD平分ABC∠,过点D作DE BC⊥,交BC的延长线于点E.(1)求证:DE是O的切线;(2)若3BC =,1CE =,求O 的直径.20.如图,在三角形ABC 中,10AB =,13AC BC ==,以BC 为直径作O 交AB 于点D ,交AC 于点G ,直线DF AC ⊥于点F ,交CB 的延长线于点E .(1)求证:DF 是O 的切线;(2)求cos ADF ∠的值.21.如图,已知△ABC 内接于⊙O ,过点B 作直线EF ∥AC ,又知∠ACB =∠BDC =60°,AC =3cm .(1)请探究EF 与⊙O 的位置关系,并说明理由;(2)求⊙O 的周长.22.如图,AB 为⊙O 的直径,点C 在⊙O 外,∠ABC 的平分线与⊙O 交于点D ,∠C =90°.(1)求证:CD 是⊙O 的切线;(2)若∠CDB =60°,AB =18,求AD 的长.23.如图,在Rt ABC 中,90ABC ∠=︒,作BAC ∠的角平分线交BC 于点O ,以O 为圆心,OB 为半径作圆.(1)依据题意补充完整图形;(尺规作图,保留作图痕迹,不写作法)(2)求证:O与直线AC相切;(3)在(2)的条件下,若O与直线AC相切的切点为D,O与BC相交于点F,连接BD,DF;其中CD23=,2CF=,求AB的长.24.如图,在△ABC中,AB = BC,以BC为直径作⊙ O交AC于点E,过点E作AB 的垂线交AB于点F,交CB的延长线于点G.(1)求证: EG是⊙O的切线;(2)若BG=OB,AC=6,求BF的长.25.如图,AB是⊙O的直径,点C是⊙O上一点,AC平分∠DAB,直线DC与AB的延长线相交于点P,AD与PC延长线垂直,垂足为点D,CE平分∠ACB,交AB于点F,交€€⊙O于点E.(1)求证:PC与⊙O相切;(2)求证:PC=PF;(3)若AC=8,tan∠ABC=43,求线段BE的长.26.如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF 的长.27.如图①,已知点C 是以AB 为直径的圆O 上一点,直线AC 与过B 点的切线相交于点D ,E 是BD 的中点,连接CE .(1)求证:CE 是圆O 的切线;(2)如图②,CF AB ⊥,垂足为F ,若O 的半径为3,4BE =,求CF 的长; (3)如图③,连接AE 交CF 于点H ,求证:点H 是CF 的中点.28.定义:当点P 在射线OA 上时,把OP OA 的的值叫做点P 在射线OA 上的射影值;当点P 不在射线OA 上时,把射线OA 上与点P 最近点的射影值,叫做点P 在射线OA 上的射影值.例如:如图1,△OAB 三个顶点均在格点上,BP 是OA 边上的高,则点P 和点B 在射线OA 上的射影值均为OP OA =13.(1)在△OAB 中,①点B 在射线OA 上的射影值小于1时,则△OAB 是锐角三角形;②点B 在射线OA 上的射影值等于1时,则△OAB 是直角三角形;③点B 在射线OA 上的射影值大于1时,则△OAB 是钝角三角形. 其中真命题有 .A .①②B .①③C .②③D .①②③(2)已知:点C 是射线OA 上一点,CA =OA =1,以〇为圆心,OA 为半径画圆,点B 是⊙O 上任意点.①如图2,若点B 在射线OA 上的射影值为12.求证:直线BC 是⊙O 的切线; ②如图3,已知D 为线段BC 的中点,设点D 在射线OA 上的射影值为x ,点D 在射线OB 上的射影值为y ,直接写出y 与x 之间的函数关系式为 .29.如图,ABC ∆内接于O ,BC 是O 的直径,弦AF 交BC 于点E ,延长BC 到点D ,连接OA , AD ,使得FAC AOD ∠=∠,D BAF ∠=∠(1)求证:AD 是O 的切线; (2)若O 的半径为5,2CE =,求EF 的长.参考答案1.(1)详见解析;(2)6【解析】【分析】(1)先根据等弦所对的劣弧相等,再结合∠EBD=∠CAB从而得到∠BAD=∠EBD,最后用直径所对的圆周角为直角即可;(2)利用三角形的中位线先求出OM,再用勾股定理求出半径r,最后得到直径的长.【详解】解:⑴证明:连接OB,CD,OB、CD交于点M∵BC=BD,∴∠CAB=∠BAD.∵OA=OB,∴∠BAD=∠OBA.∴∠CAB=∠OBA.∴OB∥AC.又AD是直径,∴∠ABD=∠ACD =90°,又∠EBD=∠CAB, ∠CAB=∠OBA.∴∠OBE=90°,即OB⊥BE.又OB是半径,∴BE是⊙O的切线.⑵∵ OB∥AC, OA=OD,AC=5,.∴ OM=2.5 ,BM=OB-2.5,OB⊥CD设⊙O的半径为r,则在Rt△OMD中:MD2=r2-2.52;在Rt△BMD中:MD2=BD2-(r-2.5)2 ,BD=BC=3.∴r1=3 ,r2=-0.5(舍).∴圆的直径AD的长是6.【点睛】此题是切线的判定,主要考查了圆周角的性质,切线的判定,勾股定理等,解本题的关键是作出辅助线.2.(1)证明见解析;(2)EF10【解析】【分析】(1)连接OE,易得∠ADB=90°,证明∠BOE=∠A,联立∠C=∠ABD可求证.(2)连接BE,根据同弧所对的圆周角先证明△BEF∽△BOE,根据相似三角形的性质求出EF的长度.【详解】解:(1)连接OE,∵AB是o的直径,∴∠ADB=90°,∴∠A+∠ABD=90°,由图可知∠BOE=2∠BDE又∵∠A=2∠BDE∴∠A=∠BOE∵∠C=∠ABD∴∠BOE+∠C=90°∴OE⊥EC∴CE是⊙O的切线.(2)连接BE,有图可知∠BED=∠A=∠BOE,∴△BEF∽△BOE∴BE BF EF BO BE OE==∵OB=OE=5,BF=2∴BE=EF∴EF2=OE·BF=1010故答案为:(1)证明见解析;(2)EF10=【点睛】本题考查了圆的相关知识、相似三角形的判定及性质,解题的关键在于合理作出辅助线转化求解.3.(1)AE是O的切线,理由见解析;(2)8.【解析】【分析】(1)连接AO,由AO=DO,得∠OAD=∠ODA,由DA平分∠BDE,得∠ADE=∠ODA,则∠ADE=∠OAD,证明AO∥ED,得OA⊥AE;(2)延长AO交BC于点F,由∠C=∠FAE=∠AEC=90°,可证四边形AECF为矩形,则CF=AE=4,由垂径定理得BF=FC=4.【详解】()1AE是O的切线.连接AO,OA OD=,,OAD ODA∴∠=∠ADE ADB∠=∠,OAD ADE∴∠=∠//AO CE∴AE CD⊥AE AO∴⊥AE∴是O的切线.()2延长AO交BC于点F.∵BD是⊙O的直径,∴∠C=90°.∴∠C=∠FAE=∠AEC=90°.∴四边形AECF为矩形,CF=AE=4.∵AF⊥BC,且AF过圆心,∴BC=2CF=8.【点睛】本题考查了切线的判定与性质,圆周角定理,垂径定理的运用.关键是连接AO并延长,证明直角和矩形.4.(1)证明见解析;(2)52;(3)AG=AD+2CD.【解析】【分析】(1)连接EF,根据角平分线的定义、等腰三角形的性质得到∠FEA=∠EAC,得到FE∥AC,根据平行线的性质得到∠FEB=∠C=90°,证明结论;(2)连接FD,设⊙F的半径为r,根据勾股定理列出方程,解方程即可;(3)作FR⊥AD于R,得到四边形RCEF是矩形,得到EF=RC=RD+CD,根据垂径定理解答即可.【详解】(1)证明:连接EF,∵AE平分∠BAC,∴∠FAE=∠CAE,∵FA=FE,∴∠FAE=∠FEA,∴∠FEA=∠EAC,∴FE∥AC,∴∠FEB=∠C=90°,即BC是⊙F的切线;(2)解:连接FD,设⊙F的半径为r,则r2=(r﹣1)2+22,解得,r=52,即⊙F的半径为52;(3)解:AG=AD+2CD.证明:作FR⊥AD于R,则∠FRC=90°,又∠FEC=∠C=90°,∴四边形RCEF是矩形,∴EF=RC=RD+CD,∵FR⊥AD,∴AR=RD,∴EF=RD+CD=12AD+CD,∴AG=2FE=AD+2CD.考点:圆的综合题;探究型.5.(1)3s或9s(2)直线BP与O相切,理由见解析【解析】【分析】(1)当∠POA=90°时,点P运动的路程为⊙O周长的14或34,所以分两种情况进行分析;(2)直线BP与⊙O的位置关系是相切,根据已知可证得OP⊥BP,即直线BP与⊙O相切.【详解】解:(1)当∠POA=90°时,根据弧长公式可知点P运动的路程为⊙O周长的14或34,设点P运动的时间为ts;当点P运动的路程为⊙O周长的14时,2π•t=14•2π•12,解得t=3;当点P运动的路程为⊙O周长的34时,2π•t=34•2π•12,解得t=9;∴当∠POA=90°时,点P运动的时间为3s或9s.(2)如图,当点P运动的时间为2s时,直线BP与⊙O相切理由如下:当点P运动的时间为2s时,点P运动的路程为4πcm,连接OP,PA;∵半径AO=12cm,∴⊙O的周长为24πcm,∴AP的长为⊙O周长的16,∴∠POA=60°;∵OP=OA,∴△OAP是等边三角形,∴OP=OA=AP,∠OAP=60°;∵AB=OA,∴AP=AB,∵∠OAP=∠APB+∠B,∴∠APB=∠B=30°,∴∠OPB=∠OPA+∠APB=90°,∴OP⊥BP,∴直线BP与⊙O相切.【点睛】本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.6.(1)证明见解析;(2)△BCF为等腰三角形.证明见解析;(3)7 24【解析】【分析】(1)由BC2=CD•CA,根据三角形相似的判定得到△CBD∽△CAB,根据三角形相似的性质得到∠CBD=∠BAC,而AB为⊙O的直径,根据圆周角定理的推论得∠ADB=90°,易证得∠ABD+∠CBD=90°,根据切线的判定即可得到答案;(2)由DE BD,根据圆周角定理得∠DAE=∠BAC,由(1)得∠BAC=∠CBD,则∠CBD=∠DAE,根据同弧所对的圆周角相等得∠DAE=∠DBF,所以∠DBF=∠CBD,而∠BDF=90°,根据等腰三角形三线的判定即可得到△BCF为等腰三角形;(3)由BC2=CD•CA,BC=15,CD=9,可计算出CA=25,根据等腰三角形的性质有BF=BC=15,DF=DC=9,利用勾股定理计算出BD=12,得到AF=7,再根据等积可求出AE=71228 155⨯=,然后利用Rt△AEF∽Rt△BDF,通过相似比可计算出EF,则可得到BE,而∠ADE=∠ABE,最后利用三角函数的性质可计算出tan∠ADE的值.【详解】(1)证明:∵BC2=CD•CA,∴BC:CA=CD:BC,∵∠C=∠C,∴△CBD∽△CAB,∴∠CBD=∠BAC,又∵AB为⊙O的直径,∴∠ADB=90°,即∠BAC+∠ABD=90°,∴∠ABD+∠CBD=90°,即AB⊥BC,∴BC为⊙O切线;(2)△BCF为等腰三角形.证明如下:∵DE BD=,∴∠DAE=∠BAC,又∵△CBD∽△CAB,∴∠BAC=∠CBD,∴∠CBD=∠DAE,∵∠DAE=∠DBF,∴∠DBF=∠CBD,∵∠BDF=90°,∴∠DBC=∠BDF=90°∵BD=BD∴△BDF≌△BDC∴BF=BC∴△BCF 为等腰三角形;(3)解:∵BC 2=CD•CA ,BC=15,CD=9,∴CA=25,BF=BC=15,DF=DC=9,∴=12,∴AF=25-18=7,∴S △ABF =12•AE•BF=12•AF•BD , ∴AE=71228155⨯=, 易证Rt △AEF ∽Rt △BDF ,∴EF :DF=AF :BF ,即EF :9=7:15,∴EF=215, ∴BE=15+215=965, ∵∠ADE=∠ABE ,∴tan ∠ADE=tan ∠ABE 287596245=. 【点睛】本题考查了切线的判定与性质:过半径的外端点与半径垂直的直线是圆的切线;圆的切线垂直于过切点的半径.也考查了圆周角定理及其推论以及三角形相似的判定与性质. 7.(1)AC 是⊙O 的切线,见解析;(2)83BF =【解析】【分析】(1)首先证明∠ACB =∠BAD ,然后根据圆周角定理的推论得出∠ACB +∠CAD=90°,则有∠BAD+∠CAD=90°,所以BA ⊥AC ,则可证明AC 是⊙O 的切线;(2)过点F 做FH ⊥AB 于点H .首先通过角平分线的性质得出FH=FD ,且FH ∥AC ,然后利用锐角三角函数求出CD,BD 的长度,然后设 DF=x ,则FH=x ,143BF x =-,最后利用3cos 4FH BFH BF ∠==建立关于x 的方程,解方程即可得出答案. 【详解】解:(1)AC是⊙O的切线理由:如图,连接AD.∵ E是BD中点,∴BE DE=.∴∠DAE=∠EAB.∵∠ACB =2∠EAB,∴∠ACB =∠BAD.∵ AB是⊙O的直径,∴∠ADB=∠ADC=90°,∴∠ACB +∠CAD=90°,∴∠BAD+∠CAD=90°.即BA⊥AC.∴ AC是⊙O的切线.(2)解:如图,过点F做FH⊥AB于点H.∵ AD⊥BD,FH⊥AB,∠DAE=∠EAB,∴ FH=FD,且FH∥AC.在Rt△ADC中,∵3cos4C=,8AC=,∴ CD=6.同理,在Rt△BAC中,可求得32 3BC=.∴143BD=.设DF=x,则FH=x,143BF x=-.∵ FH∥AC,∴∠BFH=∠ACB.∴3cos4FHBFHBF∠==.即31443xx=-.解得x=2,经检验,x=2是原分式方程的解,∴83BF=.【点睛】本题主要考查切线的判定及性质,圆周角定理的推论,解直角三角形,掌握切线的判定及性质,圆周角定理的推论,锐角三角函数,分式方程的解法是解题的关键.8.(1)证明见解析;(2)6.【解析】试题分析:(1)连接OD、CD,由AC为⊙O的直径知△BCD是直角三角形,结合E为BC 的中点知∠CDE=∠DCE,由∠ODC=∠OCD且∠OCD+∠DCE=90°可得答案;(2)设⊙O的半径为r,由OD2+DF2=OF2,即r2+42=(r+2)2可得r=3,即可得出答案.试题解析:(1)如图,连接OD、CD.∵AC为⊙O的直径,∴△BCD是直角三角形,∵E 为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O 的切线;(2)设⊙O 的半径为r ,∵∠ODF=90°,∴OD 2+DF 2=OF 2,即r 2+42=(r+2)2,解得:r=3,∴⊙O 的直径为6.考点:切线的判定与性质.9.(1)见解析;(2)⊙O 的半径长是32. 【解析】【分析】(1)过O 作OH ⊥AB 于H ,得到∠BHO=∠BCO=90°,根据角平分线的定义得到∠CBO=∠HBO ,根据全等三角形的性质得到OH=OC ,于是得到AB 与⊙O 相切; (2)求得BC 的长,然后证明BC 是切线,利用切线长定理求得BH 的长,证明△OAH ∽△BAC ,利用相似三角形的性质求解.【详解】(1)证明:如图,过O 作OH ⊥AB 于H ,∠ACB =90°∴∠BHO =∠BCO =90°,∵BO 平分∠ABC ,∴∠CBO =∠HBO ,∵BO =BO ,∴△CBO ≌△HBO (AAS ),∴OH =OC ,∴AB 与⊙O 相切;(2)解:∵在直角△ABC 中,AB =5,AC =4,∴BC 2222543,AB AC -=-=∵∠ACB =90°,即BC ⊥AC ,∴BC 是半圆的切线,又∵AB 与半圆相切,∴BH =BC =3,AH =AB ﹣BH =5﹣3=2.∵AB 是切线,∴OH ⊥AB ,∴∠OHA =∠BCA ,又∵∠A =∠A ,∴△OAH ∽△BAC , ∴,OH AH BC AC =即2,34OH = 解得OH =32.即⊙O 的半径长是32. 【点睛】本题考查了切线的判定,勾股定理,全等三角形的判定和性质,相似三角形的判定和性质,掌握以上知识是解题的关键.10.(1)见解析;(2)①2;②【解析】【分析】(1)根据切线的性质得∠OBQ =90°,根据平行线的性质得∠APO =∠POQ ,∠OAP =∠BOQ ,加上∠OPA =∠OAP ,则∠POQ =∠BOQ ,于是根据“SAS”可判断△BOQ ≌△POQ ,得到∠OPQ =∠OBQ =90°,根据切线的判定即可得证;(2)①由(1)得到∠OPQ =∠OBQ =90°,由于OB =OP ,所以当∠BOP =90°,四边形OPQB 为正方形,此时点C 、点E 与点O 重合,于是PE =PO =2;②根据菱形的判定,当OC =AC ,PC =EC ,四边形AEOP 为菱形,则OC =12OA =1,然后利用勾股定理计算出PC ,从而得到PE 的长.【详解】(1)证明:∵OQ ∥AP ,∴∠BOQ =∠OAP ,∠POQ =∠APO ,又∵OP =OA ,∴∠APO =∠OAP ,∴∠POQ =∠BOQ ,在△BOQ 与△POQ 中,=OB OP BOQ POQ OQ OQ =⎧⎪∠∠⎨⎪=⎩,∴△BOQ ≌△POQ (SAS ),∴∠OPQ =∠OBQ =90°,∵点P 在⊙O 上,∴PQ 是⊙O 的切线;(2)解:①∵∠OBQ =∠OPQ =90°,∴当∠BOP =90°,四边形OPQB 为矩形,而OB =OP ,则四边形OPQB 为正方形,此时点C 、点E 与点O 重合,PE =PO =12AB =2; ②∵PE ⊥AB ,∴当OC =AC ,PC =EC ,四边形AEOP 为菱形,∵OC =12OA =1,∴PC =,∴PE =2PC =.故答案为:2;.【点睛】本题考查了切线的判定与性质、全等三角形的判定与性质和菱形、正方形的判定方法;综合应用所学知识是解答本题的关键.11.(1)证明见解析;(2)1213【解析】【分析】(1)连接OD 和CD ,根据圆周角定理求出∠BDC=90°,根据等腰三角形的性质求出AD =BD ,根据三角形的中位线求出OD∥AC,求出OD⊥EF,根据切线的判定得出即可;(2)根据余角的性质得到∠ADF=∠ODC,等量代换得到∠ADF=∠ODC,根据勾股定理得到CD =12,根据三角函数的定义即可得到结论.【详解】(1)证明:连接OD ,CD ,∵BC 为⊙O 的直径,∴∠BDC=90°,即CD⊥AB,∵AC=BC ,AB =10,∴AD=BD =5,∵O 为BC 中点,∴OD∥AC,∵DF⊥AC,∴OD⊥EF,∵OD 过O ,∴直线DF 是⊙O 的切线;(2)∵∠ADC=∠BDC=90°,∠ODF=90°,∴∠ADF=∠ODC,∴OD=OC ,∴∠ODC=∠OCD,∴∠ADF=∠ODC,∵BD=5,BC =13,∴CD=12,∴cos ADF ∠=cos BCD ∠=1213CD BC =.【点睛】本题考查了切线的判定,求一个角的三角函数值,(1)要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可;(2)求一个角的三角函数值,要把这个角放入直角三角形中或作垂直,也可以根据等角的三角函数值相等进行转化. 12.(1)见解析;(2)1【解析】【分析】(1)根据等腰三角形的性质得到∠A=∠ADO=30°,求出∠DOB=60°,求出∠ODB=90°,根据切线的判定推出即可;(2)根据直角三角形的性质得到OD=12OB,于是得到结论.【详解】(1)证明:连接OD,∵OA=OD,∠A=∠ABD=30°,∴∠A=∠ADO=30°,∴∠DOB=2∠A=60°,∴∠ODB=180°﹣∠DOB﹣∠B=90°,∵OD是⊙O的半径,∴BD是⊙O的切线;(2)解:∵∠ODB=90°,∠DBC=30°,∴OD=12 OB,∵OC=OD,∴BC=OC=1,∴⊙O的半径OD的长为1.【点睛】本题主要考查的是圆的综合应用,掌握等腰三角形的性质以及圆切线的判定是解题的关键.13.(1)见解析;(2)r=409;(3)DM=8027,FG=89【解析】【分析】(1)连接OD,根据等腰三角形判断出∠ABC=∠ACB,进而得到OD∥AB即可得到求证;(2)连接OF,根据切线得到△AOF是直角三角形,根据tan∠A=43,设半径OF=OC=r,则可表示出AF=34r,AO=10-r,勾股定理求出半径即可得到结果;(3)现根据题意证出ODEF是正方形,求出BE,再根据△BEM∽△ODM,即可得到MD;在EF延长线上截取FT=DM,证明出OT=OM,再证明△OGT≌△OGM,则GM=GT=GF+FT=GF+DM,设出GF=a,根据勾股定理求解即可.【详解】解:(1)证明:连接OD∵OC,OD均为⊙O的半径,∴OC=OD,∴∠DCO=∠CDO又∵在△ABC中,AB=AC,∴∠ABC=∠ACB∴∠ABC=∠CDO,∴OD∥AB∵DE⊥AB,∴DE⊥OD∴DE是⊙O的切线.(2)解:连接OF,设⊙O的半径为r,则OF=r,OC=r∵⊙O与AB相切于点F,∴AB⊥OF,∴∠OF A=90°,在Rt△AOF中,∠OF A=90°,OF=r,tan∠A=4 3∴AF=34r,∴AO=5 4 r又∵AO=AC-OC=10-r,∴54r=10-r∴ r=409.(3)由(2)知r=409,∴AF=34r=103∵∠ODE=∠DEF=∠OFE=90°,∴四边形ODEF是矩形∵OF=OD,∴矩形ODEF是正方形,∴DE=EF=OF=40 9∴BE=AB-AF-EF=10-103-409=209∵∠BME=∠OMD,∠BEM=∠ODM=90°∴△BEM∽△ODM,∴EM BE DM OD即409DMDM=209409,解得DM=8027在EF延长线上截取FT=DM∵四边形ODEF是正方形,∴∠OFT=∠ODM=90°,OF=OD ∴△OFT≌△ODM,∴∠2=∠1,OT=OM∵∠DOF=90°,∠GOM=45°,∴∠GOF+∠1=45°,∴∠GOF+∠2=45°即∠GOT=45°,∴∠GOT=∠GOM又OG=OG,∴△OGT≌△OGM,∴GM=GT=GF+FT=GF+DM设GF=a,则EG=409-a,GM=8027+a,且EM=DE-DM=409-8027=4027在Rt△EMG中,EM2+EG2=GM2,即(4027)2+(409-a)2=(8027+a)2,解得a=89∴FG的长为89.【点睛】此题考查圆与特殊四边形的知识:切线的判定及性质,特殊四边形的证明,勾股定理等,难度较大,需要做辅助线.14.(1)见解析;(2)见解析;(3)3【解析】【分析】(1)连接OC,可证得∠CAD=∠BCD,由∠CAD+∠ABC=90°,可得出∠OCD=90°,即结论得证;(2)证明△ABC≌△AFC可得CB=CF,又CB=CE,则CE=CF;(3)证明△DCB∽△DAC,可求出DA的长,求出AB长,设BC=a,AC=2a,则由勾股定理可得AC的长.【详解】解:(1)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAD+∠ABC=90°,∵CE=CB,∴∠CAE=∠CAB,∵∠BCD=∠CAE,∴∠CAB=∠BCD,∵OB=OC,∴∠OBC=∠OCB,∴∠OCB+∠BCD=90°,∴∠OCD=90°,∴CD是⊙O的切线;(2)∵∠BAC=∠CAE,∠ACB=∠ACF=90°,AC=AC,∴△ABC≌△AFC(ASA),∴CB=CF,又∵CB=CE,∴CE=CF;(3)∵∠BCD=∠CAD,∠ADC=∠CDB,∴△DCB ∽△DAC , ∴CD AD AC BD CD BC==,∴1=, ∴DA =2,∴AB =AD ﹣BD =2﹣1=1,设BC =a ,AC a ,由勾股定理可得:222)1a +=,解得:a =3,∴3AC =. 【点睛】本题主要考查了切线的判刑、等腰三角形的性质、全等三角形的判定与性质,学会添加辅助线和灵活运用所学知识是解题的关键.15.(1)①OA ⊥EF ;②∠FAC=∠B ;(2)见解析;(3)见解析.【解析】【分析】(1) 添加条件是:①OA ⊥EF 或∠FAC=∠B 根据切线的判定和圆周角定理推出即可.(2) 作直径AM,连接CM ,推出∠M=∠B=∠EAC ,求出∠FAC+∠CAM=90°,根据切线的判定推出即可.(3)由同圆的半径相等得到OA=OB ,所以点O 在AB 的垂直平分线上,根据∠FAC=∠B ,∠ BAC=∠FAC ,等量代换得到∠BAC=∠B ,所以点C 在AB 的垂直平分线上,得到OC 垂直平分AB .【详解】(1)①OA ⊥EF ②∠FAC=∠B ,理由是:①∵OA ⊥EF ,OA 是半径,∴EF 是⊙O 切线,②∵AB 是⊙0直径,∴∠C=90°,∴∠B+∠BAC=90°,∵∠FAC=∠B,∴∠BAC+∠FAC=90°,∴OA⊥EF,∵OA是半径,∴EF是⊙O切线,故答案为:OA⊥EF或∠FAC=∠B,(2)作直径AM,连接CM,即∠B=∠M(在同圆或等圆中,同弧所对的圆周角相等),∵∠FAC=∠B,∴∠FAC=∠M,∵AM是⊙O的直径,∴∠ACM=90°,∴∠CAM+∠M=90°,∴∠FAC+∠CAM=90°,∴EF⊥AM,∵OA是半径,∴EF是⊙O的切线.(3)∵OA=OB,∴点O在AB的垂直平分线上,∵∠FAC=∠B,∠BAC=∠FAC,∴∠BAC=∠B,∴点C在AB的垂直平分线上,∴OC垂直平分AB,∴OC⊥AB.【点睛】本题考查了切线的判定,圆周角定理,三角形的内角和定理等知识点,注意:经过半径的外端且垂直于半径的直线是圆的切线,直径所对的圆周角是直角.16.(1)详见解析;(2)详见解析;(3)AD13【解析】【分析】(1)连接OD,由AD为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD与AC平行,得到OD与BC垂直,即可得证;(2)连接DF,证明△ABD∽△ADF,,由相似三角形的性质即可证得结论;(3)连接EF,设圆的半径为r,由sinB的值,利用锐角三角函数定义求出r的值,由直径所对的圆周角为直角,得到EF与BC平行,得到sin∠AEF=sinB,进而求出AF的长,再根据(2)的结论即可求得AD的长.【详解】(1)如图,连接OD,∵AD为∠BAC的角平分线,∴∠BAD=∠CAD,∵OA=OD,∴∠ODA=∠OAD,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODC=90°,∴OD⊥BC,∴BC为圆O的切线;(2)连接DF,由(1)知BC为圆O的切线,∴∠FDC=∠DAF,∴∠CDA=∠CFD,∴∠AFD=∠ADB,∵∠BAD=∠DAF,∴△ABD∽△ADF,∴AB AD AD AF=,即AD2=AB•AF;(3)连接EF,在Rt△BOD中,sinB=513 ODOB=,设圆的半径为r,可得5813 rr=+,解得:r=5,∴AE=10,AB=18,∵AE是直径,∴∠AFE=∠C=90°,∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF=513 AFAE=,∴AF=AE•sin∠AEF=10×513=50 13,∵AD2=AB•AF∴5013181313AB AF⋅=⨯=.【点睛】本题是圆的综合题,考查的知识点有切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.17.(1)详见解析;(2)4【解析】【分析】(1)首先利用等腰三角形的性质和角平分线的定义得出∠EBC=∠OEB,然后得出OE∥BC,则有∠OEA=∠ACB=90°,则结论可证.(2)连接OE、OF,过点O作OH⊥BF交BF于H,首先证明四边形OHCE是矩形,则有 ,然后利用等腰三角形的性质求出BH的长度,再利用勾股定理即可求出OH的OH CE长度,则答案可求.【详解】(1)证明:连接OE.∵OE=OB,∴∠OBE=∠OEB.∵BE平分∠ABC,∴∠OBE=∠EBC,∴∠EBC=∠OEB,∴OE∥BC,∴∠OEA=∠ACB.∵∠ACB=90°,∴∠OEA=90°∴AC是⊙O的切线;(2)解:连接OE、OF,过点O作OH⊥BF交BF于H,∵OH ⊥BF ,90OHC ∴=︒ .90OHC ACB OEC =∠=∠=︒∴四边形OECH 为矩形,∴OH =CE .∵,OB OF OH BF =⊥,BF =6,∴BH =3.在Rt △BHO 中,OB =5,∴OH 2253-4,∴CE =4.【点睛】本题主要考查切线的判定,等腰三角形的性质,矩形的性质,勾股定理,掌握切线的判定,等腰三角形的性质,矩形的性质,勾股定理是解题的关键.18.(1)见解析;(2)203【解析】【分析】(1)从切线的判定为目标,来求BD ⊥AB ,连接AC 通过相似来证得;(2)通过已知条件和第一步求得的三角形相似求得BD 的长度.【详解】(1)证明:连接AC ,∵AB 是⊙O 的直径∴∠ACB =90°又∵OD ⊥BC∴AC∥OE∴∠CAB=∠EOB由AC对的圆周角相等∴∠AEC=∠ABC又∵∠AEC=∠ODB∴∠ODB=∠OBC∴△DBF∽△OBD∴∠OBD=90°即BD⊥AB又∵AB是直径∴BD是⊙O的切线.(2)∵OD⊥弦BC于点F,且点O圆心,∴BF=FC∴BF=4由题意OB是半径即为5∴在直角三角形OBF中OF为3由以上(1)得到△DBF∽△OBD∴BD OB BF OF=即得BD=203.【点睛】本题考查了切线的判定及其应用,通过三角形相似求得,本题思路很好,是一道不错的题.19.(1)见解析;(232【解析】【分析】(1)连接OD ,证//OD BC ,则OD DE ⊥,即可证明DE 是O 的切线;(2)连AD 、CD ,作DF AB ⊥,证明Rt Rt BDF BDE ∆∆≌,Rt Rt ADF CDE ∆∆≌,从而求出AB 长,即为O 直径. 【详解】解:(1)连OD ,∵OB OD =,∴ODB OBD ∠=∠,∵BD 平分ABC ∠,∴OBD CBD ∠=∠,∴ODB CBD ∠=∠,∴//OD BC ,∵DE BC ⊥,∴90E ∠=︒,∴90ODE ∠=︒,即OD DE ⊥,∴DE 是O 的切线;(2)连AD 、CD ,作DF AB ⊥,∵在O 中,ABD CBD ∠=∠,∴AD CD =,又∵OD DE ⊥,DF AB ⊥,∴DE DF =,在Rt △BDE 和Rt △BDF 中BD=BD DE=DF ⎧⎨⎩∴Rt Rt BDF BDE ∆∆≌(HL ),在Rt △ADF 和Rt △CDE 中AD=DC DF=DE ⎧⎨⎩∴Rt Rt ADF CDE ∆∆≌(HL ),∴1BF BE ==,1AF CE ==,∴32AB =+,即O 的直径为32+.【点睛】本题是对圆知识的综合考查,熟练掌握圆的性质定理是解决本题的关键.20.(1)证明见解析;(2)12cos 13ADF ∠=. 【解析】【分析】(1)连接OD 和CD ,根据圆周角定理求出∠BDC=90°,根据等腰三角形的性质求出AD=BD ,根据三角形的中位线求出OD ∥AC ,求出OD ⊥EF ,根据切线的判定得出即可;(2)根据余角的性质得到∠ADF=∠ODC ,等量代换得到∠ADF=∠OCD ,根据勾股定理得到CD=12,根据三角函数的定义即可得到结论.【详解】(1)证明:如图,连接OD ,CD ,∵BC 为⊙O 的直径,∴∠BDC=90°(直径所对的圆周角是90°),即CD ⊥AB ,∵AC=BC ,AB=10,∴AD=BD=5,∵O 为BC 中点,∴OD ∥AC ,∵DF ⊥AC ,∴∠DFC=90°,∴∠FDO=180°-90°=90°(两直线平行,同旁内角互补),∴OD ⊥EF ,又∵OD 过圆心O 点,∴直线DF 是⊙O 的切线;(2)∵∠ADC=∠BDC=90°,∠ODF=90°,∴∠ADF=∠ODC ,又∵OD=OC ,∴∠ODC=∠OCD ,∴∠ADF=∠OCD (等量替换),∵BD=5,BC=13,∴(勾股定理),12cos cos 13ADF BCD ∠=∠=; 【点睛】 本题主要考查了切线的判断、等腰三角形的性质、解直角三角形、圆周角定理、勾股定理的知识点,能综合运用知识点进行求解是解题的关键.21.(1)EF 与⊙O 相切.理由见解析;(2)⊙O 的周长为2πcm .【解析】【分析】(1)延长BO 交AC 于H ,如图,先证明△ABC 为等边三角形,利用点O 为△ABC 的外心得到BH ⊥AC ,由于AC ∥EF ,所以BH ⊥EF ,于是根据切线的判定定理即可得到EF 为⊙O 的切线;(2)连结OA ,如图,根据等边三角形的性质得∠OAH =30°,AH =CH =12AC =2,再在Rt △AOH 中,利用三角函数和计算出OA =1,然后根据圆的周长公式计算.【详解】(1)EF 与⊙O 相切.理由如下:延长BO 交AC 于H ,如图,∵∠BAC =∠BDC =60°,而∠ACB =60°,∴△ABC 为等边三角形,∵点O 为△ABC 的外心,∴BH ⊥AC ,∵AC ∥EF ,∴BH ⊥EF ,∴EF 为⊙O 的切线;(2)连结OA ,如图,∵△ABC 为等边三角形,∴OA 平分∠ABC ,∴∠OAH =30°,∵OH ⊥AC ,∴AH =CH =12AC 在Rt △AOH 中,∵cos ∠OAH =AH OA,∴OA 1, ∴⊙O 的周长=2π×1=2π(cm ).【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了等边三角形的判定与性质.22.(1)见解析;(2)3π.【解析】【分析】(1)连接OD,求出OD//BC,求出OD⊥DC,根据切线的判定得出即可;(2)求出∠CBD=30°,求出∠AOD=∠ABC=60°,求出半径OA,根据弧长公式求出即可.【详解】(1)连接OD,∵OD=OB,∴∠ODB=∠OBD,∵BD平分∠ABC,∴∠CBD=∠OBD,∴∠CBD=∠ODB,∴OD//BC,∴∠C+∠ODC=180°,∵∠C=90°.∴∠ODC=90°,即OD⊥DC,∵OD过O,∴CD是⊙O的切线;(2)∵∠CDB=60°,∠C=90°,∴∠CBD=30°,∵BD平分∠ABC,∴∠ABC=60°,∵OD//BC,∴∠AOD=∠ABC=60°,∵直径AB=18,∴半径OA=9,∴弧AD的长是609180π⨯=3π.【点睛】本题考查了切线的判定,平行线的性质,等腰三角形的性质,弧长公式等知识点,能灵活运用知识点进行推理是解此题的关键.23.(1)见解析;(2)见解析;(3)AB=【解析】【分析】(1)根据尺规作图的规则作图即可.(2)根据角平分线证明边和角,再根据切线长定理求证即可.(3)先在(2)的前提下,根据三角形相似,求出圆的半径,再根据△ODC∽△ABC求出AB即可.【详解】(1)作图如下:(2)证明:过点O 作OD ⊥AC ,垂足为D .∵∠ABC=90°,∴OB ⊥AB ,∵AO 平分∠BAC 且OB ⊥AB ,OD ⊥AC ,∴OB=OD ,∴⊙O 与直线AC 相切.(2)由(1)可知,∠ODC=90°,∵BF 为直径∴∠BDF=90°,∴∠ODC=∠BDF ,∴∠BDO=∠CDF ,∵OB=OD ,∴∠BDO=∠DBO ,∴CDF=∠DBO ,且∠DCF=∠BCD ,∴△DCF ∽△BCD ,∴2CD CF BC =⋅,∵CD23=,CF=2,∴BC=6,∴OB=OF=2,∴OC=4,OD=2,∵△ODC∽△ABC,∴OD CDAB BC=,OD=2,CD23=∴23AB=.【点睛】此题考查尺规作图的方法,切线长定理及三角形相似,知识面较广,难度较难.24.(1)见解析;(2)3【解析】【分析】(1)由AB=BC,可得△ABC是等腰三角形,且BE⊥AC可得AE=CE,根据中位线定理可得OE∥AB,且AB⊥EG可得OE⊥EG,即可证EG是⊙O的切线(2)易证得△OBE是等边三角形,根据三角函数求BE,CE的长,再根据三角形的中位线的性质即可求得BF的长.【详解】(1)如图:连接OE,BE,∵AB=BC,∴∠C=∠A,∵BC是直径,∴∠CEB=90°,且AB=BC,∴CE=AE ,且CO=OB ,∴OE ∥AB ,∵GE ⊥AB ,∴EG ⊥OE ,且OE 是半径,∴EG 是⊙O 的切线;(2) ∵BG = OB ,OE ⊥EG ,∴BE= 12OG=OB=OE , ∴△OBE 为等边三角形,∴∠CBE = 60°, ∵AC = 6,∴CЕ = 3,BЕ =3tan 60 ,∴∵ОB = BG ,OE//AB ,∴BF= 12 【点睛】本题考查了切线的性质和判定,等腰三角形的判定和性质,三角形中位线的性质,解直角三角形等,关键是灵活运用切线的判定解决问题.25.(1)见解析;(2)见解析;(3)【解析】【分析】(1)连接OC ,根据角平分线的定义、等腰三角形的性质得到∠DAC=∠OCA ,得到OC ∥AD ,根据平行线的性质得到OC ⊥PD ,根据切线的判定定理证明结论;(2)根据圆周角定理、三角形的外角的性质证明∠PFC=∠PCF ,根据等腰三角形的判定定理证明;(3)连接AE ,根据正切的定义求出BC ,根据勾股定理求出AB ,根据等腰直角三角形的性质计算即可.【详解】。
人教版九年级数学上册切线的判定与性质练习题一、选择题1. 下列说法中, 正确的是( )A. 与圆有公共点的直线是圆的切线B. 经过半径外端的直线是圆的切线C. 经过切点的直线是圆的切线D. 圆心到直线的距离等于半径的直线是圆的切线2.如图, AB是⊙O的直径, AC切⊙O于A, BC交⊙O于点D, 若∠C=70°, 则∠AOD的度数为.. )A. 70°B. 35°C. 20°D. 40°3.如图, 线段AB是⊙O的直径, 点C, D为⊙O上的点, 过点C作⊙O的切线交AB的延长线于点E, 若∠E=50°, 则∠CDB等于( )A. 20°B. 25°C. 30°D. 40°4.如图, 等腰直角三角形ABC中, AB=AC=8, O为BC的中点, 以O为圆心作半圆, 使它与AB, AC 都相切, 切点分别为D, E, 则⊙O的半径为( )A. 8B. 6C. 5D. 45.如图, CD是⊙O的直径, 弦AB⊥CD于点G, 直线EF与⊙O相切于点D, 则下列结论中不一定正确的是( )A. AG=BGB. AB∥EFC. AD∥BCD. ∠ABC=∠ADC二、填空题6. 如图, 在⊙O中, 弦AB=OA, P是半径OB的延长线上一点, 且PB=OB, 则PA与⊙O的位置关系是_________.7. 如图, △ABC的一边AB是⊙O的直径, 请你添加一个条件, 使BC是⊙O的切线, 你所添加的条件为________________.8. 如图, AB是⊙O的直径, O是圆心, BC与⊙O切于点B, CO交⊙O于点D, 且BC=8, CD=4, 那么⊙O 的半径是______.9.如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=_______度.10、如图, AB为⊙O的直径, 直线l与⊙O相切于点C, AD⊥l, 垂足为D, AD交⊙O于点E, 连接OC, BE.若AE=6, OA=5, 则线段DC的长为______.如图, 已知△ABC内接于⊙O, BC是⊙O的直径, MN与⊙O相切, 切点为A, 若∠MAB=30°, 则∠B=________度.三、解答题12. 如图, 在Rt△ABC中, ∠ABC=90°, ∠BAC的平分线交BC于D, 以D为圆心, DB长为半径作⊙D, 求证: AC与⊙D相切.13. 如图, AB是⊙O的直径, 点C在AB的延长线上, CD与⊙O相切于点D, CE⊥AD, 交AD的延长线于点E.求证: ∠BDC=∠A.14. 如图, 在Rt△ABC中, ∠C=90°, BD是角平分线, 点O在AB上, 以点O为圆心, OB为半径的圆经过点D, 交BC于点E.求证: AC是⊙O的切线.15. 如图, AB为⊙O的直径, PD切⊙O于点C, 交AB的延长线于点D, 且∠D=2∠CAD.(1)求∠D的度数;(2)若CD=2, 求BD的长.16、如图,AB 为⊙O 的直径,BC 切⊙O 于B ,AC 交⊙O 于P ,CE=BE ,E 在BC 上.求证:PE 是⊙O 的切线.17、已知:如图,在Rt△AB C 中,∠ACB=90°,以AC 为直径的⊙O 交AB 于点D,过点D 作⊙O 的切线DE 交BC 于点E.求证:BE=CE.18、已知AB 是⊙O 的直径, ⊙O 过BC 的中点D, 且DE ⊥AC.求证: DE 是⊙O 的切线.19. 如图, 已知直线PA 交⊙O 于A, B 两点, AE 是⊙O 的直径, 点C 为⊙O 上一点, 且AC 平分∠PAE, 过C 作CD ⊥PA, 垂足为D.(1)求证: CD 为⊙O 的切线;(2)若DC +DA =6, ⊙O 的直径为10, 求AB 的长.E D C O AB。
人教版九年级上册数学24章圆-切线的性质与判定的综合应用一、解答题1.如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 延长线相交于点P .若∠COB =2∠PCB ,求证:PC 是⊙O 的切线.2.如图,AB 是O 的直径,CD 是O 的切线,切点为C ,BE CD ⊥,垂足为E ,连接,AC BC .(1)求证:BC 平分ABE ∠;(2)若60A ∠=︒,2OA =,求CE 的长.3.已知:如图,AB 是⊙O 的直径,BC 是和⊙O 相切于点B 的切线,⊙O 的弦AD 平行于OC .求证:DC 是⊙O 的切线.4.如图,AB 是圆O 的直径,点C 在圆O 上,点D 在AB 的延长线上,CD 是O 的切线.(1)证明:ACO BCD ∠=∠;(2)若O 的半径是5,12CD =,求BD 的长.5.如图,AB 是圆O 的直径,点C 是圆O 上一点,点D 是弧BC 的中点,连接AC 、BD ,过点D 作AC 的垂线EF ,交AC 的延长线于点E ,交AB 的延长线于点F . (1)判断直线EF 与圆O 的位置关系,并说明理由; (2)若AB =5,BD =3,求线段AE 的长.6.已知P 是O 外一点,PO 交O 于点C ,2OC CP ==,弦AB OC AOC ⊥∠,的度数为60°,连接PB .()1求BC 的长;()2求证:PB 是O 的切线.7.如图,以AB为直径的⊙O交△ABC的边AC于D,且AB2=AC•AD.求证:BC是⊙O的切线.8.如图,P A,PB分别与⊙O相切于点A,B,AC为弦,BC为⊙O的直径,若∠P=60°,PB=2cm.(1)求证:△P AB是等边三角形;(2)求AC的长.9.如图,AB是⊙O的直径,C、D为⊙O上两点,且=AC BD,过点O作OE⊥AC于点E⊙O的切线AF交OE的延长线于点F,弦AC、BD的延长线交于点G.(1)求证:∠F=∠B;(2)若AB=12,BG=10,求AF的长.10.如图,已知AB为O的直径,C为O上一点,AD和过C点的切线互相垂直,垂足为D.求证:AC平分DAB.11.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,请直接写出弧AE的长.12.如图,点C在以AB为直径的☉O上,BD平分∠ABC交☉O于点D,过D作BC 的垂线,垂足为E.(1)求证:DE与☉O相切;(2)请用线段AB、BE表示CE的长,并说明理由;(3)若AB=5,BE=4,求BD的长.13.在△ABC 中,AB =5,BC =3,CA =4,点P 在∠ABC 平分线上,以点P 为圆心作⊙P .(1)如图,当⊙P 经过点C 时,求证:⊙P 与直线AB 相切; (2)当⊙P 同时与直线BC 、AC 相切时,求⊙P 的半径.14.如图,在RtΔABC 中,∠ACB =90°,D 为AB 边上的一点,以AD 为直径的⊙O 交BC 于点E ,过点C 作CG ⊥AB ,垂足为G ,交AE 于点F ,过点E 作EP ⊥AB ,垂足为P ,∠EAD =∠DEB .(1)求证:BC 是⊙O 的切线; (2)求证:CE =EP ;(3)若CG =12,AC =15,求四边形CFPE 的面积.15.如图,AB 是⊙O 的直径,点P 是⊙O 外一点,P A 切⊙O 于点A ,连接OP ,过点B 作BC //OP 交⊙O 于点C ,点E 是AB 的中点. (1)求证:PC 是⊙O 的切线; (2)若10,6AB BC ==,求CE 的长.16.如图,ABC 中,90,ACB BAC ∠=︒∠的平分线交BC 于点O ,以点O 为圆心,OC 长为半径作圆.(1)求证:AB 是O 的切线;(2)若30,4CAO OC ∠=︒=,求阴影部分面积.17.如图,四边形ABCD 为矩形,以AD 为直径作O ,过点C 作CF 与O 相切于点F ,连接AF 交BC 于点E ,连接OC . (1)求证:四边形AOCE 为平行四边形; (2)若点F 为AE 的中点,2AD =,求DC 的长.18.如图,已知AB 是O 的直径,PA 与O 相切于点A ,点C 是O 上异于点A ,B 的一点,且PA PC =.(1)求证:PC 是O 的切线;(2)若30BAC ∠=︒,6AB =,求PA 的长.参考答案1. 【详解】 连接AC ,∵OA =OC , ∴∠A =∠ACO . ∴∠COB =2∠ACO . 又∵∠COB =2∠PCB , ∴∠ACO =∠PCB . ∵AB 是⊙O 的直径, ∴∠ACO+∠OCB =90°.∴∠PCB+∠OCB =90°,即OC ⊥CP . ∵OC 是⊙O 的半径, ∴PC 是⊙O 的切线. 2.(1)证明:∵CD 是O 的切线, ∴OC DE ⊥, 又∵BE DE ⊥, ∴OCBE ,∴OCB CBE ∠=∠, ∴OBC CBE ∠=∠, 即BC 平分ABE ∠;(2)解:∵AB 为O 的直径, ∴90ACB ∠=︒, ∵60A ∠=︒,∴OAC 是等边三角形,2AC OA ==. ∴24AB OA ==,∴BC ===∵1302OBC AOC ∠=∠=︒,且OBC CBE ∠=∠,∴30CBE ∠=︒.∴12CE BC ==3.证明:连接OD,∵BC 是和⊙O 相切于点B 的切线 ∴∠CBO=90°. ∵AD 平行于OC ,∴∠COD=∠ODA ,∠COB=∠A ; ∵∠ODA=∠A ,∴∠COD=∠COB ,OC=OC ,OD=OB , ∴△OCD ≌△OCB , ∴∠CDO=∠CBO=90°. ∴DC 是⊙O 的切线. 4. 证明:(1)AB 是圆О的直径,90ACB ∴∠=︒,即90ACO OCB ∠+∠=︒,又CD 是圆О的切线,90OCB BCD ∴∠+∠=︒,ACO BCD ∴∠=∠;(2)在Rt OCD △中,由勾股定理得222OC CD OD +=,512OC OD CD ===,∴13OD ∴1358BD OD OB =-=-=.BD ∴的长为8.5.解:(1)相切, 理由如下: 连接OD ,∵点D 是弧BC 的中点, ∴∠BOD =∠F AE , ∴OD ∥AE , ∵AE ⊥EF , ∴OD ⊥EF ,∴直线EF 是⊙O 的切线,即直线EF 与⊙O 相切; (2)连接AD ,BD ,∵AB 是⊙O 的直径, ∴∠ADB =90°,∵AB =5,BD =3, ∴AD =4,∵∠E =∠ADB =90°,∠BAD =∠DAE , ∴△ABD ∽ADE , ∴AE AD =ADAB, ∴AE =3.2. 6.()1解:如图,连接OB .AB OC ⊥,60AOC ∠=︒,30OAB ∴∠=︒, OB OA =,30OBA OAB ∴∠=∠=︒, 60BOC ∴∠=︒,OB OC =,OBC ∴的等边三角形,BC OC ∴=.又2OC =, 2BC ∴=;()2证明:由()1知,OBC 的等边三角形,则60COB ∠=︒,BC OC =.OC CP =, BC PC ∴=, P CBP ∴∠=∠.又60OCB ∠=︒,2OCB P ∠=∠,30P∴∠=︒,90OBP∴∠=︒,即OB PB⊥.又OB是半径,PB∴是O的切线.7.证明:连接BD,∵AB是⊙O的直径∴∠ADB=90°,∵AB2=AC•AD,∴AB AC AD AB=,又∵∠A=∠A,∴△ABC∽△ADB,∴∠ABC=∠ADB,∴∠ABC=90°,∴BC⊥AB,∴BC是⊙O的切线.8.解:(1)∵P A,PB分别与⊙O相切于点A,B,∴P A=PB,且∠P=60°,∴△P AB是等边三角形;(2)∵△P AB是等边三角形;∴PB=AB=2cm,∠PBA=60°,∵BC是直径,PB是⊙O切线,∴∠CAB=90°,∠PBC=90°,∴∠ABC=30°,∴tan∠ABC=ACAB∴AC=2.9.(1)证明:∵AC BD=,∴AD BC=.∴∠GAB=∠B,∵AF是⊙O的切线,∴AF⊥AO.∴∠GAB+∠GAF=90°.∵OE⊥AC,∴∠F+∠GAF=90°.∴∠F=∠GAB,∴∠F=∠B;(2)解:连接OG.∵∠GAB=∠B,∴AG=BG.∵OA=OB=6,∴OG⊥AB.∴8 OG==,∵∠F AO=∠BOG=90°,∠F=∠B,∴△F AO∽△BOG,∴AF OB AO OG=.∴66982OB AOAFOG⋅⨯===.10.连接OC .∵CD 是O 的切线,∴OC CD ⊥.∵AD CD ⊥,∴OC AD ∥,∴12∠=∠.∵OC OA =,∴13∠=∠,∴23∠∠=.∴AC 平分DAB ∠.11.(1)证明:如图,连接OD ,∵OB=OD ,∴∠ABC=∠ODB ,∵AB=AC ,∴∠ABC=∠ACB ,∴∠ODB=∠ACB ,∴OD ∥AC ,∵过点D 作⊙O 的切线DF ,交AC 于点F ,∴DF ⊥OD ,∴DF ⊥AC .(2)解:如图,连接OE ,∵DF ⊥AC ,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE ,∴∠AOE=90°,∵⊙O 的半径为4,∴弧AE 的长为90π42π180⨯=.12.解:(1)连接OD ,∵OD =OB ,∴∠ODB =∠OBD ,∵BD 平分∠ABC ,∴∠OBD =∠CBD ,∴∠ODB =∠CBD ,∴OD ∥BE ,∵BE ⊥DE ,∴OD ⊥DE ,∴DE 与⊙O 相切;(2)CE =AB -BE ,理由如下:过D 作DH ⊥AB 于H ,∵BD 平分∠ABC ,DE ⊥BE ,∴DH =DE ,在Rt △BED 与Rt △BHD 中,DE DHBD BD =⎧⎨=⎩,∴Rt △BED ≅Rt △BHD (HL ),∴BH =BE ,∵∠DCE=∠A,∠DGA=∠DEC=90°,∴△ADH≅△CDE(AAS),∴AH=CE,∵AB=AH+BH,∴AB=BE+CE,∴CE=AB-BE;(2)∵AB是⊙O的直径,∴∠ADB=90°,∵BE⊥DE,∴∠ADB=∠BED=90°,∵BD平分∠ABC,∴∠ABD=∠DBE,∴△ABD∽△DBE,∴AB BD BD BE=,∴54BD BD=,∴BD.13.证明:(1)如图,过点P作PD垂直AB,交AB于D点,∵AB =5,BC =3,CA =4,∴222222534AB AC BC ==+=+ ,∴∠ACB =90°,∴PC ⊥BC ,∵BP 平分∠ABC ,PC ⊥BC ,PD ⊥AB ,∴PC =PD =r ,∴⊙P 与直线AB 相切.(2)如图,当⊙P 同时与直线BC 、AC 相切时,点P 在∠ACB 或∠ACM 的角平分线上存在两种情况:①当圆心在△ABC 内部,即⊙P 1分别与直线BC 、AC 相切时,∴P 1G =P 1F =P 1E =r ,P 1G ⊥BC ,P 1E ⊥AB ,P 1F ⊥AC ,∴111ABC ABP ACP BCP S S S S ∆∆∆∆=++=111111222AB PE AC PF BC PG ⋅+⋅+⋅=12ABC C r ∆⋅,∴1234221345ABC ABC S r C ∆∆⨯⨯⨯===++,②当圆心在△ABC 外部,⊙P 2分别与直线BC 、AC 相切时, ∴P 2M =P 2N =P 2Q =R ,P 2M ⊥BC ,P 2Q ⊥AB ,P 2N ⊥AC , ∴S △ABC =222222111222ABP BCP ACP S S S AB PQ BC P M AC P N ∆∆∆+-=⋅+⋅-⋅1()2AB BC AC R =+-⋅, ∴1234223534ABC S R AB BC AC ∆⨯⨯⨯===+-+-,综上,⊙P 的半径为1或3.14.证明:(1)连接OE ,∵OE =OD ,∴∠OED =∠ADE ,∵AD 是直径,∴∠AED =90°,∴∠EAD +∠ADE =90°,又∵∠DEB =∠EAD ,∴∠DEB +∠OED =90°,∴∠BEO =90°,∴OE ⊥BC ,∴BC 是⊙O 的切线;(2)∵∠BEO =∠ACB =90°,∴AC∥OE,∴∠CAE=∠OEA,∵OA=OE,∴∠EAO=∠AEO,∴∠CAE=∠EAO,∴AE为∠CAB的角平分线,又∵EP⊥AB,∠ACB=90°,∴CE=EP;(3)连接PF,∵CG=12,AC=15,∴AG,∵∠CAE=∠EAP,∴∠AEC=∠AFG=∠CFE,∴CF=CE,∵CE=EP,∴CF=PE,∵CG⊥AB,EP⊥AB,∴CF∥EP,∴四边形CFPE是平行四边形,又∵CF=PF,∴四边形CFPE是菱形,∴CF=EP=CE=PF,∵∠CAE=∠EAP,∠EP A=∠ACE=90°,CE=EP,∴△ACE≌△APE(AAS),∴AP=AC=15,∴PG=AP-AG=15-9=6,∵PF2=FG2+GP2,∴CF2=(12-CF)2+36,∴CF=152,∴四边形CFPE的面积=CF×GP=152×6=45.15.(1)证明:如图,连接OC ,∵P A切⊙O于A∴PAO90∠=∵OP∥BC∴∠AOP=∠OBC,∠COP=∠OCB∵OC=OB∴∠OBC=∠OCB∴∠AOP=∠COP又∵OA=OC,OP=OP∴△P AO≌△PCO∴∠P AO=∠PCO=90 º又∵OC是⊙O的半径∴PC是⊙O的切线(2)解:连接AE,BE,AC过点B作BM⊥CE于点M∴∠CMB =∠EMB =∠AEB =90ºAB 是直径,∴90ACB ∠=︒,10,6AB BC ==8AC ∴,84cos 105AC CAB AB ∴∠=== 又∵点E 是AB 的中点∴∠ECB =∠CBM =∠ABE =45º,∴BE =AB ⨯cos45︒=cos 456CM BC =⨯︒==CB CB = CAB CEB ∴∠=∠4cos cos 5CEB CAB ∴∠=∠=∴EM =cos BE CEB ⨯∠45==∴CE =CM +EM =∴CE 的长为16.解:(1)证明:过O 作⊥OD AB 于D ,如图所示,90,ACB ∠=︒OC AC ∴⊥, OA 平分,BAC ∠OD OC ∴=, OC 为O 的半径,OD ∴为O 的半径,AB ∴是O 的切线.(2)∵OD ⊥AB ,∴∠ODB =90°,∵∠CAO =30°,∠ACB =90°,∴AC∵∠AOC =90°-30°=60°,∴∠COD =2∠AOC =120°,由(1)得:AB 是⊙O 的切线,OC ⊥AC ,∴AC 为⊙O 的切线,∴AD =AC∴阴影部分面积=△AOC 的面积+△AOD 的面积-扇形OCD 的面积21112044422360π⨯=⨯+⨯- 163π=. 17.(1)如图,连接DF 、OF ,DF 交于G ,∵AD 为O 直径,∴∠AFD =90°,∵CF与O相切于点F,∴∠OFC=90°,∵四边形ABCD为矩形,∴∠ADC=∠DAB=90°,OA//CE,∴DC是O切线,∴DC=CF,∵OD=OF,∴OC是线段DF的垂直平分线,∴∠OGD=90°,∴OC//AE,∴四边形AOCE是平行四边形.(2)如图,连接OE、OF,∵AD=2,OA=OD,∴OF=OA=1,∵四边形AOCE是平行四边形,∴OA=CE,∵AD=BC,∴OA=BE,∵OA//BE,∴四边形AOEB是平行四边形,∵∠DAB=90°,∴四边形AOEB是矩形,∴∠AOE=90°,OE=AB=DC,∵F为AE中点,∴AE =2OF =2,∴DC =OE18.解:(1)连接OC .∵PA 是O 的切线,AB 是O 的直径,∴PA AB ⊥(圆的切线垂直于过切点的半径)∴90PAB ∠=︒,∴90PAC CAB ∠+∠=︒,∵PA PC =,∴PAC PCA ∠=∠(等边对等角)∵OA OC =,∴CAB ACO ∠=∠,∴90PCA ACO ∠+∠=︒,即90PCO ∠=︒,∴PC OC ⊥,又∵OC 是O 的半径,∴PC 是O 的切线(经过半径外端并且垂直于这条半径的直线是圆的切线). (2)连接BC .∵90PAB ∠=︒,30BAC ∠=︒,∴60PAC ∠=︒,又∵PA PC =,∴PAC △是等边三角形(有一个角是60︒的等腰三角形是等边三角形) ∴PA AC =,∵AB 是O 的直径,∴90ACB ∠=︒(直径所对的圆周角是直角)在Rt ACB 中,90ACB ∠=︒,30BAC ∠=︒,6AB =,∴3BC =,∴AC∴PA AC ==答:PA 的长是。
中考数学总复习《圆的切线证明》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________⊥于点D,E是AC上一点,以BE为直径的O交1.如图,在ABC中,AB=AC,AD BC∠=︒.BC于点F,连接DE,DO,且90DOB(1)求证:AC是O的切线;(2)若1DF=,DC=3,求BE的长.、2.如图,在O中,BC为非直径弦,点D是BC的中点,CD是ABC的角平分线.∠=∠;(1)求证:ACD ABC(2)求证:AC是O的切线;(3)若1BD=,3BC=时,求弦BD与BD围城的弓形面积.是O的切线;=,且AC BD已知等腰ABC,AB=AC为直径作O交BC于点延长线于点F.是O的切线;CD=2,求O的半径.与O相离,,交O于点A是O上一点,连于点C,且PB(1)求证:PB是O的切线;(2)若25AC=,OP=5,求O的半径.6.如图,点O是ABC的边AC上一点,以点O为圆心,OA为半径作O,与BC相切于点E,连接OB,OE,O交OB于点D,连接AD并延长交CB的延长线于点F,且AOD EOD.∠=∠(1)求证:AB是O的切线;BC=,AC=8,求O的半径.(2)若107.如图,AB 是O 的直径,AC 是O 的弦.(1)尺规作图:过点C 作O 的切线,交AB 的延长线于点D (保留作图痕迹,不写作法);(2)若2BD OB ==,求AC 的长.8.如图,ABCD 的顶点,,A B C 在O 上,AC 为对角线,DC 的延长线交O 于点E ,连接,,OC OE AE .(1)求证:AE BC =;(2)若AD 是O 的切线6,40OC D =∠=︒,求CE 的长.9.如图,Rt ABC △中90C ∠=︒,点E 为AB 上一点,以AE 为直径的O 上一点D 在BC 上,且AD 平分BAC ∠.(1)证明:BC 是O 的切线;(2)若42BD BE ==,,求AB 的长.10.如图,已知O 的弦AB 等于半径,连接OA 、OB ,并延长OB 到点C ,使得BC OB =,连接AC ,过点A 作AE OB ⊥于点E ,延长AE 交O 于点D .(1)求证:AC 是O 的切线;(2)若6BC =,求AD 的长.11.如图,线段AB 经过O 的圆心.O 交O 于A ,C 两点,AD 为O 的弦,连接BD ,30A ABD ∠=∠=︒连接DO 并延长交O 于点E ,连接BE 交O 于点F .(1)求证:BD 是O 的切线;(2)若1BC =,求BF 的长.12.如图,AB 为O 的直径,C 为O 上一点,CD BD ABC CBD ⊥∠=∠.(1)求证:CD 为O 的切线.(2)当1,4BD AB ==时,求CD 的长.13.如图 已知AB 是O 的直径 BC AB ⊥于B E 是OA 上的一点ED BC ∥交O 于D OC AD ∥ 连接AC 交ED 于F .(1)求证:CD 是O 的切线;(2)若8AB = 1AE = 求ED EF 的长.14.如图 AB 是O 的直径 AC BC ,是弦 点D 在AB 的延长线上 且DCB DAC ∠=∠ O 的切线AE 与DC 的延长线交于点E .(1)求证:CD 是O 的切线;(2)若O 的半径为2 30D ∠=︒ 求AE 的长.15.如图 已知AB 是O 的直径 点P 在BA 的延长线上 弦BC 平分PBD ∠且BD PD ⊥于点D .(1)求证:PD 是O 的切线.(2)若8cm 6cm AB BD , 求弧AC 的长.为O的直径在O上连接的延长线交于E.是O的切线;∠tan BDF为O的直径的平分线交O于点E BC的延长线于点(1)求证:DE 为O 切线;(2)若10AB = 6BC = 求DE 的长.18.如图 O 是ABC 的外接圆 点D 在BC 延长线上 且满足CAD B ∠=∠.(1)求证:AD 是O 的切线;(2)若AC 是BAD ∠的平分线 3sin 5B =4BC = 求O 的半径.参考答案:1.【分析】此题重点考查圆周角定理 切线的判定定理 勾股定理 三角形的中位线定理 等腰三角形的“三线合一” 线段的垂直平分线的性质等知识 正确地作出辅助线是解题的关键.是O的切线;+=314是O的直径90︒则22BE=+4(22)⊥AD BC是O的半径是O的切线.)连接EFDC=DF33+=+BD DF∠OE DOBDE=.3是O的直径90︒.中EF=中BE=(3)23312π- 【分析】此题考查了解直角三角形 切线的判定以及扇形的面积.注意掌握辅助线的作法 .(1)点D 是BC 的中点 可以得到BD CD = 即可得到DBC DCB ∠∠= 再根据角平分线的定义得到ACD BCD ∠∠= 进而得到结论;(2)连接OC OD OB 则可得到OD BC ⊥ 然后根据等边对等角可以得到90OCD ACD ∠∠+=︒ 即可得到结论(3)先求出60ODB ∠=︒ 继而利用OBD OBD S S S=-阴影部分扇形求得答案.【详解】(1)解:如图 ∵点D 是BC 的中点∵BD CD =∵DBC DCB ∠∠=又∵CD 是ABC 的角平分线∵ACD BCD ∠∠=∵ACD ABC ∠∠=;(2)证明:如图 连接OC OD OB∵点D 是BC 的中点∵OD BC ⊥∵90ODC BCD ∠∠+=︒∵OD OC =∵ODC OCD ∠∠=又∵ACD BCD ∠∠=∵90OCD ACD ∠∠+=︒即OC AC ⊥∵OC 是O 的半径∵AC 是O 的切线;Rt BDE 中 ODB ∠=60ODB =︒OB OD =∵OBD 是等边三角形BOD ∠=OBD S S==阴影部分.(1)见解析(2)23进而得出BFG 是等边三角形 是O 的切线;)解:如图所示∵OD AC ⊥∵AD CD =∵BD AC =∵BD AC =∵AD BC =∵AD CD BC ==;∵AB 为半圆O 的直径∵90CAB CBA ∠+∠=︒∵30DAC CAB ABD ∠=∠=∠=︒∵60GBF G ∠=∠=︒ 12GB AG =∵BFG 是等边三角形 223AB AG BG BG =-=∵3233BF BG AB ===. 【点睛】本题考查了切线的判定 弧与弦的关系 直径所对的圆周角是直角 勾股定理 等边三角形的性质与判定 垂径定理 熟练掌握以上知识是解题的关键.4.(1)证明(2)233【分析】本题主要考查切线的性质和判定及特殊角的三角函数的应用 掌握切线问题中的辅助线的作法是解题的关键.(1)连接OD 证明ODB C ∠=∠ 推出AC OD ∥ 即可证明结论成立;(2)连接AD 在Rt CED 中 求得利用三角形函数的定义求得30C ∠=︒ 60AOD ∠=︒ 在Rt ADB 中 利用勾股定理列式计算求得圆的半径即可.【详解】(1)证明:连接OD又OB OD=B ODB∴∠=∠ODB∴∠=∠AC OD∥DF AC⊥OD DF∴⊥DF∴是O的切线;(2)连接AD设O半径为Rt CED中3,CE CD=22ED CD∴=-又cosCE CCD ∠=30C∴∠=︒30B∴∠=︒60AOD=∠AB是O的直径.90ADB∴∠=︒12AD AB r ∴== ∵AB AC =∵2CD BD ==又222AD BD AB +=2222(2)r r ∴+=233r ∴=(负值已舍). 5.(1)证明见解析(2)3【分析】本题考查的是勾股定理的应用 等腰三角形的性质 切线的判定 熟练的证明圆的切线是解本题的关键;(1)连接OB 证明PCB PBC ∠=∠ OAB OBA ∠=∠ 再证明90PBC OBA ∠+∠=︒即可;(2)设O 的半径为r 表示()()22222255PC AC AP r =-=-- 222225PB OP OB r =-=- 再利用PB PC =建立方程求解即可.【详解】(1)解:连接OB∵PB PC = OA OB =∵PCB PBC ∠=∠ OAB OBA ∠=∠∵OP l ⊥ OAB PAC ∠=∠∵90BCP CAP BCP OAB ∠+∠=︒=∠+∠∵90PBC OBA ∠+∠=︒∵90OBP ∠=︒∵OB PB ⊥是O 的切线;)设O 的半径为l 2AC =2AC AP =-PB BP 2OP OB =-∵O 的半径为【点睛】.(1)见解析(2)3【分析】本题主要考查切线的判定和性质证AOB EOB ≌ 得出的半径为r 则OE OA =根据AOB EOB ≌得求得4CE = 在Rt OCE 中运用勾股定理列式求出r 的值即可. )证明:在AOB 和EOB 中∵()SAS AOB EOB ≌OAF OEF ∠=∠BC 与O 相切OE BC ⊥90OAB OEB ∠=∠=︒AF是O 的半径是O 的切线;(2)解:在Rt CAB △中 90108CAB BC AC ∠=︒==,,∵22221086AB BC AC =-=-=设圆O 的半径为r 则,OE OA r ==∵8OC r =-∵,AOB EOB ≌∵6BE AB ==∵10,BC =∵1064,CE BC BE =-=-=在Rt OCE 中 222OE CE OC +=∵()22248r r +=-解得3r =.∵O 的半径为3.7.(1)作图见解析(2)4π3【分析】本题考查了作图 复杂作图 切线的性质 等边三角形的判定与性质 弧长的计算 熟练掌握切线的性质 弧长公式是解答本题的关键.(1)根据题意 连接OC 作OC CD ⊥ 交AB 的延长线于点D 由此得到答案. (2)根据题意 得到OBC △是等边三角形 求出120AOC ∠=︒ 再利用弧长公式 得到答案.【详解】(1)解:如图所示 CD 即为所求.(2)如图所示 连接BCBD)证明:在ABCD中AE AD ∴=∵AE BC =.(2)解:连接OA 过点O 作OF CE ⊥于点F 如图所示:AD 是O 的切线OA AD ∴⊥OA BC ∴⊥AB AC ∴=40AEC B D ︒∠=∠=∠=40ACB B ∴∠=∠=︒在ABCD 中 AD BC ∥40DAC ACB ∴∠=∠=︒又180100DAE D AEC ∠=︒-∠-∠=︒60CAE DAE CAD ∴∠=∠-∠=︒2120COE CAE ∴∠=∠=︒OC OE =30OCE ∴∠=︒OF CE ⊥22cos3063CE CF OC ∴==⋅︒=.【点睛】本题主要考查了切线的性质 解直角三角形 圆周角定理 平行四边形的性质垂径定理 等腰三角形的判定 解题的关键是作出辅助线 熟练掌握相关的判定和性质.9.(1)证明详见解析;(2)8.【分析】本题考查了切线的判定 勾股定理等知识 熟练掌握切线的判定定理 勾股定理是解题的关键.(1)连接OD 根据平行线判定推出OD AC ∥ 推出OD BC ⊥ 根据切线的判定推出即可;(2)根据勾股定理求出3OD OA OE === 再根据线段的和差求解即可.【详解】(1)证明:连接OD∵OA OD =∵OAD ODA ∠=∠∵AD 平分BAC ∠∵BAD CAD ∠=∠∵ODA CAD ∠=∠∵OD AC ∥∵180C ODC ∠+∠=︒∵90C ∠=︒∵90ODC ∠=︒∵OD BC ⊥∵OD 为半径∵BC 是O 的切线;(2)解:设OD OE r ==在Rt ODB △中 42BD BE ==,∵2OB r =+由勾股定理 得:()22242r r +=+ 解得:3r =∵3OD OA OE ===∵628AB =+=.10.(1)证明见解析;(2)63.【分析】(1)先证明OAB 是等边三角形 再由性质得出60AOB OAB OBA ∠=∠=∠=︒ 再由BC AB =和角度和差即可求解;(2)先根据等边三角形性质求出132OE OA == 再根据勾股定理求得33AE = 最后由垂径定理即可求解;此题考查了等边三角形的判定与性质 勾股定理和垂径定理 解题的关键是熟练掌握以上知识点的应用.【详解】(1)证明:∵AB OA OB ==∵OAB 是等边三角形∵60AOB OAB OBA ∠=∠=∠=︒∵BC OB =∵BC AB =∵1302BAC BCA OBA ∠=∠=∠=︒ ∵90OAC OAB BAC ∠=∠+∠=︒又∵OA 为O 的半径∵AC 是O 的切线;(2)解:∵6BC =∵6AB OA OB ===∵AD OB ⊥于点E∵30OAE ∠=︒∵132OE OA == ∵2233AE OA OE =-=∵AE OB ⊥∵263AD AE ==.11.(1)见解析∠=)证明:BAD60︒6090︒-︒=OD是O的半径∴直线BD是O的切线;==(2)解:设OD OC△中sin30在Rt BDO解得:1r==+OB OCDE是O的直径∴∠=︒DFE90∠=∠即DFB BDE∠=∠DBF DBE∴△∵BDEBFD△BF BD∴=BD BE337BF ∴= 解得:377BF =. 【点睛】本题考查了切线的判定和性质 相似三角形的性质和判定 圆周角定理 勾股定理等知识点 作出辅助线构造出相似三角形是解题关键.12.(1)见详解(2)3【分析】(1)连接OC 由∠=∠OCB ABC ABC CBD ∠=∠ 得OCB CBD ∠=∠ 则OC BD ∥ 所以18090OCD D ∠=︒-∠=︒ 即可证明CD 为O 的切线;(2)由AB 为的直径 得90ACB ∠=︒ 则ACB D ∠=∠ 而ABC CBD ∠=∠ 所以C ABC BD ∽△△ 则AB CB CB BD = 可求得CB BD AB =⋅ 由勾股定理得22CD CB BD =-.【详解】(1)证明:连接OC 则OC OB =OCB ABC ∴∠=∠ABC CBD ∠=∠OCB CBD ∴∠=∠OC BD ∴∥CD BD ⊥90D ∴∠=︒18090OCD D ∴∠=︒-∠=︒OC 是O 的半径 且CD OC ⊥CD ∴为O 的切线.(2)解:AB 为的直径ABC∠=ABC CBD ∴∽∴AB CBCB BD=1,4BD AB==1 CB BD AB∴=⋅=22CD CB BD∴=-=CD∴的长是【点睛】此题重点考查等腰三角形的性质AD OC∥ADO∴∠OA OD=ADO DAO ∴∠=∠DOC BOC ∴∠=∠OD OB OC OC ==,ODC OBC ∴≌△△∴OBC ODC ∠=∠BC AB ⊥∴90OBC ODC ∠=∠=︒OD 为经过圆心的半径∴CD 是O 的切线;(2)如图所示:作DM BC ⊥交BC 于点M8AB = 1AE =1432OA OB OD AB OE OA AE ∴=====-=, 227DE BM OD OE ==-=令=7CM x CB CD x ==+, 7BE DM ==∴在222Rt DMC CM DM CD +=△,222(7)7x x ∴+=+解得:37x =47BC ∴=DE BC ∥ADE ABC ∴△△∽是O的切线.2)在Rt△是O的切线得出Rt EAD中【详解】(1)证明:连接.是O的直径+∠OCA OCBDCB OCB+∠OCD=︒.90是半径经过O的半径外端∵CD 是O 的切线.(2)解:在Rt OCD △中∵90OCD ∠=︒ 30D ∠=︒ 2OC =∵4OD =.∵6AD AO OD =+=.∵AE 是O 的切线 切点为A∵OA AE ⊥.在Rt EAD 中∵90EAD ∠=︒ 30D ∠=︒ 6AD =∵3tan 306233AE AD =⋅︒=⨯=. 15.(1)见解析(2)4π3【分析】本题考查圆与三角形的综合问题 掌握与圆有关的性质 正确作出辅助线是关键.(1)连接OC 根据条件证明OC BD ∥ 即可证明;(2)根据PCO PDB ∽可得PA 利用余弦值可求出COP ∠ 通过弧长公式求解即可.【详解】(1)证明:连接OC 如图∵OC OB =∵OCB OBC ∠=∠∵弦BC 平分PBD ∠∵DBC OBC ∠=∠∵OCB DBC ∠=∠.∵OC BD ∥∵BD PD ⊥∵OC PD ⊥.为O 的半径是O 的切线;)解:连接OC∵PCO PDB ∽OC PO BD PB= 8cm AB = BD =14cm 2OC AB ==4468PA PA +=+ Rt OCP 中cos COP ∠=60COP =︒AC 的长=(1)证明见解析; 是O 的切线;证明FBD FDA ∽ 得到1tan tan 4BD A BDF AD ∠=∠== 进而得到164DF = 即可求解; 本题考查了切线的判定 相似三角形的判定与性质 等腰三角形的性质 余角性质 根据题意 正确作出辅助线是解题的关键.【详解】(1)证明:连结OD∵CO AB ⊥∵90E C ∠+∠=︒∵FE FD = OD OC =∵E FDE ∠=∠ ∠=∠C ODC∵90FDE ODC ∠+∠=︒∵90ODF ∠=︒∵OD DF ⊥∵FD 是O 的切线;(2)解:连结AD ,OD BD 如图∵AB 为O 的直径∵90ADB ∠=︒∵90∠+∠=︒A ABD∵OB OD =∵OBD ODB ∠=∠∵90A ODB ∠+∠=︒∵FBD FDA ∽DF BD AF AD= 在Rt △ABD 中 tan ∠164DF = 3DF =的平分线交O 于点E∵ED OE ⊥∵DE 为O 切线.(2)过点O 作OM BC ⊥于点M 10AB = 6BC =则132MC MB BC ===,152OB OE AB === 四边形OEDM 时矩形∵DE OM =根据勾股定理 得224DE OM OB BM ==-=.18.(1)见解析(2)103【分析】(1)连接OA OC 与AB 相交于点E 如图 由OA OC = 可得OAC OCA ∠=∠ 根据圆周角定理可得12B AOC ∠=∠ 由已知CAD B ∠=∠ 可得2AOC CAD ∠=∠ 根据三角形内角和定理可得180OCA CAO AOC ∠+∠+∠=︒ 等量代换可得90CAO CAD ∠+∠=︒ 即可得出答案;(2)根据角平分线的定义可得BAC DAC ∠=∠ 由已知可得BAC B =∠∠ 根据垂径定理可得 OC AB ⊥ BE AE = 在Rt BEC △中 根据正弦定理可得3sin 45CE CE B BC === 即可算出CE 的长度 根据勾股定理可算出22BE BC CE =-的长度 设O 的半径为r 则125OE OC CE r =-=- 在Rt AOE △中 222OA OE AE =+ 代入计算即可得出答案. 【详解】(1)证明:连接OA OC 与AB 相交于点E 如图OA OC =OAC ∴∠AC AC =∴12B ∠=CAD ∠=AOC ∴∠=OCA ∠+2CAO ∴∠+CAO ∴∠+OAD ∴∠OA 是O 的半径AD ∴是O 的切线;(2)解:AC 是∠BAC DAC ∴∠=∠CAD B ∠=∠BAC B ∴∠=∠OC AB ∴⊥ BE =在Rt BEC △中4BC =sin CE B BC ∴=125CE ∴=BE BC ∴=设O 的半径为r ,则125OE OC CE r =-=-在Rt AOE △中222OA OE AE =+ 222121655r r ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭ 解得:103r =. 【点睛】本题主要考查了切线的性质与判定,垂径定理,勾股定理及解直角三角形, 熟练掌握切线的性质与判定,垂径定理及解直角三角形的方法进行求解是解决本题的关键.。
九年级数学上册(中考题型专练)(人教版)直线与圆的位置关系及切线的判定与性质(6个考点六大类型)(原卷版)【题型1 直线与圆的位置关系的判定】【题型2利用切线的性质求有关的角度/边长的运算】【题型3切线的判定】【题型4 切线的性质与判定的综合运用】【题型5 利用切线长定理的性质求线段长度或周长】【题型6 三角形的内切圆与内心】【题型1 直线与圆的位置关系的判定】1.(2023•淮阴区一模)已知⊙O的半径为5,直线l与⊙O有2个公共点,则点O到直线l的距离可能是()2.(2023春•市南区校级月考)如果一个圆的直径是8cm,圆心到一条直线的距离也是8cm,那么这条直线和这个圆的位置关系是()A.相离B.相交C.相切D.不能确定3.(2022秋•青山湖区校级期末)在平面直角坐标系中,以点(﹣3,4)为圆心,3为半径的圆()A.与x轴相离,与y轴相切B.与x轴相离,与y轴相交C.与x轴相切,与y轴相交D.与x轴相切,与y轴相离4.(2022秋•顺平县期末)如图,若圆O的半径为3,点O到一条直线的距离为3,则这条直线可能是()A.l1B.l2C.l3D.l45.(2023春•青山区校级月考)已知⊙O的直径为12,点O到直线l上一点的距离为,则直线l与⊙O的位置关系()A.相交B.相切C.相离D.不确定6.(2022秋•宜兴市期末)已知⊙O的半径为6cm,点O到直线l的距离为7cm,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法确定7.(2022秋•高邑县期末)如图,在Rt△ABC中,∠C=90°,∠B=30°,BC =4cm,以点C为圆心,以2cm的长为半径作圆,则⊙C与AB的位置关系是()A.相交B.相切C.相离D.相切或相离8.(2023春•宁远县期中)已知⊙O的半径是10,圆心O到直线l的距离是13,则直线l与⊙O的位置关系是()A.相离B.相交C.相切D.无法确定9.(2022秋•莱州市期末)若∠OAB=30°,OA=10cm,则以O为圆心,4cm 为半径的圆与直线AB的位置关系是()A.相交B.相切C.相离D.不能确定10.(2022秋•海珠区校级期末)在平面直角坐标系中,以点(﹣3,2)为圆心,3为半径的圆与y轴的位置关系为相切.11.(2023•前郭县二模)如图,平面直角坐标系中,半径为2的⊙P的圆心P 的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相交,则平移的距离d的取值范围是.【题型2利用切线的性质求有关的角度/边长的运算】12.(2023•松原四模)如图,AB与⊙O相切于点B,AO与⊙O相交于点C,若AB=8,AC=4,则⊙O的半径为()A.4B.5C.6D.8 13.(2023•重庆模拟)如图,AB为⊙O的切线,切点为B,AC⊥AB交⊙O于点C,连接OC、BC,若∠OCB=60°,OC=6,则AC等于()A.3B.2C.D.14.(2023•北碚区自主招生)如图,线段AC经过圆心O,交⊙O于点A、B,CD是⊙O的切线,点D为切点.若∠ACD=30°,CD=2,则线段BC 的长度是()A.1B.2C.3D.15.(2023•西湖区一模)如图,已知AB是⊙O的直径,BC与⊙O相切于点B,连接AC,若BC=1,,则AC的长为()A.3B.2C.D.116.(2023•平房区三模)如图,PE、PG为⊙O的两条切线,E、G为切点,点F为⊙O上一点.连接OE、OG、EF、FG,若∠EFG=52°,则∠P的度数为()A.52°B.56°C.66°D.76°17.(2023•邵阳模拟)如图,已知⊙O的直径AB与弦AC的夹角为31°,过点C的切线与AB的延长线交于点P,则∠P的度数是()A.24°B.25°C.28°D.31°18.(2023•原平市模拟)如图,△ABC内接于⊙O,AD是⊙O的直径,过点C作⊙O的切线交AD的延长线于点E.若∠E=40°,则∠ABC的度数为()A.110°B.115°C.120°D.125°19.(2023•宽城区二模)如图,AB是⊙O的直径,AC是弦,AD垂直于过点C 的切线,垂足为点D.若∠CAD=37°,则∠CAB的大小为()A.37°B.53°C.63°D.74°20.(2023•通榆县模拟)如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=48°则∠AOC的度数为()A.42°B.48°C.84°D.106°21.(2023•鹿城区校级模拟)如图,在△ABC中,D是AC上一点,以AD为直径的半圆O恰好切CB于点B.连接BD,若∠CBD=21°,则∠C的度数为()A.42°B.45°C.46°D.48°【题型3切线的判定】22.(2022秋•自贡期末)如图所示,AB为⊙O的直径,C为⊙O上一点,过点C的直线DE⊥AD于点D,AC平分∠DAB.求证:CE是⊙O的切线.23.(2022秋•黄埔区期末)如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CD,垂足为D,AC平分∠DAB.求证:DC为⊙O的切线.24.(2022秋•宽城区校级期末)如图,BD是⊙O的直径,A是BD延长线上的一点,点E在⊙O上,BC⊥AE,交AE的延长线于点C,BC交⊙O于点F,且点E是的中点.求证:AC是⊙O的切线.25.(2022秋•长乐区期中)如图,在△OAB中,OA=OB=5,AB=8,⊙O的半径为3.求证:AB是⊙O的切线.26.(2022秋•云龙区校级月考)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.求证:DP是⊙O的切线.27.(2022秋•平潭县校级期中)如图,△ABC为等腰三角形,O是底边BC的中点,过点O作OD⊥AB于点D,以点O为圆心,OD的长为半径作⊙O.求证:AC是⊙O的切线.【题型4 切线的性质与判定的综合运用】28.(2022秋•任城区期末)如图,已知△ABC是等边三角形,以AB为直径作⊙O,交BC边于点D,交AC边于点F,作DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若△ABC的边长为4,求EF的长度.29.(2023•龙游县校级一模)已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.(1)求证:PD是⊙O的切线;(2)若∠CAB=120°,AB=6,求BC的值.30.(2023•封开县一模)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.(2)当AB=5,BC=6时,求DE的长.31.(2023•枣庄二模)如图,已知△ABC内接于⊙O,AB是⊙O的直径,∠CAB 的平分线交BC于点D,交⊙O于点E,连接EB,作∠BEF=∠CAE,交AB 的延长线于点F.(1)求证:EF是⊙O的切线;(2)若BF=10,EF=20,求⊙O的半径.32.(2023•官渡区二模)如图,AB是⊙O的直径,C,D都是⊙O上的点,且AD平分∠CAB,过点D作AC的垂线交AC的延长线于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若AB=13,AC=5,求CE的长.33.(2023•兰州模拟)如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,与边AC交于点E,过点D作AC的垂线,垂足为F.(2)若AE=3,EF=1,求⊙O的半径.34.(2023•开江县二模)如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D.过点A作⊙O的切线与OD的延长线交于点P,PC、AB的延长线交于点F.(1)求证:PC是⊙O的切线;(2)若∠CAB=30°,AB=8,求线段CF的长.35.(2023•碑林区校级模拟)如图,AB是⊙O的直径,半径为2,⊙O交BC 于点D,且D是BC的中点,DE⊥AC于点E,连接AD.(1)求证:DE是⊙O的切线.(2)若∠C=30°,求BC的长.36.(2023•庐阳区校级一模)如图,AB是⊙O的直径,C,D都是⊙O上的点,AD平分∠CAB,过点D作AC的垂线交AC的延长线于点E,交AB的延长线于点F.(2)若AB=10,AC=6,求CE的值.【题型5 利用切线长定理的性质求线段长度或周长】37.(2023•西城区校级三模)如图,P A、PB切⊙O于A、B,若∠APB=60°,⊙O的半径为3,则线段PO的长度为()A.B.6C.8D.10 38.(2023•平房区三模)如图,PE、PG为⊙O的两条切线,E、G为切点,点F为⊙O上一点.连接OE、OG、EF、FG,若∠EFG=52°,则∠P的度数为()A.52°B.56°C.66°D.76°39.(2023•大同模拟)如图,P A,PB分别切⊙O于点A,B,点C在AB上,若四边形ACBO为菱形,则∠APB为()A.30°B.45°C.60°D.90°40.(2023•阳谷县二模)已知P A、PB分别与⊙O相切于A、B,∠P=70°,C 为⊙O上一点,则∠ACB的度数为()A.125°B.120°或60°C.125°或55°D.130°41.(2023•蒙阴县二模)如图,P A,PB分别与⊙O相切于点A,B,∠P=80°,C为⊙O上一点,则∠ACB的度数是()A.110°B.120°C.125°D.130°42.(2023•新华区校级二模)抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如示意图,AC,BD分别与⊙O相切于点C,D,延长AC,BD交于点P.若∠P=120°,⊙O的半径为6cm,则瞬间与空竹接触的细绳的长为()A.4πcm B.4cm C.2πcm D.2cm43.(2022秋•新会区校级期末)如图所示,P是⊙O外一点,P A,PB分别和⊙O切于A,B两点,C是上任意一点,过C作⊙O的切线分别交P A,PB于D,E.若△PDE的周长为12,则P A的长为()A.12B.6C.8D.444.(2022秋•东莞市校级期中)如图,AB、AC、BD是⊙O的切线,切点分别为P、C、D,若AB=4,AC=3,则BD的长是()A.2.5B.2C.1.5D.145.(2022秋•潮州期末)如图,P为⊙O外一点,P A、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交P A、PB于点C、D,若P A=8,则△PCD的周长为()A.8B.12C.16D.2046.(沧州期末)如图,⊙O为△ABC的内切圆,AC=10,AB=8,BC=9,点D,E分别为BC,AC上的点,且DE为⊙O的切线,则△CDE的周长为()A.9B.7C.11D.8 47.(2022秋•仙居县期末)如图,在△ABC中,∠C=90°,AC=4,BC=3.⊙O 是△ABC的内切圆,分别与AC、BC、AB相切于点D、E、F,则圆心O到顶点A的距离是()A.B.3C.D.48.(2022秋•路北区校级期末)如图,在Rt△ABC中,∠C=90°,△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,若⊙O的半径为2,AD •DB=24,则AB的长()A.11B.10C.9D.8 49.(2022秋•平泉市校级期末)如图所示,P是⊙O外一点,P A,PB分别和⊙O切于A,B两点,C是上任意一点,过C作⊙O的切线分别交P A,PB 于D,E.(1)若△PDE的周长为10,则P A的长为;(2)连接CA、CB,若∠P=50°,则∠BCA的度数为度.50.(2023•青海一模)如图,⊙O与△ABC的边AB、AC、BC分别相切于点D、E、F,如果AB=4,AC=5,AD=1,那么BC的长为.51.(2021秋•原州区期末)如图,P A、PB、DE分别切⊙O于A、B、C,DE 分别交P A,PB于D、E,已知P到⊙O的切线长为8cm,那么△PDE的周长为.【题型6 三角形的内切圆与内心】52.(2022秋•绵阳期末)如图,⊙O为Rt△ABC的内切圆,切点分别为M,N,Q,已知∠ABC=90°,CM=2,AM=3,则⊙O的半径为()A.B.C.1D.253.(2023•龙川县校级开学)如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,若∠DEF=50°,则∠A的度数是()A.50°B.100°C.90°D.80°54.(2023•恩施市模拟)如图,点I是△ABC的内心,若∠AIB=125°,则∠C等于()A.65°B.70°C.75°D.80°55.(2022秋•辛集市期末)《九章算术》是我国古代内容极为丰富的数学名著,书中有这样一个问题:“今有勾八步,股十五步,问勾中容圆,径几何?”其意思是:“如图,今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”此问题中,该内切圆的直径是()A.5步B.6步C.8步D.10步。
人教版九年级上册数学圆的切线相关证明题练习1.如图,以△ABC 的边BC 为直径作△O ,点A 在△O 上,点D 在线段BC 的延长线上,AD =AB ,△D =30°.(1)求证:直线AD 是△O 的切线;(2)若直径BC =4,求图中阴影部分的面积.2.如图,O 是ABC 的外接圆,其切线AE 与直径BD 的延长线相交于点E ,且60ACB ∠=︒.(1)求证:AE AB =;(2)若2DE =,求O 的半径.3.图,AB 为△O 的直径,C 为△O 上一点,CD 垂直AB,垂足为D ,在AC 延长线上取点E,使,CBE=,BAC,4.如图,BE为△O的直径,点A和点D是△O上的两点,连接AE,AD,DE,过点A作射线交BE的延长线于点C,使△EAC=△ED A.(1)求证:AC是△O的切线;(2)若AD△BC于点F,DE=4,OF=2,求图中阴影部分的面积.5.如图,AB为△O的切线,B为切点,过点B作BC△OA,垂足为点E,交△O于点C,延长CO与AB的延长线交于点D.(1)求证:AC为△O的切线;(2)若OC=2,OD=5,求线段AD和AC的长.6.如图,在Rt△ABC中,△ABC=90°,△BAC的平分线交BC于点O,D为AB上的一点,OD=OC,以O为圆心,OB的长为半径作△O.7.如图,四边形ABCD 中,AB =AD =1,BC =CD ,以点A 为圆心,AB 为半径的△O 交AC 于点E ,12CBE CAB ∠=∠.(1)求证:BC 是△A 的切线;(2)△当CE =______时,四边形ABCD 是正方形;△当CE =______时,以点A ,B ,E ,D 为顶点的四边形是菱形.8.如图,AB 、CD 为O 的直径,AB CD ⊥,点E 为BC 上一点,点F 为EC 延长线上一点,FAC AEF ∠=∠.连接ED ,交AB 于点G .(1)证明:AF 为O 的切线;(2)证明:AF AG =;(3)若O 的半径为2,G 为OB 的中点,AE 的长.9.如图,在△ABC 中,AB =AC ,AD 平分BC ,BE 平分△ABC 交AD 于点E .点O 在AB 边上,以点O 为圆心的△O 经过B 、E 两点,交AB 于点F .(1)求证:AE 是△O 的切线;(2)若△BAC =60°,AC =12,求阴影部分的面积.10.如图,AB 是O 的直径,点C 是O 上一点(与点A ,B 不重合),过点C 作直线MN ,使得∠=∠ACN ABC .(1)求证:直线MN 是O 的切线.(2)点D 为直线MN 上一点,连接AD ,交O 于点E ,若AC 平分BAD ∠,3,2==DE AC CD ,求图中阴影部分(弓形)的面积.11.如图,ABC 为O 的内接三角形,AB 为O 的直径,点D 为O 上一点,且12ABD BAC ∠=∠,过点D 作DE BC ∥交CA 的延长线于点E .(1)求证:DE 为O 的切线;(2)若8,12AE DE ==,求O 的半径.(1)求证:DE 是O 的切线;(2)求BD 的长.13.如图,AB 是O 的直径,点C 是圆上一点,连接AC ,BC ,CBD BAC =∠∠.且CD BD ⊥.(1)求证:CD 是O 的切线;(2)若2BC =,BD π).14.如图1,AB 是△O 的直径,C ,D 是△O 上的点,连接CB ,CD ,延长CA ,BD 交于点E ,△BDC =2△ABE .(1)求证:AE =AB ;(2)如图2,过点D 作△O 的切线交AE 于点F ,若DF =52,CD =132,求EF 长.15.如图1,四边形ABCD 内接于△O ,AD 为直径,过点C 作CE △AB 于点E ,连接AC .(1)求证:△CAD =△ECB ;(2)若CE 是△O 的切线,△CAD =30°,连接OC .如图2,当AB =2时,求AD 、AC 与弧CD 围成阴影部分的面积.16.已知AB 是圆O 的直径,点C 是圆O 上一点,点P 为圆O 外一点,且OP BC ∥,P BAC ∠=∠.(1)求证:P A 为圆O 的切线;(2)如果2OP AB ==,求AC 的长.17.如图,已知AB 是O 的直径,CD 是O 的弦,连接AD ,BD .(1)如图1,连接OC .若58ADC ∠=︒,求CDB ∠及COB ∠的大小;(2)如图2,过点C 作O 的切线,交DB 的延长线于点E ,连接OD .若2ABD CDB ∠=∠,求CED ∠的大18.如图,已知点D在△O的直径AB延长线上,CD为△O的切线,过D作ED AD⊥,与AC的延长线相交于E.(1)求证:CD=DE;(2)若BD=1,DE△ADE的面积;(3)在(2)的条件下,作ACB∠的平分线CF与△O交于点F,P为△ABC的内心,求PF的长.19.如图,AB为△O的直径,CD是△O的弦,点E在AB的延长线上,连接OC、AD,CD△AB。
切线的判定与性质专题测试
一、选择题(每小题5分,共25分)姓名:_________
1、下列说法中,正确的是( )
A.与圆有公共点的直线是圆的切线B.经过半径外端的直线是圆的切线
C.经过切点的直线是圆的切线D.圆心到直线的距离等于半径的直线是圆的切线
2.、如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD
的度数为( ) A.70°B.35°C.20°D.40°
3、如图,线段AB是⊙O的直径,点C,D为⊙O上的点,过点C作⊙O的切线交AB的延
长线于点E,若∠E=50°,则∠CDB等于( )
A.20°B.25°C.30°D.40°
4、如图,等腰直角三角形ABC中,AB=AC=8,O为BC的中点,以O为圆心作半圆,
使它与AB,AC都相切,切点分别为D,E,则⊙O的半径为( )
A.8 B.6 C.5 D.4
5、如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论
中不一定正确的是( )A.AG=BG B.AB∥EF C.AD∥BC D.∠ABC=∠ADC 二、填空题(每小题5分,共30分)
6、如图,在⊙O中,弦AB=OA,P是半径OB的延长线上一点,且PB=OB,则PA与⊙O的位置关系是_________.
7、如图,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你
所添加的条件为________________.
8、如图,AB是⊙O的直径,O是圆心,BC与⊙O切于点B,CO交⊙O于点D,且BC=8,CD=4,那么⊙O的半径是______.
9、如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=___度.
10、如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于
点E,连接OC,BE.若AE=6,OA=5,则线段DC的长为______.
11、如图,已知△ABC内接于⊙O,BC是⊙O的直径,MN与⊙O相切,切点为A,若∠
MAB=30°,则∠B=________度.
三、解答题(每小题8分,第15题9分,共65分)
12、如图,在Rt△ABC中,∠ABC=90°,∠BAC的平分线交BC于D,以D为圆心,DB
长为半径作⊙D,求证:AC与⊙D相切.
13、如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,CE ⊥AD ,交AD 的延长线于点E. 求证:∠BDC =∠
A.
14、如图,在Rt △ABC 中,∠C =90°,BD 是角平分线,点O 在AB 上,以点O 为圆心,
OB 为半径的圆经过点D ,交BC 于点E.求证:AC 是⊙O 的切线.
15.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于点D ,且∠D =2∠CAD.
(1)求∠D 的度数; (2)若CD =2,求BD 的长.
16、如图,AB 为⊙O 的直径,BC 切⊙O 于B ,AC 交⊙O 于P ,CE=BE ,E 在BC 上. 求证:PE 是⊙O 的切线.
17、已知:如图,在Rt△ABC 中,∠ACB=90°,以AC 为直径的⊙O 交AB 于点D,过点D 作⊙O 的切线DE 交BC 于点E.求证:BE=CE.
18、已知AB 是⊙O 的直径,⊙O 过BC 的中点D ,且DE ⊥AC .求证:DE 是⊙O 的切线.
19、如图,已知直线PA 交⊙O 于A ,B 两点,AE 是⊙O 的直径,点C 为⊙O 上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足为D. 求证:CD 为⊙O 的切线
B。