高中必修第一册数学《3.1 函数的概念及其表示》获奖说课导学案
- 格式:docx
- 大小:180.03 KB
- 文档页数:10
3.1.1 函数的概念1.通过丰富的买例进一步体会函数是描述变量之间的依赖关系的重要数学模型;2.用集合与对应的思想理解函数的概念;3.理解函数的三要素及函数符号的深刻含义;4.会求函数的定义域。
1.教学重点:函数的概念,函数的三要素;2.教学难点:函数的概念及符号()y f x =的理解。
一、函数的概念:设A 、B 是 的数集,如果按照某个确定的对应关系f ,使对于集合A 中的 ,在集合B 中都有 的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ),记作:y=f(x) x ∈A .x 叫做自变量,x 的取值范围A 叫做函数的 ;与x 的值相对应的y 值叫做函数值,函数值的集合{ f(x)| x ∈A }叫做函数的 . 二、区间三、函数的三要素: 、 、 。
四、判断函数相等的方法: 、 。
一、复习回顾,温故知新1. 初中学习的函数的定义是什么?定义 名称 符号 数轴表示{|}x a x b ≤≤ 闭区间 [a,b] {|}x a x b << 开区间 (a,b) {|}x a x b ≤<半开半闭区间 [a,b){|}x a x b <≤ 半开半闭区间 (a,b] {|}x x a ≥ {|}x x a > {|}x x b < {|}x x b ≤2.回顾初中学过哪些函数?二、探索新知 探究一 函数的概念问题1. 某“复兴号”高速列车到350km/h 后保持匀速运行半小时。
这段时间内,列车行进的路程S (单位:km )与运行时间t (单位:h )的关系可以表示为 S=350t 。
1.思考:根据对应关系S=350t ,这趟列车加速到350km/h 后,运行1h 就前进了350km ,这个说法正确吗?问题2 某电气维修告诉要求工人每周工作至少1天,至多不超过6天。
如果公司确定的工资标准是每人每天350元,而且每周付一次工资,那么你认为该怎样确定一个工人每周的工资?一个工人的工资w (单位:元)是他工作天数d 的函数吗?2.思考:在问题1和问题2中的函数有相同的对应关系,你认为它们是同一个函数吗?为什么?问题3 如图,是北京市2016年11月23日的空气质量指数变化图。
---------------------------------------------------------------最新资料推荐------------------------------------------------------“函数”说课稿—获奖说课稿函数说课稿《全日制普通高级中学教科书(必修) 数学》第一册(上) 的第二章为函数,是根据《全日制普通高级中学数学教学大纲(供试验用) 》必修课的函数部分编写的。
一、本单元课时安排:共 9 个小节,可分为三个部分:第一部分包括函数、函数的表示法、函数的单调性、反函数;第二部分包括指数、指数函数;第三部分包括对数、对数函数、函数的应用举例。
共约 30课时。
二、本单元课程价值及达成度:(一)课程价值:(1)知识构建功能:函数是数学的重要的基础概念之一。
是进一步学习高等数学的基础课程,而其他学科如物理学等学科也是以函数的基础知识作为研究问题和解决问题的工具。
函数是中学数学的主体内容。
它与中学数学很多内容都密切相关,初中代数中的函数及其图象就属于函数的内容,高中数学中的指数函数、对数函数、三角函数是函数内容的主体,通过这些函数的研究,能够认识函数的性质、图象及其初步的应用。
1/ 8后续内容的极限、微积分初步知识等都是函数的内容。
理科限定选修内容有极限、导数,文科限定选修内容有导数,这些内容是函数及其应用研究的深化和提高,也是进一步学习和参加工农业生产需要具备的基础知识。
故本章的学习起着承上启下的作用。
(2)能力培养功能:通过对函数相关概念的学习,如(函数、反函数、单调性等)加深对函数概念的理解、培养学生的比较能力,理解能力,概括能力。
通过对函数的表示方法的学习,培养学生的理论联系,实际能力。
通过对第二章应用题讲解,可培养学生用数学知识分析问题,解决问题能力,数学建模能力。
通过对指数函数、对数函数教学,可以培养学生数形结合能力,问题转化能力。
3.1.1 函数的概念教学目标:1.体会集合语言和对应关系在刻画函数概念中的作用.2.了解构成函数的要素.3.能求简单函数的定义域.教学重点:用集合语言和对应关系刻画函数的概念.教学难点:对函数概念的理解.教学过程:(一)新课导入在初中我们已经接触过函数的概念,知道函数是刻画变量之间对应关系的数学模型和工具.在前面我们已经学习了集合的有关知识,在本节中,我们将在集合的基础上,用新的观点进一步学习函数的概念.(二)探索新知探究一:函数的概念(老师引导学生分析问题1-4,并归纳出函数的共同特征,由此引出函数的概念.)问题1-4的共同特征有:(1)都包含两个非空数集,用A,B表示;(2)都有一个对应关系;(3)尽管对应关系的表示方法不同,但它们都有如下特性:对于数集A中的任意一个数x,按照对应关系,在数集B中都有唯一确定的数y和它对应.定义:一般地,设A , B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A B→为从集合A到集合B的一个函数,记作y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{}|∈叫做函数的值域.f x x A()函数的三个要素:定义域,对应关系,值域.常见函数的三要素:一次函数:(0)=+≠的定义域是R,值域也是R.对应关系f把R中的任意一个y ax b a数x,对应到R中唯一确定的数(0)+≠.ax b a二次函数:2(0)y ax bx c a =++≠的定义域是R ,值域是B .当a >0时,244ac b B y y a ⎧⎫-⎪⎪=≥⎨⎬⎪⎪⎩⎭;当a <0时,244ac b B y y a ⎧⎫-⎪⎪=≤⎨⎬⎪⎪⎩⎭.对应关系f 把R 中的任意一个数x ,对应到B 中唯一确定的数2(0)ax bx c a ++≠. 反比例函数:(0)k y k x=≠的定义域为{}0x x ≠,对应关系为“倒数的k 倍”,值域为{}0y y ≠.反比例函数用函数定义叙述为:对于非空数集{}0A x x =≠中的任意一个x 值,按照对应关系f :“倒数(0)k k ≠倍”,在集合{}0B y y =≠中都有唯一确定的数k x和它对应,那么此时f :A B →就是集合A 到集合B 的一个函数,记作()(0),.k f x k x A x=≠∉ 探究二:函数的应用(老师引导学生思考、分析例1,并让学生分组讨论写出P63的探究.)例1 函数的解析式是舍弃问题的实际背景而抽象出来的,它所反映的两个量之间的对应关系,可以广泛地用于刻画一类事物中的变量关系和规律. 例如,正比例函数(0)y kx k =≠可以用来刻画匀速运动中路程与时间的关系、一定密度的物体的质量与体积的关系、圆的周长与半径的关系等.试构建一个问题情境,使其中的变量关系可以用解析式(10)y x x =-来描述.解:把(10)y x x =-看成二次函数,那么它的定义域是R ,值域是{}25B y y =≤.对应关系f 把R 中的任意一个数x ,对应到B 中唯一确定的数x (10-x ).如果对x 的取值范围作出限制,例如{}010x x x ∈<<,那么可以构建如下情境:长方形的周长为20,设一边长为x ,面积为y ,那么y =x (10-x ).其中,x 的取值范围是{}010A x x =<<,y 的取值范围是{}025B y y =<≤.对应关系f 把每一个长方形的边长x ,对应到唯一确定的面积x (10-x ).探究:构建其他可用解析式y =x (10-x )描述其中变量关系的问题情境.答案:设两个实数的和为10,其中一个数为x ,这两个数的积为y ,则y =x (10-x ),其 中x 的取值范围为A =R ,y 的取值范围为{}25B y y =≤.对应关系f 把A 中任一x 值对应B 中唯一确定的x (10-x ).探究三:区间定义:研究函数时常会用到区间的概念.设a,b是两个实数,而且a<b,我们规定:(1) 满足不等式a x b≤≤的实数x的集合叫做闭区间,表示为[a,b];(2) 满足不等式a<x<b的实数x的集合叫做开区间,表示为(a,b);(3) 满足不等式a x b<≤的实数x的集合叫做半开半闭区间,外别表示为[a,≤<或a x bb),(a,b].这里的实数a与b都叫做相应区间的端点.这些区间的几何表示如下表所示.在数轴表示时,用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点.实数集R可以用区间表示为(,)-∞+∞,“∞”读作“无穷大”,“ -∞”读作“负无穷大”,“ +∞”读作“正无穷大”.如下表,我们可以把满足,,,≥>≤<的实数x的集合,用区间分别表示为x a x a x b x b[a,+∞),(a,+∞),(-∞,b],(-∞,b).表示区间应注意的问题:(1)关注“开”与“闭”,“开”用小括号,“闭”用中括号;在数轴上,用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点.(2)区间实质上是一类特殊数集的另一种表示.并不是所有的数的集合都能用区间表示,如{0,1,2}就不能用区间表示.(3)区间的左端点必须小于右端点,有时我们将b-a称为区间(a,b)或[a,b]的长度.(4)用“-∞”或“+∞”作为区间端点时,需用开区间符号.(老师在讲完注意问题后,出几个类型的不等式变式训练检测学生的学习情况)探究四:求函数的定义域(老师引导学生完成例2的学习,和学生强调在函数定义中,我们用符号y =f (x )表示函数,其中f (x )表示x 对应的函数值,而不是f 乘x .)例2 已知函数1()32f x x x =+++ (1)求函数的定义域; (2) 求f (-3),f (23)的值; (3)当a >0时,求f (a ),f (a -1)的值.分析:函数的定义域通常由问题的实际背景确定.如果只给出解析式y =f (x ),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合.解:(1)3x +有意义的实数x 的集合是{}3x x ≥-,使分式12x +有意义的实数x 的集合是{}2x x ≠-.所以,这个函数的定义域是{|3}{2}{3,2}x x x x x x x -⋂≠-=-≠-∣∣且 即[-3,-2)∪(-2,+∞).(2)将-3与23代入解析式,有 1(3)331;32f --+=--+ 221113333323338823f ⎛⎫=+= ⎪⎝⎭+ (3)因为a >0,所以f (a ),f (a -1)有意义.1()3;2f a a a =++ 11(1)132.121f a a a a a --+=+-++ (在解决完例2后,老师与学生一起归纳方法技巧)方法技巧:(1)当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使各式子都有意义的公共部分的集合.求函数定义域的步骤①列不等式(组):根据解析式有意义的条件,列出关于自变量的不等式(组)②解不等式(组):解出所列不等式或不等式组中每个不等式的解集后在求交集③得定义域:把不等式(组)的解集表示成集合或区间的形式(2)已知函数解析式求函数值,可将自变量的值代入解析式求出相应的函数值.当自变量的值为包含字母的代数式时,将代数式作为一个整体代入求解.探究五:相同函数老师引导学生归纳出函数相同的条件:对应关系相同;定义域相同.并完成例3.例3下列函数中哪个与函数y=x是同一个函数?(1)2y=;(2)u=(3)y=(4)2nmn =.解:(1)2({0})y x x x x==∈∣,它与函数y=x(x∈R)虽然对应关系相同,但是定义域不相同,所以这个函数与函数y=x(x∈R)不是同一个函数.(2)()u v v==∈R,它与函数y=x(x∈R)不仅对应关系相同,而且定义域也相同,所以这个函数与函数y=x(x∈R)是同一个函数.(3),0,||,0,x xy xx x-<⎧===⎨⎩它与函数y=x(x∈R)的定义域都是实数集R,但是当x<0时,它的对应关系与函数y=x(x∈R)不相同.所以这个函数与函数y=x(x∈R)不是同一个函数.(4)2({0})nm n n n nn==∈≠∣,它与函数y=x(x∈R)的对应关系相同但定义域不相同.所以这个函数与函数y=x(x∈R)不是同一个函数.学习完本节的内容后,老师给学生留出时间P66思考题.思考答案:相同点:初中与高中所学函数的两个定义本质是一样的,即两种对应关系满足的条件相同,对x的每一个值,都有唯一确定的值y与之对应.不同点:前者是从运动变化的观点出发,后者是从集合观点出发,用两个非空数集的对应关系定义的.(三)课堂练习1. 已知函数6()1f x x =-(1).求函数()f x 的定义域.(2).求()1f -,()12f 的值.解:(1)根据题意知10-≠x 且40x +≥,∴4≥-x 且1≠x ,即函数()f x 的定义域为[4,1)(1,)-⋃+∞.(2).6(1)32-=--f 6638(12)41211111==-=--f . 2. 判断下列对应是否为同一函数:(1). 1y x =+与211x y x -=- (2). 2 1y x =+与21s t =+(3). 2y x =与()20.y x x =≥解:(1).不是同一函数,因为定义域不同,前者定义域为R ,后者定义域为{}|1x x ≠(2).是同一函数,虽然变量不同,但不改变意义;(3).不是同一函数,因为定义域不同.(四)课堂小结:本节课我们主要学习了哪些内容?板书设计:3.1.1函数的概念1.函数的定义2.函数三要素:定义域,对应关系,值域.3.区间4.相同函数:定义域,对应关系相同。
《函数的概念》说课稿阳泉二中张涛各位评委:大家好!我说课的内容是高中新课标必修1中函数的概念。
我将从背景分析、教学目标设计、教法与学法选择、教学过程设计以及教学评价设计五个方面来汇报我对这节课的教学设想。
一、背景分析.教材分析函数是中学数学一个重要的基本概念,函数思想也是整个高中数学最重要的数学思想之一,它不仅对所学过的集合作了巩固和发展,而且也是学好后继知识的基础和工具。
函数的基础知识在现实生活、社会、经济及其他学科中有着广泛的应用;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,是进一步学习数学的重要基础。
.学情分析从学生知识层面看:学生在初中初步探讨了函数的相关知识,通过高一“集合”的学习,对集合思想的认识也日渐提高,为重新定义函数提供了知识保证。
从学生能力层面看:通过以前的学习,学生已有一定的分析、推理和概括能力,初步具备了学习函数概念的基本能力。
二、教学目标设计【教学目标】知识与技能:让学生理解构成函数的三要素、函数概念的本质、抽象的函数符号f(x) 的意义,会求一些简单函数的定义域。
过程与方法:让学生通过合作探究,经历函数概念的形成过程,渗透归纳推理的数学思想,发展学生的抽象思维能力。
情感态度价值观:通过师生互动、生生互动,让学生在民主、和谐的课堂氛围中,深化函数概念,体会数学形成和发展的一般规律,培养学生的辨证思想。
同时感受数学的抽象性和简洁美,激发学生学习数学的热情。
[ 设计意图] :教学目标的设计,要简洁明了,具有较强的可操作性,容易检测目标的达成度,同时也要体现出新课标下对素质教育的要求。
【教学难重点】重点:理解函数的概念;难点:理解函数符号()的含义。
[ 设计意图] :首先通过教学目标和难重点的展示,让学生明确本节课的任务及精髓,带着目标去学习,才能达到事半功倍的效果。
三、教法与学法选择.问题式教学法:根据学生的心理特征和认知规律,我采取问题式教学法;以问题串为主线,通过设置几个具体问题情景,发现两个变量的关系,让学生归纳、概括出函数概念的本质。
1、《函数及其表示》一等奖说课稿尊敬的各位专家、老师:大家好!今天我的说课题目是人教A版必修1第一章第二节《函数及其表示》。
对于这节课,我将以“教什么,怎么教,为什么这么教”为思路,从教材分析、目标分析、教学法分析、教学过程分析和评价五个方面来谈谈我对教材的理解和教学设计,敬请各位专家、评委批评指正。
一、教材分析(一)地位与作用函数是中学数学中最重要的基本概念之一,函数的学习大致可分为三个阶段。
第一阶段在以为教育阶段,学习了函数的描述性概念,接触了正比例函数、反比例函数、一次函数、二次函数等,本章学习的函数的概念、基本性质与后续将要学习的基本初等函数(i)和(ii)是函数学习的第二阶段,是对函数概念的'再认识阶段;第三阶段在选修系列导数及其应用的学习,使函数学习的进一步深化和提高。
因此函数及其表述这一节在高中数学中,起着承上启下的作用,函数的思想贯穿高中数学的始终,学好这章不仅在知识方面,更重要的是在函数思想、方法方面,将会让学生在今后的学习、工作和生活中受益无穷。
本小结介绍了函数概念,及其表示方法。
我将本小节分为两课时,第一课时完成函数概念的教学,第二课时完成函数图象的教学。
这里我主要谈谈函数概念的教学。
函数概念部分分用三个实际例子设计教学情境,让学生探寻变量和变量对应关系,结合初中学习的函数理论,在集合论的基础上,促使学生建构出函数概念,体验结合旧知识,探索新知识、研究新问题的快乐。
(二)学情分析(1)在初中,学生已经学习过函数的概念,并且知道韩式是变量间的相互依赖关系(2)学生思维活跃,积极性高,已经步入对数学问题的合作探究能力(3)学生层次参差不齐,个体差异明显二、目标分析根据《函数的概念》在教材中的地位与作用,结合学情分析,本节教学应实现如下教学目标:(一)教学目标(1)知识与技能进一步体会函数是描述变量之间的依赖关系的重要数学模型。
能用集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用了解构成函数的要素,理解函数定义域和值域的概念,并会求一些简单函数的定义域。
《3.1-函数的概念及其表示》公开课优秀教案教学设计(高中必修第一册)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN3.1函数的概念及其表示3.1.1函数的概念学习目标核心素养1.进一步体会函数是描述变量之间的依赖关系的重要数学模型.能用集合与对应的语言刻画出函数,体会对应关系在刻画数学概念中的作用.(重点、难点)2.了解构成函数的要素,会求一些简单函数的定义域和值域.(重点)3.能够正确使用区间表示数集.(易混点)1.通过学习函数的概念,培养数学抽象素养.2.借助函数定义域的求解,培养数学运算素养.3.借助f(x)与f(a)的关系,培养逻辑推理素养.1.函数的概念定义一般地,设A,B是非空的实数集,如果对于集合A中的任意一个数x按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数三要素对应关系y=f(x),x∈A定义域自变量x的取值范围值域与x的值相对应的y的函数值的集合{f(x)|x∈A}思考1:(1)有人认为“y=f(x)”表示的是“y等于f与x的乘积”,这种看法对吗?(2)f(x)与f(a)有何区别与联系?提示:(1)这种看法不对.符号y=f(x)是“y是x的函数”的数学表示,应理解为x是自变量,它是关系所施加的对象;f是对应关系,它可以是一个或几个解析式,可以是图象、表格,也可以是文字描述;y是自变量的函数,当x允许取某一具体值时,相应的y值为与该自变量值对应的函数值.y=f(x)仅仅是函数符号,不表示“y等于f 与x的乘积”.在研究函数时,除用符号f(x)外,还常用g(x),F(x),G(x)等来表示函数.(2)f(x)与f(a)的区别与联系:f(a)表示当x=a时,函数f(x)的值,是一个常量,而f(x)是自变量x的函数,一般情况下,它是一个变量,f(a)是f(x)的一个特殊值,如一次函数f(x)=3x+4,当x=8时,f(8)=3×8+4=28是一个常数.2.区间及有关概念(1)一般区间的表示设a,b∈R,且a<b,规定如下:定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a<x<b}开区间(a,b){x|a≤x<b}半开半闭区间[a,b){x|a<x≤b}半开半闭区间(a,b]定义R{x|x≥a}{x|x>a}{x|x≤a}{x|x<a}符号(-∞,+∞) [a,+∞)(a,+∞)(-∞,a](-∞,a)思考2:(1)区间是数集的另一种表示方法,那么任何数集都能用区间表示吗?(2)“∞”是数吗?如何正确使用“∞”提示:(1)不是任何数集都能用区间表示,如集合{0}就不能用区间表示.(2)“∞”读作“无穷大”,是一个符号,不是数.以“-∞”或“+∞”作为区间一端时,这一端必须是小括号.1.函数y=1x+1的定义域是()A.[-1,+∞)B.[-1,0) C.(-1,+∞) D.(-1,0) C[由x+1>0得x>-1.所以函数的定义域为(-1,+∞).]2.若f(x)=11-x2,则f(3)=________.-18[f(3)=11-9=-18.]3.用区间表示下列集合:(1){x|10≤x≤100}用区间表示为________;(2){x|x>1}用区间表示为________.(1)[10,100](2)(1,+∞)[结合区间的定义可知(1)为[10,100],(2)为(1,+∞).]函数的概念【例1】(1)下列各组函数是同一函数的是()①f(x)=-2x3与g(x)=x-2x;②f(x)=x与g(x)=x2;③f(x)=x0与g(x)=1x0;④f(x)=x2-2x-1与g(t)=t2-2t-1.A.①②B.①③C.③④D.①④(2)判断下列对应是不是从集合A到集合B的函数.①A=N,B=N*,对应法则f:对集合A中的元素取绝对值与B中元素对应;②A={-1,1,2,-2},B={1,4},对应法则f:x→y=x2,x∈A,y∈B;③A={-1,1,2,-2},B={1,2,4},对应法则f:x→y=x2,x∈A,y∈B;④A={三角形},B={x|x>0},对应法则f:对A中元素求面积与B中元素对应.(1)C[①f(x)=-2x3=|x|-2x与g(x)=x-2x的对应法则和值域不同,故不是同一函数.②g(x)=x2=|x|与f(x)=x的对应法则和值域不同,故不是同一函数.③f(x)=x0与g(x)=1x0都可化为y=1且定义域是{x|x≠0},故是同一函数.④f(x)=x2-2x-1与g(t)=t2-2t-1的定义域都是R,对应法则也相同,而与用什么字母表示无关,故是同一函数.由上可知是同一函数的是③④.故选C.](2)[解]①对于A中的元素0,在f的作用下得0,但0不属于B,即A中的元素0在B中没有元素与之对应,所以不是函数.②对于A中的元素±1,在f的作用下与B中的1对应,A中的元素±2,在f的作用下与B中的4对应,所以满足A中的任一元素与B中唯一元素对应,是“多对一”的对应,故是函数.③对于A中的任一元素,在对应关系f的作用下,B中都有唯一的元素与之对应,如±1对应1,±2对应4,所以是函数.④集合A不是数集,故不是函数.]1.判断对应关系是否为函数的2个条件(1)A,B必须是非空实数集.(2)A中任意一元素在B中有且只有一个元素与之对应.对应关系是“一对一”或“多对一”的是函数关系,“一对多”的不是函数关系.2.判断函数相等的方法(1)先看定义域,若定义域不同,则不相等;(2)若定义域相同,再化简函数的解析式,看对应关系是否相同.1.下列四个图象中,不是函数图象的是()A B C DB[根据函数的定义知:y是x的函数中,x确定一个值,y就随之确定一个值,体现在图象上,图象与平行于y轴的直线最多只能有一个交点,对照选项,可知只有B不符合此条件.故选B.]2.下列各组函数中是相等函数的是()A.y=x+1与y=x2-1 x-1B.y=x2+1与s=t2+1C.y=2x与y=2x(x≥0)D.y=(x+1)2与y=x2B[A,C选项中两函数的定义域不同,D选项中两函数的对应关系不同,故A,C,D错误,选B.]求函数值【例2】设f(x)=2x2+2,g(x)=1x+2,(1)求f(2),f(a+3),g(a)+g(0)(a≠-2),g(f(2)).(2)求g(f(x)).[思路点拨](1)直接把变量的取值代入相应函数解析式,求值即可;(2)把f(x)直接代入g(x)中便可得到g(f(x)).[解](1)因为f(x)=2x2+2,所以f(2)=2×22+2=10,f(a+3)=2(a+3)2+2=2a2+12a+20.因为g(x)=1x+2,所以g(a)+g(0)=1a+2+10+2=1a+2+12(a≠-2).g(f(2))=g(10)=110+2=112.(2)g(f(x))=1f(x)+2=12x2+2+2=12x2+4.函数求值的方法(1)已知f(x)的表达式时,只需用a替换表达式中的x即得f(a)的值.(2)求f(g(a))的值应遵循由里往外的原则.3.已知f(x)=x3+2x+3,求f(1),f(t),f(2a-1)和f(f(-1))的值.[解]f(1)=13+2×1+3=6;f(t)=t3+2t+3;f(2a-1)=(2a-1)3+2(2a-1)+3=8a3-12a2+10a;f(f(-1))=f((-1)3+2×(-1)+3)=f(0)=3.求函数的定义域[探究问题]1.已知函数的解析式,求其定义域时,能否可以对其先化简再求定义域?提示:不可以.如f(x)=x+1x2-1.倘若先化简,则f(x)=1x-1,从而定义域与原函数不等价.2.若函数y=f(x+1)的定义域是[1,2],这里的“[1,2]”是指谁的取值范围?函数y=f(x)的定义域是什么?提示:[1,2]是自变量x的取值范围.函数y=f(x)的定义域是x+1的范围[2,3].【例3】求下列函数的定义域:(1)f(x)=2+3x-2;(2)f(x)=(x-1)0+2x+1;(3)f(x)=3-x·x-1;(4)f (x )=(x+1)2x +1-1-x .[思路点拨] 要求函数的定义域,只需分母不为0,偶次方根中被开方数大于等于0即可.[解] (1)当且仅当x -2≠0,即x ≠2时, 函数f (x )=2+3x -2有意义, 所以这个函数的定义域为{x |x ≠2}.(2)函数有意义,当且仅当⎩⎪⎨⎪⎧x -1≠0,2x +1≥0,x +1≠0,解得x >-1且x ≠1,所以这个函数的定义域为{x |x >-1且x ≠1}.(3)函数有意义,当且仅当⎩⎪⎨⎪⎧3-x ≥0,x -1≥0,解得1≤x ≤3,所以这个函数的定义域为{x |1≤x ≤3}.(4)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x ≥0,解得x ≤1且x ≠-1,即函数定义域为{x |x ≤1且x ≠-1}.(变结论)在本例(3)条件不变的前提下,求函数y =f (x +1)的定义域. [解] 由1≤x +1≤3得0≤x ≤2. 所以函数y =f (x +1)的定义域为[0,2].求函数定义域的常用方法(1)若f(x)是分式,则应考虑使分母不为零.(2)若f(x)是偶次根式,则被开方数大于或等于零.(3)若f(x)是指数幂,则函数的定义域是使幂运算有意义的实数集合.(4)若f(x)是由几个式子构成的,则函数的定义域是几个部分定义域的交集.(5)若f(x)是实际问题的解析式,则应符合实际问题,使实际问题有意义.1.对于用关系式表示的函数.如果没有给出定义域,那么就认为函数的定义域是指使函数表达式有意义的自变量取值的集合.这也是求某函数定义域的依据.2.函数的定义主要包括定义域和定义域到值域的对应法则,因此,判定两个函数是否相同时,就看定义域和对应法则是否完全一致,完全一致的两个函数才算相同.3.函数符号y=f(x)是学习的难点,它是抽象符号之一.首先明确符号“y =f(x)”为y是x的函数,它仅仅是函数符号,不是表示“y等于f与x的乘积”.1.思考辨析(1)区间表示数集,数集一定能用区间表示.()(2)数集{x|x≥2}可用区间表示为[2,+∞].()(3)函数的定义域和对应关系确定后,函数的值域也就确定了.()(4)函数值域中每一个数在定义域中一定只有一个数与之对应.()(5)函数的定义域和值域一定是无限集合.()[答案](1)×(2)×(3)√(4)×(5)×2.下列函数中,与函数y=x相等的是()A.y=(x)2B.y=x211 C .y =|x | D .y =3x 3D [函数y =x 的定义域为R ;y =(x )2的定义域为[0,+∞);y =x 2=|x |,对应关系不同;y =|x |对应关系不同;y =3x 3=x ,且定义域为R .故选D.]3.将函数y =31-1-x的定义域用区间表示为________. (-∞,0)∪(0,1] [由⎩⎪⎨⎪⎧ 1-x ≥0,1-1-x ≠0,解得x ≤1且x ≠0,用区间表示为(-∞,0)∪(0,1].]4.已知函数f (x )=x +1x ,(1)求f (x )的定义域;(2)求f (-1),f (2)的值;(3)当a ≠-1时,求f (a +1)的值.[解] (1)要使函数f (x )有意义,必须使x ≠0,∴f (x )的定义域是(-∞,0)∪(0,+∞).(2)f (-1)=-1+1-1=-2,f (2)=2+12=52. (3)当a ≠-1时,a +1≠0,∴f (a +1)=a +1+1a +1.。
【新教材】3.1.2函数的表示法(人教A版)1、明确函数的三种表示方法;2、在实际情境中,会根据不同的需要选择恰当的方法表示函数;3、通过具体实例,了解简单的分段函数,并能简单应用.重点:函数的三种表示方法,分段函数的概念.难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.一、预习导入阅读课本67-68页,填写。
1.函数的表示法2.分段函数(1)分段函数就是在函数定义域内,对于自变量x的不同取值范围,有着不同的的函数.(2)分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的 ;各段函数的定义域的交集是.[点睛](1)分段函数虽然由几部分构成,但它仍是一个函数而不是几个函数.1, — 2w x w 0)(2)分段函数的“段”可以是等长的,也可以是不等长的.如y= 其“段”是不等x, 0<x<3,长的.1.判断(正确的打“,”,错误的打“X”)(1)任何一个函数都可以同上述三种方法表示. ( )(2)函数f(x) = 2x+ 1不能用列表法表示. ( )(3)函数的图象一定是定义区间上一条连续不断的曲线. ( )(4)分段函数由几个函数构成. ( )x+ 1, x< 1,(5)函数f(x)= 是分段函数.( )-x+ 3, x>12.函数y = f(x)的图象如图,则f(x)的定义域是( )A.RB.( —8, 1) U (1 , +OO)C.( —8, 0) U (0 , +OO)D.(― 1,0)3.已知反比例函数 f (x)满足f(3) =—6, f (x)的解析式为题型一函数的定义例1某种笔记本的单价是5元,买x (x C {1 , 2, 3,4, 5})个笔记本需要y元.试用三种表示法表示函数y=f(x).跟踪训练一1 .已知函数f(x) , g(x)分别由下表给出.123£(X)321则f( g(1)) 的值为;当g ( f (x)) =2 时,x=题型二分段函数求值|x-1|-2, |x|<1,例2 已知函数f (x) = 1寸x|>1.(1)求f(?N??)的值;(2)若f(x) =1 ,求x的值 3跟踪训练二x2+2, x<2,1. 函数f(x)= 4 若f(x o) = 8,则x0= .二x , x> 2.5题型三求函数解析式例 3 (1)已知f(x+1)= ??-3x+2,求f(x);(2)已知f(x)是二次函数,且满足f(0)=1,f(x+1)-f(x)=2x, 求f(x)的解析式;(3)已知函数f(x)对于任意的x都有f(x)+2f(-x)=3x-2, 求f(x).跟踪训练三1.已知f(x)是一次函数,且f(f(x))=2x-1, 求f(x)的解析式;2.已知f( vx+1)=x+2 vx,求f(x)的解析式;3.设函数f(x)满足f(x)+2f (-) =x(x w 0),求f(x). x题型四函数的图像及应用例4 1.函数f(x) = |x - 1|的图象是( )B C D2.给定函数 f(x) = x + 1,g(x) = (x + 1)2,x CR(1)在同一直角坐标系中画出函数 f (x ) ,g (x )的图像;(2) ?x CR,用M(x)表示f(x),g(x)中的较大者,记为 M(x) = max{f(x) ,g(x)}.请分别用图像法和解析法表示函数M(x).跟踪训练四1 .已知函数f(x)的图象如右图所示,则 f(x)的解析式是 .b, a>b,2.若定义运算 aOb=则函数f(x) =xO(2—x)的值域为 ______________ .a, a< b.题型五 函数的实际应用例5下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级及班级平均分表:A 次 第二次 第三次 第四次 第五次 第六次王伟 98 87 91 92 88人 95 张城 90 76 88 75 86 80 赵 磊 68 65 73 72 75 82 班平均分88. 278. 385. 480. 375. 782. 6请你对这三们同学在高一学年度的数学学习情况做一个分析.堂检测2.已知 f(W)=x,贝Uf(x)=()1+x1.若 f(x)={x-3, x >10, ,f(f(x+ 6)), x<则f(5)的值为(10 ,A.8B.9C.10D.11B二1+x D.M x x+13.若f(x)对于任意实数x恒有3f(x)-2f(-x)=5x+1, 则f(x)=( A.x+1 B.x-1C.2x+1D.3x+34.函数f(x)=2x , 0 < x < 1,{2, 1 < ??< 2,的值域是( ) 3, x >2A.RB.[0,+ 8)C.[0,3]5.已知函数D.[0,2] U {3}f(x)6.已知f(x) 为二次函数,其图象的顶点坐标为(1,3),且过原点,求f(x)的解析式.7.某商场新进了10台彩电,每台单价3 000元,试求售出台数x与销售额y之间的函数关系,分别用列表法、图象法、解析法表示出来答案小试牛刀1 . (1) X (2) ,(3) X (4) X (5 ),2. C一183. y =——x自主探究例1【答案】见解析【解析】这个函数的定义域是数集{1,2, 3,4, 5}.用解析法可将函数y=f (x)表示为y=5x, x C {1 , 2, 3,4, 5}用列表法可将函数y=f(x)表示为用图像法可将函数 y=f(x)表示为25 -g20 -•15 -*10 -■5 - •1I1K 1 ."(7] |2~3~4~5^跟踪训练一【答案】1 1【解析】由于函数关系是用表格形式给出的,知 g (1) =3,,f ( g(1)) =f (3) =1.由于g (2) =2,,f (x)=2, ■. x = 1.例2 【答案】(1) A (2)±\211,3 【解析】(1)因为f 2 = 2-1 -2=-2,=;,若 |x| < 1,则 |x - 1| —2=;,得 x=;或 x=一:. 3 3 3 3因为|x| < 1,所以x 的值不存在;若|x|>1 ,则彳导 x =±\2,符合 |x| >1.I i- x 3所以若f(x) =1, x 的值为士 \2.3跟踪训练二【答案】—m 或10【解析】解析:当 xo<2时,f(x o)=x0+2=8,即x2=6,xo= 一 \ 6或 xo= 6(舍去);~ ,1所以f f 2 =f3 14— = -------------- = ---23 2131 +— -2-(2)f(x), , 4当Xo>2 时,f(x 0)= -Xo , Xo= 10. 5综上可知,Xo=—{§或Xo= 1 0.例3【答案】见解析【解析】(1)(方法一)令x+1=t,则x=t-1.将x=t-1 代入f(x+1)= ?%3x+2,得f(t尸(?? 1)2-3(t-1)+2= /5t+6, f(x)= ??-5x+6.(方法二)「f(x+1)= ?f -3x+2= ?f+2x+1-5x-5+6= (?4 1)2-5(x+1)+6, • . f(x户?f-5x+6.(2)设所求的二次函数为f(x)=a ?5+bx+c(a w。
高中数学人教A版必修1《3.1.1函数的概念》教案一、教材地位和作用本节课是普通高中课程标准实验教科书人教A版第三章第一节第一课时(第60~64页)。
1、概念本身角度:函数是高中数学最抽象的概念,初中曾用运动变化的观点给出函数的描述性定义,并把函数看作两个变量间的依赖关系,但这一定义有一定的阶段性和局限性。
2、学科角度:函数是高中数学的核心概念,是整个高中函数知识体系的基石,它不仅将函数概念由“对应论”发展到“集合论”,更承上启下,为后继研究基本初等函数,比如指数函数、对数函数、幂函数、三角函数以及函数的性质等提供研究方法和理论依据,让我们体会到重要概念对数学发展和数学学习的巨大作用;同时,函数的基础知识在日常生活、社会经济、以及等其他学科也有着广泛应用。
3、高考角度:函数是高考数学的热点,函数图象性质、函数与代数式方程不等式数列三角解析几何导数的结合问题常考常新,从基础题、中档题到压轴题,每年高考都是绝对重点,高考所考察的五大数学思想中的数形结合思想、函数与方程思想贯穿高中数学学习的全过程。
有人说,“得函数者得数学,得数学者得高考”,更是形象的道出了函数在高考中的重要地位。
二、学情分析1、从学生知识层面看:通过初中函数相关知识的学习,学生具备了一定的知识经验和基础;通过必修一第一章“集合”的学习,对集合思想的认识也日渐提高,为重新定义函数、从根本上揭示函数的本质提供了知识保证.2、从学生能力层面看:学生已有一定的分析、推理和概括能力,初步具备了运用数形结合思想解决问题的能力,但数形结合的意识和思维的深刻性还有待进一步加强。
3、从学生情感培养方面看:多数学生对教学新内容的学习有很高学习兴趣和积极性,但探究能力以及合作交流等能力仍需要通过课堂主渠道加以培养和提高。
三、教学目标1、知识与技能:会用集合与对应的语言来刻画函数,理解函数的概念;理解函数符号y=f(x)的含义;了解函数的三要素;会求一些简单函数的定义域。
《3.1.1 函数的概念》教学设计教材内容:函数是现代数学中最基本的概念,是描述世界变化规律的最重要的数学工具,在解决实际问题中有着不可或缺的作用,函数是贯穿高中数学的主线,在高中的数学中有着重要的地位,本节课的学习有助于学生掌握函数思想,为后续数学的学习起着铺垫作用。
教学目标:1.通过具体实例,归纳、概括出函数的三个要素,建立用集合与对应语言刻画的函数概念,发展学生数学抽象素养.2.对简单具体的函数,能得出其定义域、值域与对应关系,会用函数的定义刻画函数。
3.用具体实例体会对应关系f 的真正含义,能将对应关系 f 与对应关系的具体表示、函数y=f(x),x ∈A 与函数的(解析式、图象与表格等)表示区分开来,在具体函数中体会“对应”观点下函数思想的本质。
教学重点与难点:1.重点:用实例归纳概括函数的三个要素,用集合与对应的语言建立函数的概念。
2.难点:如何在实例分析基础上让学生通过比较、归纳、概括不同案例中的共同特征,并由此建立函数概念.教学过程设计:引导语:同学们好!我们知道,客观世界中有各种各样的运动变化现象.例如,“天宫二号”在发射过程中,离发射点的距离随时间变化而变化;一个装满水的蓄水池在使用过程中,水面高度随时间的变化而不断降低;我国高速铁路运营里程逐年增加,已突破2万公里……所有这些现象,常常用函数模型来描述,并且通过研究函数模型我们就可以把握相应的运动变化规律.在初中我们已经接触过函数的概念,知道函数式刻画变量之间的对应关系的数学模型和工具.初中阶段函数的定义:如果有两个自变量x 与y ,并且对于x 的每个确定的值,y 都有唯一确定的值与其对应,我们就说x 是自变量,y 是x 的函数.例如,正方形的周长l 与边长x 的对应关系是x l 4 ,而且对于每一个确定的x 都有唯一l 与之对应,所以l 是x 的函数.这个函数与正比例函数x y 4=相同吗?要解决这些问题,就需要进一步学习函数概念.问题1 某“复兴号”高速列车加速到h km /350后保持匀速运行半小时.(1)这段时间内,列车行进的路程S (单位:km )与运行时间t (单位:h )的关系如何表示?这是一个函数吗?(2)有人说“根据对应关系t S 350=,这趟列车加速到h km /350后,运行h 1就前进了km 350.”你认为这个说法正确吗?你能确定这趟列车运行多长时间前进km 210吗?(3)你认为应该如何刻画这个函数?师生活动:1 教师给出问题题干和第(1)问后,提醒学生先不要看教科书,在信息平台上提交自己的答案,教师点评答案,引导学生用初中函数的定义进行表述.2 教师给出第(2)问,学生判断后,教师给予点评,启发学生认识到函数应关注自变量的变化范围和函数值的变化范围.3 让学生思考如何表述S 与t 的对应关系,教师再与学生一起讨论的基础上给出表述的示范.设计意图:问题1的第(1)问是为了让学生回顾初中所学的函数概念,用“是否满足定义要求”来回答问题;第(2)问是要激发认知冲突,发现初中函数概念的不严谨;第(3)问是为了让学生关注到t 与S 的变化范围后,尝试用更精确的语言表述函数概念.问题2 某电气维修公司要求工人每周至少工作1天,至多不超过6天.公司确定的工资标准是每人每天350元,而且每周付一次工资.(1)你认为该怎样确定一个工人每周的工资?(2)一个工人的工资w (单位:元)是他工作天数d 的函数吗?(3)你能仿照问题1刻画这个函数吗?师生活动:1教师给出问题后,让学生在在信息平台上上提交自己的答案,学生可能多数是得出d w 350=,视情况教师也可引导他们得出用表格表示的对应关系(表1): 表1 一个工人一周的工资列表123456工作时间(天)3507001050140017502100所的工资(元)2 教师提问启发学生思考后,还可以用以下追问帮助学生理解函数值的变化范围:你认为工人一周所获取的工资为2450元吗?学生在信息平台上书写并提交自己的答案,教师在点评学生答案的基础上给出规范的表述.3 教师追问(4):如果将问题2中工人每天的工资改为400元,而其它条件不变,你认为还可以用同样的函数来确定工人一周的工资吗?为什么?在学生思考与讨论的基础上,教师引导他们认识到:对应关系是影响函数的重要因素,对应关系不同函数就不同.4 教师追问(5):问题1和问题2中的函数对应关系相同,你认为它们是同一个函数吗?为什么?你认为影响函数的要素有哪些?让学生在信息平台上提交自己的答案,教师引导学生认识到不能只由对应关系是否相同判断两个函数是否相同,决定函数的三个要素是:自变量的变化范围、函数值的变化范围和对应关系.设计意图:问题2的第(1)问和第(2)问让学生在用初中函数定义认识到w是d的函数的基础上,尝试用不同方法表示函数,为认识函数对应关系做准备;第(3)问是让学生模仿问题1的表述方法去描述函数,既让他们熟悉表述方法,同时训练他们的抽象概括能力;追问(4)进一步帮助学生认识函数对应关系的重要性;追问(5)帮助学生理解怎样区别不同的函数,进一步认识函数三要素的不可或缺,引导学生总结函数的三要素.问题3 图1是北京市2016年11月23日的空气质量指数(Air Quality Index,简称AQI)变化图.图1(Ⅰ)你能根据该图确定这一天内12:00的空气质量指数(AQI )的值I 吗?是否可以确定这一天内任一时刻t 的空气质量指数(AQI )的值I ?(Ⅱ)你认为这里的I 是t 的函数吗?如果是,你能仿照前面的说法刻画这个函数吗?师生活动:教师呈现问题3,给学生适当时间阅读思考.教师将第(Ⅰ)问中的前一问设计成填空题,让学生思考后在学案上提交. 学生提交的答案可能不一样,教师点评时要帮助学生理解其原因,并让学生在此基础上回答后一问,引导学生体会图象表示的对应关系的实质,明确由确定的t 值找出对应I 值的方法与步骤.对于第(Ⅱ)问,有些学生可能从初中函数认识的角度,会认为I 不是时间t 的函数(因为没有用解析式表示对应关系)。
3.1函数的概念及其表示3.1.1函数的概念学习目标核心素养1.进一步体会函数是描述变量之间的依赖关系的重要数学模型.能用集合与对应的语言刻画出函数,体会对应关系在刻画数学概念中的作用.(重点、难点)2.了解构成函数的要素,会求一些简单函数的定义域和值域.(重点)3.能够正确使用区间表示数集.(易混点)1.通过学习函数的概念,培养数学抽象素养.2.借助函数定义域的求解,培养数学运算素养.3.借助f(x)与f(a)的关系,培养逻辑推理素养.1.函数的概念定义一般地,设A,B是非空的实数集,如果对于集合A中的任意一个数x按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B 的一个函数三要素对应关系y=f(x),x∈A定义域自变量x的取值范围值域与x的值相对应的y的函数值的集合{f(x)|x∈A}思考1:(1)有人认为“y=f(x)”表示的是“y等于f与x的乘积”,这种看法对吗?(2)f(x)与f(a)有何区别与联系?提示:(1)这种看法不对.符号y=f(x)是“y是x的函数”的数学表示,应理解为x是自变量,它是关系所施加的对象;f是对应关系,它可以是一个或几个解析式,可以是图象、表格,也可以是文字描述;y是自变量的函数,当x允许取某一具体值时,相应的y值为与该自变量值对应的函数值.y=f(x)仅仅是函数符号,不表示“y等于f 与x的乘积”.在研究函数时,除用符号f(x)外,还常用g(x),F(x),G(x)等来表示函数.(2)f(x)与f(a)的区别与联系:f(a)表示当x=a时,函数f(x)的值,是一个常量,而f(x)是自变量x的函数,一般情况下,它是一个变量,f(a)是f(x)的一个特殊值,如一次函数f(x)=3x+4,当x=8时,f(8)=3×8+4=28是一个常数.2.区间及有关概念(1)一般区间的表示设a,b∈R,且a<b,规定如下:定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a<x<b}开区间(a,b){x|a≤x<b}半开半闭区间[a,b){x|a<x≤b}半开半闭区间(a,b]定义R{x|x≥a}{x|x>a}{x|x≤a}{x|x<a}符号(-∞,+∞) [a,+∞)(a,+∞)(-∞,a](-∞,a)思考2:(1)区间是数集的另一种表示方法,那么任何数集都能用区间表示吗?(2)“∞”是数吗?如何正确使用“∞”?提示:(1)不是任何数集都能用区间表示,如集合{0}就不能用区间表示.(2)“∞”读作“无穷大”,是一个符号,不是数.以“-∞”或“+∞”作为区间一端时,这一端必须是小括号.1.函数y=1x+1的定义域是()A.[-1,+∞)B.[-1,0) C.(-1,+∞) D.(-1,0) C[由x+1>0得x>-1.所以函数的定义域为(-1,+∞).]2.若f(x)=11-x2,则f(3)=________.-18[f(3)=11-9=-18.]3.用区间表示下列集合:(1){x|10≤x≤100}用区间表示为________;(2){x|x>1}用区间表示为________.(1)[10,100](2)(1,+∞)[结合区间的定义可知(1)为[10,100],(2)为(1,+∞).]函数的概念【例1】(1)下列各组函数是同一函数的是()①f(x)=-2x3与g(x)=x-2x;②f(x)=x与g(x)=x2;③f(x)=x0与g(x)=1x0;④f(x)=x2-2x-1与g(t)=t2-2t-1.A.①②B.①③C.③④D.①④(2)判断下列对应是不是从集合A到集合B的函数.①A=N,B=N*,对应法则f:对集合A中的元素取绝对值与B中元素对应;②A={-1,1,2,-2},B={1,4},对应法则f:x→y=x2,x∈A,y∈B;③A={-1,1,2,-2},B={1,2,4},对应法则f:x→y=x2,x∈A,y∈B;④A={三角形},B={x|x>0},对应法则f:对A中元素求面积与B中元素对应.(1)C[①f(x)=-2x3=|x|-2x与g(x)=x-2x的对应法则和值域不同,故不是同一函数.②g(x)=x2=|x|与f(x)=x的对应法则和值域不同,故不是同一函数.③f(x)=x0与g(x)=1x0都可化为y=1且定义域是{x|x≠0},故是同一函数.④f(x)=x2-2x-1与g(t)=t2-2t-1的定义域都是R,对应法则也相同,而与用什么字母表示无关,故是同一函数.由上可知是同一函数的是③④.故选C.](2)[解]①对于A中的元素0,在f的作用下得0,但0不属于B,即A中的元素0在B中没有元素与之对应,所以不是函数.②对于A中的元素±1,在f的作用下与B中的1对应,A中的元素±2,在f 的作用下与B中的4对应,所以满足A中的任一元素与B中唯一元素对应,是“多对一”的对应,故是函数.③对于A中的任一元素,在对应关系f的作用下,B中都有唯一的元素与之对应,如±1对应1,±2对应4,所以是函数.④集合A不是数集,故不是函数.]1.判断对应关系是否为函数的2个条件(1)A,B必须是非空实数集.(2)A中任意一元素在B中有且只有一个元素与之对应.对应关系是“一对一”或“多对一”的是函数关系,“一对多”的不是函数关系.2.判断函数相等的方法(1)先看定义域,若定义域不同,则不相等;(2)若定义域相同,再化简函数的解析式,看对应关系是否相同.1.下列四个图象中,不是函数图象的是()A B C DB[根据函数的定义知:y是x的函数中,x确定一个值,y就随之确定一个值,体现在图象上,图象与平行于y轴的直线最多只能有一个交点,对照选项,可知只有B不符合此条件.故选B.]2.下列各组函数中是相等函数的是()A.y=x+1与y=x2-1 x-1B.y=x2+1与s=t2+1C.y=2x与y=2x(x≥0)D.y=(x+1)2与y=x2B[A,C选项中两函数的定义域不同,D选项中两函数的对应关系不同,故A,C,D错误,选B.]求函数值【例2】设f(x)=2x2+2,g(x)=1x+2,(1)求f(2),f(a+3),g(a)+g(0)(a≠-2),g(f(2)).(2)求g(f(x)).[思路点拨](1)直接把变量的取值代入相应函数解析式,求值即可;(2)把f(x)直接代入g(x)中便可得到g(f(x)).[解](1)因为f(x)=2x2+2,所以f(2)=2×22+2=10,f(a+3)=2(a+3)2+2=2a2+12a+20.因为g(x)=1x+2,所以g(a)+g(0)=1a+2+10+2=1a+2+12(a≠-2).g(f(2))=g(10)=110+2=112.(2)g(f(x))=1f(x)+2=12x2+2+2=12x2+4.函数求值的方法(1)已知f(x)的表达式时,只需用a替换表达式中的x即得f(a)的值.(2)求f(g(a))的值应遵循由里往外的原则.3.已知f(x)=x3+2x+3,求f(1),f(t),f(2a-1)和f(f(-1))的值.[解]f(1)=13+2×1+3=6;f(t)=t3+2t+3;f(2a-1)=(2a-1)3+2(2a-1)+3=8a3-12a2+10a;f(f(-1))=f((-1)3+2×(-1)+3)=f(0)=3.求函数的定义域[探究问题]1.已知函数的解析式,求其定义域时,能否可以对其先化简再求定义域?提示:不可以.如f(x)=x+1x2-1.倘若先化简,则f(x)=1x-1,从而定义域与原函数不等价.2.若函数y=f(x+1)的定义域是[1,2],这里的“[1,2]”是指谁的取值范围?函数y=f(x)的定义域是什么?提示:[1,2]是自变量x的取值范围.函数y=f(x)的定义域是x+1的范围[2,3].【例3】求下列函数的定义域:(1)f(x)=2+3x-2;(2)f(x)=(x-1)0+2x+1;(3)f(x)=3-x·x-1;(4)f(x)=(x+1)2x+1-1-x.[思路点拨]要求函数的定义域,只需分母不为0,偶次方根中被开方数大于等于0即可.[解](1)当且仅当x-2≠0,即x≠2时,函数f(x)=2+3x-2有意义,所以这个函数的定义域为{x|x≠2}.(2)函数有意义,当且仅当⎩⎪⎨⎪⎧x -1≠0,2x +1≥0,x +1≠0,解得x >-1且x ≠1,所以这个函数的定义域为{x |x >-1且x ≠1}.(3)函数有意义,当且仅当⎩⎪⎨⎪⎧3-x ≥0,x -1≥0,解得1≤x ≤3,所以这个函数的定义域为{x |1≤x ≤3}.(4)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x ≥0,解得x ≤1且x ≠-1,即函数定义域为{x |x ≤1且x ≠-1}.(变结论)在本例(3)条件不变的前提下,求函数y =f (x +1)的定义域. [解] 由1≤x +1≤3得0≤x ≤2. 所以函数y =f (x +1)的定义域为[0,2].求函数定义域的常用方法(1)若f (x )是分式,则应考虑使分母不为零. (2)若f (x )是偶次根式,则被开方数大于或等于零.(3)若f (x )是指数幂,则函数的定义域是使幂运算有意义的实数集合. (4)若f (x )是由几个式子构成的,则函数的定义域是几个部分定义域的交集. (5)若f (x )是实际问题的解析式,则应符合实际问题,使实际问题有意义.1.对于用关系式表示的函数.如果没有给出定义域,那么就认为函数的定义域是指使函数表达式有意义的自变量取值的集合.这也是求某函数定义域的依据.2.函数的定义主要包括定义域和定义域到值域的对应法则,因此,判定两个函数是否相同时,就看定义域和对应法则是否完全一致,完全一致的两个函数才算相同.3.函数符号y =f (x )是学习的难点,它是抽象符号之一.首先明确符号“y =f (x )”为y 是x 的函数,它仅仅是函数符号,不是表示“y 等于f 与x 的乘积”.1.思考辨析(1)区间表示数集,数集一定能用区间表示.( ) (2)数集{x |x ≥2}可用区间表示为[2,+∞].( )(3)函数的定义域和对应关系确定后,函数的值域也就确定了.( ) (4)函数值域中每一个数在定义域中一定只有一个数与之对应.( ) (5)函数的定义域和值域一定是无限集合.( ) [答案] (1)× (2)× (3)√ (4)× (5)× 2.下列函数中,与函数y =x 相等的是( ) A .y =(x )2 B .y =x 2 C .y =|x |D .y =3x 3D [函数y =x 的定义域为R ;y =(x )2的定义域为[0,+∞);y =x 2=|x |,对应关系不同;y =|x |对应关系不同;y =3x 3=x ,且定义域为R .故选D.]3.将函数y =31-1-x的定义域用区间表示为________.(-∞,0)∪(0,1] [由⎩⎪⎨⎪⎧1-x ≥0,1-1-x ≠0,解得x ≤1且x ≠0,用区间表示为(-∞,0)∪(0,1].]4.已知函数f(x)=x+1 x,(1)求f(x)的定义域;(2)求f(-1),f(2)的值;(3)当a≠-1时,求f(a+1)的值.[解](1)要使函数f(x)有意义,必须使x≠0,∴f(x)的定义域是(-∞,0)∪(0,+∞).(2)f(-1)=-1+1-1=-2,f(2)=2+12=52.(3)当a≠-1时,a+1≠0,∴f(a+1)=a+1+1a+1.。
统编人教A版数学高中必修第一册《3.1-函数的概念及其表示》优秀教案教学设计-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN【新教材】3.1.1 函数的概念(人教A版)函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.课程目标1.理解函数的定义、函数的定义域、值域及对应法则。
2.掌握判定函数和函数相等的方法。
3.学会求函数的定义域与函数值。
数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。
重点:函数的概念,函数的三要素。
难点:函数概念及符号y=f(x)的理解。
教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、情景导入初中已经学过:正比例函数、反比例函数、一次函数、二次函数等,那么在初中函数是怎样定义的高中又是怎样定义要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本60-65页,思考并完成以下问题1. 在集合的观点下函数是如何定义函数有哪三要素2. 如何用区间表示数集?3. 相等函数是指什么样的函数?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任何一个属x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x)x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫做自变量,x的取值范围叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.2.区间概念(a,b为实数,且a<b)3.其它区间的表示四、典例分析、举一反三题型一函数的定义例1下列选项中(横轴表示x轴,纵轴表示y轴),表示y是x的函数的是( )【答案】D解题技巧:(判断是否为函数)1.(图形判断)y是x的函数,则函数图象与垂直于x轴的直线至多有一个交点.若有两个或两个以上的交点,则不符合函数的定义,所对应图象不是函数图象.2.(对应关系判断)对应关系是“一对一”或“多对一”的是函数关系;“一对多”的不是函数关系.跟踪训练一1.集合A={x|0≤x ≤4},B={y|0≤y ≤2},下列不表示从A 到B 的函数的是( )【答案】C题型二 相等函数例2 试判断以下各组函数是否表示同一函数:(1)f(x)=(√x )2,g(x)=√x 2;(2)y=x 0与y=1(x ≠0);(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z). 【答案】见解析【解析】:(1)因为函数f(x)=(√x )2的定义域为{x|x≥0},而g(x)=√x 2的定义域为{x|x ∈R},它们的定义域不同,所以它们不表示同一函数.(2)因为y=x 0要求x ≠0,且当x ≠0时,y=x 0=1,故y=x 0与y=1(x ≠0)的定义域和对应关系都相同,所以它们表示同一函数.(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z)两个函数的定义域相同,但对应关系不相同,故它们不表示同一函数.解题技巧:(判断函数相等的方法) 定义域优先原则1.先看定义域,若定义域不同,则函数不相等.2.若定义域相同,则化简函数解析式,看对应关系是否相等.跟踪训练二1.试判断以下各组函数是否表示同一函数: ①f(x)=x 2-x x,g(x)=x-1;②f(x)=√x x ,g(x)=√x ;③f(x)=√(x +3)2,g(x)=x+3;④f(x)=x+1,g(x)=x+x 0;⑤汽车匀速运动时,路程与时间的函数关系f(t)=80t(0≤t ≤5)与一次函数g(x)=80x(0≤x ≤5).其中表示相等函数的是 (填上所有正确的序号). 【答案】⑤【解析】①f(x)与g(x)的定义域不同,不是同一函数;②f(x)与g(x)的解析式不同,不是同一函数; ③f(x)=|x+3|,与g(x)的解析式不同,不是同一函数; ④f(x)与g(x)的定义域不同,不是同一函数;⑤f(x)与g(x)的定义域、值域、对应关系皆相同,是同一函数. 题型三 区间例3 已知集合A={x|5-x ≥0},集合B={x||x|-3≠0},则A ∩B 用区间可表示为 . 【答案】(-∞,-3)∪(-3,3)∪(3,5] 【解析】∵A={x|5-x ≥0},∴A={x|x ≤5}.∵B={x||x|-3≠0},∴B={x|x ≠±3}. ∴A ∩B={x|x<-3或-3<x<3或3<x ≤5}, 即A ∩B=(-∞,-3)∪(-3,3)∪(3,5].解题技巧:(如何用区间表示集合)1.正确利用区间表示集合,要特别注意区间的端点值能否取到,即“小括号”和“中括号”的区别.2.用区间表示两集合的交集、并集、补集运算时,应先求出相应集合,再用区间表示.跟踪训练三1.集合{x|0<x<1或2≤x ≤11}用区间表示为 .2. 若集合A=[2a-1,a+2],则实数a 的取值范围用区间表示为 .【答案】(1)(0,1)∪[2,11] (2)(-∞,3)【解析】 (2)由区间的定义知,区间(a,b)(或[a,b])成立的条件是a<b.∵A=[2a-1,a+2],∴2a-1<a+2.∴a<3, ∴实数a 的取值范围是(-∞,3). 题型四 求函数的定义域 例4 求下列函数的定义域:(1)y=(x+2)|x |-x ; (2)f(x)=x 2-1x -1−√4-x .【答案】(1) (-∞,-2)∪(-2,0) (2) (-∞,1)∪(1,4]【解析】(1)要使函数有意义,自变量x 的取值必须满足{x +2≠0,|x |-x ≠0,即{x ≠-2,|x |≠x ,解得x<0,且x ≠-2.故原函数的定义域为(-∞,-2)∪(-2,0). (2)要使函数有意义,自变量x 的取值必须满足{4-x ≥0,x -1≠0,即{x ≤4,x ≠1.故原函数的定义域为(-∞,1)∪(1,4]. 解题方法(求函数定义域的注意事项)(1)如果函数f(x)是整式,那么函数的定义域是实数集R;(2)如果函数f(x)是分式,那么函数的定义域是使分母不等于零的实数组成的集合; (3)如果函数f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数组成的集合;(4)如果函数f(x)是由两个或两个以上代数式的和、差、积、商的形式构成的,那么函数的定义域是使各式子都有意义的自变量的取值集合(即求各式子自变量取值集合的交集).跟踪训练四1.求函数y=√2x +3−√2-x+1x 的定义域.2.已知函数f(x)的定义域是[-1,4],求函数f(2x+1)的定义域.【答案】(1) {x |-32≤x <2,且x ≠0} (2) [-1,32]【解析】(1)要使函数有意义,需{2x +3≥0,2-x >0,x ≠0,解得-32≤x<2,且x ≠0,所以函数y=√2x +3−√2-x +1x 的定义域为{x |-32≤x <2,且x ≠0}.(2)已知f(x)的定义域是[-1,4],即-1≤x≤4. 故对于f(2x+1)应有-1≤2x+1≤4, ∴-2≤2x≤3,∴-1≤x≤32. ∴函数f(2x+1)的定义域是[-1,32]. 题型五 求函数值(域)例5 (1)已知f(x)=11+x (x ∈R ,且x ≠-1),g(x)=x 2+2(x ∈R),则f(2)=________, f(g(2))=________. (2)求下列函数的值域:①y =x +1; ②y =x 2-2x +3,x ∈[0,3); ③y =3x−11+x ; ④y =2x -√x −1.【答案】(1)1317 (2)① R ② [2,6) ③ {y|y ∈R 且y≠3} ④ ⎣⎢⎡⎭⎪⎫158,+∞ 【解析】(1) ∵f (x)=11+x ,∴f(2)=11+2=13.又∵g (x)=x 2+2,∴g (2)=22+2=6, ∴f ( g(2))=f (6)=11+6=17.(2) ①(观察法)因为x ∈R ,所以x +1∈R ,即函数值域是R.②(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).③(分离常数法)y =3x -1x +1=3x +3-4x +1=3-4x +1.∵4x +1≠0,∴y≠3, ∴y =3x -1x +1的值域为{y|y ∈R 且y≠3}.④(换元法)设t =x -1,则t≥0且x =t 2+1,所以y =2(t 2+1)-t =2 ⎝ ⎛⎭⎪⎫t -142+158,由t≥0,再结合函数的图象(如图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.解题方法(求函数值(域)的方法)1.已知f(x)的表达式时,只需用数a 替换表达式中的所有x 即得f(a)的值.2.求f(g(a))的值应遵循由内到外的原则.3. 求函数值域常用的4种方法(1)观察法:对于一些比较简单的函数,其值域可通过观察得到;(2)配方法:当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法或二次函数图像求其值域;(3)分离常数法:此方法主要是针对有理分式,即将有理分式转化为 “反比例函数类”的形式,便于求值域;(4)换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax+b+√cx +d (其中a ,b ,c ,d 为常数,且a ≠0)型的函数常用换元法.跟踪训练五1.求下列函数的值域:(1)y = √2x +1 +1;(2)y =1−x 21+x .【答案】(1) [1,+∞) (2) (-1,1]【解析】(1)因为2x +1≥0,所以2x +1+1≥1,即所求函数的值域为[1,+∞). (2)因为y =1-x 21+x 2=-1+21+x2,又函数的定义域为R ,所以x 2+1≥1,所以0<21+x 2≤2,则y ∈(-1,1].所以所求函数的值域为(-1,1]. 五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计七、作业课本67页练习、72页1-5本节课主要通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,尤其在求抽象函数定义域时,先根据特殊函数的规律总结一般规律.。
天津市实验中学滨海学校思维导学案§3.1.1函数的概念 班级________姓名__________【学习目标】1. 通过丰富实例,学生进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;2.结合实例,认真解读函数的定义,了解构成函数的三要素;3.结合实例理解函数的抽象表示,自己能表示出一些简单的函数.【自学初探】一、导学问题:(初中对函数的定义)在一个变化过程中,有两个变量x 和y , 对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量. (运动变化观点) 其表示方法有:解析法、列表法、图象法. 那么右图所示的对应关系可以表示一个函数吗?答案到课本中找。
二、阅读课本(第15-16页)回答下列问题:1、课本中三个实例存在哪些变量?变量的变化范围分别是什么?每个实例中两个变量之间存在着怎样的对应关系? 三个实例中变量间的关系有什么共同点?2、结合课本中三个实例说说函数定义中符号:f A B →, (),y f x x A =∈, {()|}f x x A ∈的含义.3.试用函数的定义描述你学过的函数.4.根据你对函数定义的理解试举出几个你没学过的函数的例子.并指出它的定义域, 值域,对应法则.5、函数值域与集合B 有怎样的关系? 构成函数的三要素有哪些?【展示探究】必做题:P19练习2、1 4 1 -4 取绝对值选做题:1. 下图中能作为函数()y f x =的图像的是 .为什么?A. B. C. D. 2.设{02}M x x =≤≤,{12}N y y =≤≤,给出下列四个图形,其中能表示从集合M 到集合N 的函数关系的是: .A. B. C. D.【自省新探】(自主学习、同伴交流、师生研讨基础上,总结自省收获。
)知识上:方法上:【课堂检测】1.1. 已知函数2()21g t t =-,则(1)g =( ).A. -1B. 0C. 1D. 22.已知函数()23f x x =+,若()1f a =,则a =( ).A. -2B. -1C. 1D. 23.函数2,{2,1,0,1,2}y x x =∈--的值域是 .【课后作业】揣摩理解函数定义。
§3.1.1 函数的概念(第二课时)1.了解组成函数的三要素,能求具体函数及抽象函数的定义域.2.了解组成函数的三要素,理解函数值域的含义,能求简单函数的值域.(预习教材P 62~ P 63,回答下列问题)回忆:函数的三要素是什么?问题:已知函数()f x =(1)求函数的定义域;(2)求的表达式?你能求的定义域吗?()1f x -()1f x -(3)你能直接求出的定义域吗?()21f x +自我检测1:求函数的定义域;01()(1)4f x x x =++++(2)抽象函数的定义域求法形如、、这类函数而言,未直接给出对()1f x -()21f x +()()()211F x f x f x =++-应法则对所施加对象作用后的具体表达形式,我们称之为抽象函数.f第三章 函数的概念与性质- -2通过观察,若函数,则函数,我们可有如下结论:()f x =()1f x -=①函数与的自变量都是自身表达式中的(定义域是自变量的取值集()f x ()1f x -x 合);②在同一题中,对应法则的含义一致(即法则对施加对象的约束条件相同).f f自我检测3:某种笔记本的单价为3元,小明手里有元钱,设小明一共买了个该笔记100x 本,花费为元,你能正确写出该问题中自变量的约束条件吗?y x 【知识点二】函数值域的求法函数的值域即为函数值的取值集合,其取值范围受自变量的取值范围和对()y f x =y x 应法则配合决定,所以在求值域时,一定要注意定义域以及函数的结构.f 常用的求值域的方法有:①图像法(如一次函数、二次函数、反比例函数等已知图像的函数)②换元法(利用整体换元的思想,将未知函数结构转化成已知函数结构求解)自我检测4:你能将四次函数转化成二次函数模型吗?前后函数自()4223f x x x =--变量有何改变?3题型一 函数的定义【例1-1】求下列函数的定义域(1)求函数的定义域.21()21f x x x =+-+(2)求函数的定义域.()f x =【例1-2】求下列函数的定义域(1)已知函数定义域是,求的定义域.()y f x =[]1,3-()1y f x =-(2)已知函数定义域是,求的定义域.(1)y f x =-[]1,3-()y f x =(3)已知函数定义域是,求的定义域.(1)=-y f x []1,3-()21y f x =+第三章 函数的概念与性质- -4【例1-3】求下列函数的定义域(1)已知函数的定义域为,求的定义域.()f x [1,2]-()()()g x f x f x =+-(2)已知函数的定义域,求的定义域.()f x []4,2-()()21f x g x x =+(1)函数 ;(){}1,1,1,2f x x x =+∈-(2)函数, ;()223f x x x =-+x R ∈(若将定义域改为、,又将如何?){1,0,1,2}x ∈-[)1,4x ∈-(3)函数,.()1f x x =11,2x ⎡⎫∈--⎪⎢⎣⎭5【例2-2】求下列函数的值域已知函数,的图像如右图所示,请回答:()a f x x x =+()0a >(1)当,时,求此函数的值域;1a =(0,)x ∈+∞()f x (2)当,时,求此函数的值域.4a =[1,3]x ∈()f x 【例2-3】求下列函数的值域(1)函数,的值域为_________________.()4223f x x x =--()0,2x ∈(2)函数_________________.()g x x =-(3)函数的值域为_________________.2()(1)1x h x x x =>-第三章 函数的概念与性质- -61.已知函数,则( )1()f x x x =+A .函数的定义域为,值域为()f x {|0}x x ≠{|2}y y ≥B .函数的定义域为,值域为()f x {|0}x x ≠{|22}y y y ≥≤-或C .函数的定义域为,值域为()f x {|0}x x ≠RD .函数的定义域为,值域为()f x R R2.已知函数的定义域为,求的定义域.()f x []1,412f x ⎛⎫+ ⎪⎝⎭3.已知函数的定义域是,求的定义域.()f x [0,2]11()22g x f x f x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭4.求下列函数的值域(1)函数,的值域是___________.()242f x x x =-+-[)0,3x ∈(2)求函数在区间上的值域.()3f x x =-[]2,47§3.1.1 函数的概念(第二课时)参考参考答案(预习教材P 62~ P 63,回答下列问题)回忆:函数的三要素是什么?问题:已知函数()f x =(1)求函数的定义域;(2)求的表达式?你能求的定义域吗?()1f x -()1f x -(3)你能直接求出的定义域吗?()21f x +自我检测1:求函数的定义域;1()(1)4f x x x =++++【参考答案】要使函数有意义,应有即504010x x x +≥⎧⎪+≠⎪⎨⎪⎪+≠⎩541x x x ≥-⎧⎪≠-⎨⎪≠-⎩所以函数的定义域是.[)()()54411-----+∞ ,,,第三章 函数的概念与性质- -8(2)抽象函数的定义域求法形如、、这类函数而言,未直接给出对()1f x -()21f x +()()()211F x f x f x =++-应法则对所施加对象作用后的具体表达形式,我们称之为抽象函数.f 通过观察,若函数,则函数,我们可有如下结论:()f x =()1f x -=①函数与的自变量都是自身表达式中的(定义域是自变量的取值集()f x ()1f x -x 合);②在同一题中,对应法则的含义一致(即法则对施加对象的约束条件相同).f f自我检测3:某种笔记本的单价为3元,小明手里有元钱,设小明一共买了个该笔记100x 本,花费为元,你能正确写出该问题中自变量的约束条件吗?y x9题型一 函数的定义【例1-1】求下列函数的定义域(1)求函数的定义域.21()21f x x x =+-+(2)求函数的定义域.()f x =【参考答案】(1);(2);|x x x ⎧⎪<>⎨⎪⎩{}|13x x x <>或【例1-2】求下列函数的定义域(1)已知函数定义域是,求的定义域.()y f x =[]1,3-()1y f x =-(2)已知函数定义域是,求的定义域.(1)y f x =-[]1,3-()y f x =(3)已知函数定义域是,求的定义域.(1)=-y f x []1,3-()21y f x =+【参考答案】(1) (2) (3)[]0,4[]2,2-31,22⎡⎤-⎢⎥⎣⎦(3),13,212x x -≤≤∴-≤-≤ 故的定义域为,()f x [2,2]-所以令,解得,2212x -≤+≤3122x -≤≤故的定义域是.()21y f x =+31,22⎡⎤-⎢⎥⎣⎦第三章 函数的概念与性质- -10【例1-3】求下列函数的定义域(1)已知函数的定义域为,求的定义域.()f x [1,2]-()()()g x f x f x =+-【参考答案】[1,1]-由题意,函数的定义域为,()f x [1,2]-则函数满足,解得,即,()()()g x f x f x =+-1212x x -≤≤⎧⎨-≤-≤⎩1221x x -≤≤⎧⎨-≤≤⎩11x -≤≤即函数的定义域为.()g x [1,1]-(2)已知函数的定义域,求的定义域.()f x []4,2-()()21f x g x x =+【参考答案】;[)(]2,11,1--- 函数的定义域,即,可得()f x []4,2-422x -≤≤21x -≤≤又分母,可得.10x +≠1x ≠-∴的定义域为.()()21f x g x x =+[)(]2,11,1---(1)函数 ;(){}1,1,1,2f x x x =+∈-(2)函数, ;()223f x x x =-+x R ∈(若将定义域改为、,又将如何?){1,0,1,2}x ∈-[)1,4x ∈-(3)函数,.()1f x x =11,2x ⎡⎫∈--⎪⎢⎣⎭【参考答案】(1)(2),,(3){}0,2,3[)2,+∞{}6,3,2[)2,11(]2,1--【例2-2】求下列函数的值域已知函数,的图像如右图所示,请回答:()a f x x x =+()0a >(1)当,时,求此函数的值域;1a =(0,)x ∈+∞()f x (2)当,时,求此函数的值域.4a =[1,3]x ∈()f x 【参考答案】(1);(2)[)2,+∞[]4,5【例2-3】求下列函数的值域(1)函数,的值域为_________________.()4223f x x x =--()0,2x ∈(2)函数_________________.()g x x =-(3)函数的值域为_________________.2()(1)1x h x x x =>-【参考答案】(1) (2) (3)[)4,5-1(,]2-∞[4,)+∞第三章 函数的概念与性质(2),因为≤x ≤1,所以≤x −2≤,所以1≤(x −2)2≤9,()()224321f x x x x =-+=--1-3-1-则0≤(x −2)2≤8.故函数的值域为[0,8].1-()[]243,1,1f x x x x =-+∈-函数的定义域为,令,得,故()g x 1,2⎛⎤-∞ ⎥⎝⎦()2102t tx t -==≥21122y t t =--+,所以函数.1,2y ⎛⎤∈-∞ ⎥⎝⎦()g x x =1,2⎛⎤-∞ ⎥⎝⎦(3).当且仅当x =2时()()()2212111124111x x x h x xx x x -+-+===-++≥---“=”成立,故函数的值域为.()2(1)1x h x x x =>-[)4,+∞1.已知函数,则( )1()f x x x =+A .函数的定义域为,值域为()f x {|0}x x ≠{|2}y y ≥B .函数的定义域为,值域为()f x {|0}x x ≠{|22}y y y ≥≤-或C .函数的定义域为,值域为()f x {|0}x x ≠RD .函数的定义域为,值域为()f x R R【参考答案】B2.已知函数的定义域为,求的定义域.()f x []1,412f x ⎛⎫+ ⎪⎝⎭【参考答案】∪.(,1]-∞-1,2⎡⎫+∞⎪⎢⎣⎭由,得,即或,1124x ≤+≤112x -≤≤110x -≤<102x <≤解得x ≤ ,或.1-12x ≥∴函数的定义域为(-∞,]∪[,+∞).1-123.已知函数的定义域是,求的定义域.()f x [0,2]11()22g x f x f x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭【参考答案】.13,22⎡⎤⎢⎥⎣⎦的定义域是,且,()f x [0,2]11()22g x f x f x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭则102,2102,2x x ⎧+⎪⎪∴⎨⎪-⎪⎩ (1)3,2215,22x x ⎧-≤≤⎪⎪⎨⎪≤≤⎪⎩即.的定义域为.1322x ……()g x ∴13,22⎡⎤⎢⎥⎣⎦4.求下列函数的值域(1)函数,的值域是___________.()242f x x x =-+-[)0,3x ∈【参考答案】[2,2]-(2)求函数在区间上的值域.()3f x x =-[]2,4【参考答案】12,4⎤--⎦,则t =26x t =-第三章 函数的概念与性质∵,[]2,4x ∈2t ≤≤那么函数转化为()f x ()22()36318g t t t t t =--=+-其对称轴,16t =-故得的值域为.()f x 12,4⎤-⎦。
《函数的概念》说课稿授课人:黄语辉各位评委:大家好!我说课的内容是高中新课标必修1中函数的概念。
“函数”是中学数学的核心概念.《函数的概念》这一节为2个课时,我主要针对第一课时的教学,谈谈我的理解与设计。
下面我从教材分析,教法学法,教学设计等五个环节来说明对这节课的认识.第一、教材分析函数这一章在高中数学中,起着承上启下的作用.本节《函数的概念》是函数这一章的起始课.它上承集合,下引性质.是派生数学概念.教学目标1. 理解函数的概念。
2. 掌握求函数值、定义域的方法;3. 理解函数的三要素及符号y=f(x)教学重难点教学重点:正确理解函数的概念教学难点:理解函数符号y=f(x)第二、学情分析在初中学生已经学习了变量观点下的函数定义;但对涉及函数本质的内容,要求是初步的.从认知能力看,高一学生抽象思维能力相对较弱,要从函数实例中抽象出函数概念还有较大的困难.第三、.教法学法教法:问题驱动、引导探究、启发讲授学法:观察法、探究法第四、教学设计在对函数概念这一课时有了充分认识之后,我的第三个环节教学设计将按以下五个步骤逐层推进:回顾迎新,引入课题。
从初中“变量说”下的函数概念出发;接着,以变量说为切入点,结合两个示例反复设问,实现概念认识的螺旋上升;在此基础上,概括抽象出对应观念下的函数概念;概念形成后,针对关键词,重点处理,加深本质理解;最后通过学生的自我总结和论述,达到认识上的升华.接下来我对这5个步骤作具体说明:探究新知首先抛出问题,请学生叙述举例.由于学生在初中主要接触的是用解析式表示的函数,对图像、表格表示的函数,因其对应关系“说不出来”,往往认为不是函数.这时顺势导入进入教学的第二个环节,丰富实例,探究共性.在这一环节给出四个案例,分析中要引导学生用集合的观点解释已有概念,利用函数的各种表达形式,为学生搭建理解的平台,以帮助学生感悟函数概念四个例题教学设计如下实例1复兴号高速列车的行驶速度、时间和路程。
【新教材】3.1.1 函数的概念(人教A版)函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.课程目标1.理解函数的定义、函数的定义域、值域及对应法则。
2.掌握判定函数和函数相等的方法。
3.学会求函数的定义域与函数值。
数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。
重点:函数的概念,函数的三要素。
难点:函数概念及符号y=f(x)的理解。
教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、情景导入初中已经学过:正比例函数、反比例函数、一次函数、二次函数等,那么在初中函数是怎样定义的?高中又是怎样定义?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本60-65页,思考并完成以下问题1. 在集合的观点下函数是如何定义?函数有哪三要素?2. 如何用区间表示数集?3. 相等函数是指什么样的函数?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任何一个属x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x)x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫做自变量,x的取值范围叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.2.区间概念(a,b为实数,且a<b)3.其它区间的表示四、典例分析、举一反三题型一 函数的定义例1 下列选项中(横轴表示x 轴,纵轴表示y 轴),表示y 是x 的函数的是( )【答案】D解题技巧:(判断是否为函数)1.(图形判断)y 是x 的函数,则函数图象与垂直于x 轴的直线至多有一个交点.若有两个或两个以上的交点,则不符合函数的定义,所对应图象不是函数图象.2.(对应关系判断)对应关系是“一对一”或“多对一”的是函数关系;“一对多”的不是函数关系. 跟踪训练一1.集合A={x|0≤x ≤4},B={y|0≤y ≤2},下列不表示从A 到B 的函数的是( )【答案】C题型二 相等函数例2 试判断以下各组函数是否表示同一函数:(1)f(x)=(√x )2,g(x)=√x 2;(2)y=x 0与y=1(x ≠0);(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z). 【答案】见解析【解析】:(1)因为函数f(x)=(√x )2的定义域为{x|x≥0},而g(x)=√x 2的定义域为{x|x ∈R},它们的定义域不同,所以它们不表示同一函数.(2)因为y=x 0要求x ≠0,且当x ≠0时,y=x 0=1,故y=x 0与y=1(x ≠0)的定义域和对应关系都相同,所以它们表示同一函数.(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z)两个函数的定义域相同,但对应关系不相同,故它们不表示同一函数. 解题技巧:(判断函数相等的方法) 定义域优先原则1.先看定义域,若定义域不同,则函数不相等.2.若定义域相同,则化简函数解析式,看对应关系是否相等. 跟踪训练二1.试判断以下各组函数是否表示同一函数: ①f(x)=x 2-x x,g(x)=x-1;②f(x)=√x x,g(x)=√x;③f(x)=√(x +3)2,g(x)=x+3;④f(x)=x+1,g(x)=x+x 0;⑤汽车匀速运动时,路程与时间的函数关系f(t)=80t(0≤t ≤5)与一次函数g(x)=80x(0≤x ≤5). 其中表示相等函数的是 (填上所有正确的序号). 【答案】⑤【解析】①f(x)与g(x)的定义域不同,不是同一函数; ②f(x)与g(x)的解析式不同,不是同一函数; ③f(x)=|x+3|,与g(x)的解析式不同,不是同一函数; ④f(x)与g(x)的定义域不同,不是同一函数;⑤f(x)与g(x)的定义域、值域、对应关系皆相同,是同一函数. 题型三 区间例3 已知集合A={x|5-x ≥0},集合B={x||x|-3≠0},则A ∩B 用区间可表示为 . 【答案】(-∞,-3)∪(-3,3)∪(3,5] 【解析】∵A={x|5-x ≥0},∴A={x|x ≤5}. ∵B={x||x|-3≠0},∴B={x|x ≠±3}. ∴A ∩B={x|x<-3或-3<x<3或3<x ≤5}, 即A ∩B=(-∞,-3)∪(-3,3)∪(3,5]. 解题技巧:(如何用区间表示集合)1.正确利用区间表示集合,要特别注意区间的端点值能否取到,即“小括号”和“中括号”的区别.2.用区间表示两集合的交集、并集、补集运算时,应先求出相应集合,再用区间表示. 跟踪训练三1.集合{x|0<x<1或2≤x ≤11}用区间表示为 .2. 若集合A=[2a-1,a+2],则实数a 的取值范围用区间表示为 . 【答案】(1)(0,1)∪[2,11] (2)(-∞,3)【解析】 (2)由区间的定义知,区间(a,b)(或[a,b])成立的条件是a<b. ∵A=[2a-1,a+2],∴2a-1<a+2.∴a<3, ∴实数a 的取值范围是(-∞,3). 题型四 求函数的定义域 例4 求下列函数的定义域: (1)y=(x+2)|x |-x; (2)f(x)=x 2-1x -1−√4-x .【答案】(1) (-∞,-2)∪(-2,0) (2) (-∞,1)∪(1,4]【解析】(1)要使函数有意义,自变量x 的取值必须满足{x +2≠0,|x |-x ≠0,即{x ≠-2,|x |≠x ,解得x<0,且x ≠-2.故原函数的定义域为(-∞,-2)∪(-2,0).(2)要使函数有意义,自变量x 的取值必须满足{4-x ≥0,x -1≠0,即{x ≤4,x ≠1.故原函数的定义域为(-∞,1)∪(1,4]. 解题方法(求函数定义域的注意事项)(1)如果函数f(x)是整式,那么函数的定义域是实数集R;(2)如果函数f(x)是分式,那么函数的定义域是使分母不等于零的实数组成的集合;(3)如果函数f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数组成的集合; (4)如果函数f(x)是由两个或两个以上代数式的和、差、积、商的形式构成的,那么函数的定义域是使各式子都有意义的自变量的取值集合(即求各式子自变量取值集合的交集). 跟踪训练四1.求函数y=√2x +3√2-x1x的定义域.2.已知函数f(x)的定义域是[-1,4],求函数f(2x+1)的定义域. 【答案】(1) {x |-32≤x <2,且x ≠0} (2) [-1,32]【解析】(1)要使函数有意义,需{2x +3≥0,2-x >0,x ≠0,解得-32≤x<2,且x ≠0,所以函数y=√2x +3−1√2-x+1x的定义域为{x |-32≤x <2,且x ≠0}.(2)已知f(x)的定义域是[-1,4],即-1≤x≤4. 故对于f(2x+1)应有-1≤2x+1≤4, ∴-2≤2x≤3,∴-1≤x≤32. ∴函数f(2x+1)的定义域是[-1,32]. 题型五 求函数值(域) 例5 (1)已知f(x)=11+x(x ∈R ,且x ≠-1),g(x)=x 2+2(x ∈R),则f(2)=________,f(g(2))=________. (2)求下列函数的值域:①y =x +1; ②y =x 2-2x +3,x ∈[0,3); ③y =3x−11+x ; ④y =2x -√x −1. 【答案】(1)1317 (2)① R ② [2,6) ③ {y|y ∈R 且y≠3} ④ ⎣⎢⎡⎭⎪⎫158,+∞ 【解析】(1) ∵f (x)=11+x ,∴f(2)=11+2=13.又∵g (x)=x 2+2,∴g (2)=22+2=6, ∴f ( g(2))=f (6)=11+6=17.(2) ①(观察法)因为x ∈R ,所以x +1∈R ,即函数值域是R.②(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).③(分离常数法)y =3x -1x +1=3x +3-4x +1=3-4x +1.∵4x +1≠0,∴y≠3, ∴y =3x -1x +1的值域为{y|y ∈R 且y≠3}.④(换元法)设t =x -1,则t≥0且x =t 2+1,所以y =2(t 2+1)-t =2 ⎝ ⎛⎭⎪⎫t -142+158,由t≥0,再结合函数的图象(如图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.解题方法(求函数值(域)的方法)1.已知f(x)的表达式时,只需用数a 替换表达式中的所有x 即得f(a)的值.2.求f(g(a))的值应遵循由内到外的原则.3. 求函数值域常用的4种方法(1)观察法:对于一些比较简单的函数,其值域可通过观察得到;(2)配方法:当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法或二次函数图像求其值域;(3)分离常数法:此方法主要是针对有理分式,即将有理分式转化为 “反比例函数类”的形式,便于求值域;(4)换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax+b+√cx +d (其中a ,b ,c ,d 为常数,且a ≠0)型的函数常用换元法. 跟踪训练五1.求下列函数的值域:(1)y = √2x +1 +1;(2)y =1−x 21+x 2. 【答案】(1) [1,+∞) (2) (-1,1]【解析】(1)因为2x +1≥0,所以2x +1+1≥1,即所求函数的值域为[1,+∞). (2)因为y =1-x 21+x 2=-1+21+x2,又函数的定义域为R ,所以x 2+1≥1,所以0<21+x 2≤2,则y ∈(-1,1]. 所以所求函数的值域为(-1,1]. 五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计 七、作业课本67页练习、72页1-5本节课主要通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,尤其在求抽象函数定义域时,先根据特殊函数的规律总结一般规律.。
3.1.1 函数的概念1.通过丰富的买例进一步体会函数是描述变量之间的依赖关系的重要数学模型;2.用集合与对应的思想理解函数的概念;3.理解函数的三要素及函数符号的深刻含义;4.会求函数的定义域。
1.教学重点:函数的概念,函数的三要素;2.教学难点:函数的概念及符号()y f x =的理解。
一、函数的概念:设A 、B 是 的数集,如果按照某个确定的对应关系f ,使对于集合A 中的 ,在集合B 中都有 的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ),记作:y=f(x) x ∈A .x 叫做自变量,x 的取值范围A 叫做函数的 ;与x 的值相对应的y 值叫做函数值,函数值的集合{ f(x)| x ∈A }叫做函数的 . 二、区间三、函数的三要素: 、 、 。
四、判断函数相等的方法: 、 。
一、复习回顾,温故知新1. 初中学习的函数的定义是什么?定义 名称 符号 数轴表示{|}x a x b ≤≤ 闭区间 [a,b] {|}x a x b << 开区间 (a,b) {|}x a x b ≤<半开半闭区间 [a,b){|}x a x b <≤ 半开半闭区间 (a,b] {|}x x a ≥ {|}x x a > {|}x x b < {|}x x b ≤2.回顾初中学过哪些函数?二、探索新知 探究一 函数的概念问题1. 某“复兴号”高速列车到350km/h 后保持匀速运行半小时。
这段时间内,列车行进的路程S (单位:km )与运行时间t (单位:h )的关系可以表示为 S=350t 。
1.思考:根据对应关系S=350t ,这趟列车加速到350km/h 后,运行1h 就前进了350km ,这个说法正确吗?问题2 某电气维修告诉要求工人每周工作至少1天,至多不超过6天。
如果公司确定的工资标准是每人每天350元,而且每周付一次工资,那么你认为该怎样确定一个工人每周的工资?一个工人的工资w (单位:元)是他工作天数d 的函数吗?2.思考:在问题1和问题2中的函数有相同的对应关系,你认为它们是同一个函数吗?为什么?问题3 如图,是北京市2016年11月23日的空气质量指数变化图。
如何根据该图确定这一天内任一时刻th 的空气质量指数的值I ?你认为这里的I 是t 的函数吗?问题 4 国际上常用恩格尔系数)总支出金额食物支出金额r r (反映一个地区人民生活质量的高低,恩格尔系数越低,生活质量越高。
上表是我国某省城镇居民恩格尔系数变化情况,从表中可以看出,该省城镇居民的生活质量越来越高。
你认为该表给出的对应关系,恩格尔系数r是年份y的函数吗?3.思考:上述问题1~问题4中的函数有哪些共同特征?由此你能概括出函数概念的本质特征吗?4.函数的概念:设A、B是的数集,如果按照某个确定的对应关系f,使对于集合A中的一个数x,在集合B中都有的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function),记作:y=f(x) x∈A.x叫做自变量,x的取值范围A叫做函数的;与x的值相对应的y值叫做函数值,函数值的集合{ f(x)| x∈A }叫做函数的 .5.对函数符号y=f(x)的理解:(1)、y=f(x)为“y是x的函数”的数学表示,仅是一个函数符号, f(x)不是f与x相乘。
例如:y=3x+1可以写成f(x)= 3x+1。
当x=2时y=7可以写成f(2)=7想一想:f(a)表示什么意思?f(a)与f(x)有什么区别?6、思考:函数的值域与集合B什么关系?请你说出上述四个问题的值域?牛刀小试1.对于函数y=f (x),以下说法正确的有( )①y是x的函数②对于不同的x,y的值也不同③ f(a)表示当x=a时函数f(x)的值,是一个常量④ f(x)一定可以用一个具体的式子表示出来 A.1个 B.2个 C.3个 D.4个练习:一次函数、二次函数、反比例函数的定义域和值域:例 1. 函数的解析式是舍弃问题的实际背景而抽象出来的,它所反映的两个量之间的对应关系,可以广泛地用于刻画同一类事物中的变量关系和规律。
例如,正比例函数)0(≠=k kx y 可以用来刻画匀速运动中的路程与时间的关系、一定密度的物体的质量与体积的关系、圆的周长与半径的关系等。
试构建一个问题情境,使其中的变量关系可以用解析式y=x(10-x)来描述。
探究二 区间的概念设a ,b 是两个实数,而且a<b,我们规定:⒈满足不等式a ≤x ≤b 的实数x 的集合叫做闭区间,表示为[a ,b] ⒉满足不等式a<x<b 的实数x 的集合叫做开区间,表示为(a ,b)⒊满足不等式a ≤x<b 或a<x ≤b 的实数x 的集合叫做半开半闭区间,表示为[a ,b )或(a ,b]这里的实数a ,b 叫做相应区间的端点实数集R可以用区间表示为(,)-∞+∞,把“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”。
注意:(1).区间(a,b ),必须有b>a ; (2).区间只能表示数集; (3).区间不能表示单元素集; (4).区间不能表示不连续的数集; (5).区间的左端点必须小于右端点; (6).区间都可以用数轴表示;(7).以“-∞”或“+∞”为区间的一端时,这一端必须是小括号. 牛刀小试试用区间表示下列实数集合 (1) {x|5 ≤ x<6} (2) {x|x ≥9}(3) {x|x ≤ -1} ∩{x| -5 ≤ x<2}例2 已知函数213)(+++=x x x f(1)求函数的定义域.(2)求)32(),3(f f -的值. (3)当a>0时,求f(a),f(a-1)的值.探究三 函数相等1.思考:一个函数由哪几个部分组成?如果给定函数的定义域和对应关系,那么函数的值域确定吗?两个函数相等的条件是什么?例3.下列函数哪个与函数y=x 相等.)4()3(;)2()()1(22332nn m x y v v u x y =====1.下列图象中表示函数图象的是( )2. 下列函数中,与函数y=x 相等的是( )3322.0,0,..)(.A xy D x x x x y C x y B x y =⎩⎨⎧<->===3.函数y =x 2-2x 的定义域为{0,1,2,3},那么其值域为( )A .{-1,0,3}B .{0,1,2,3}C .{y |-1≤y ≤3}D .{y |0≤y ≤3} 4.函数f (x )=x -4+1x -5的定义域是________. 5.已知函数f (x )=x +1x,(1)求f (x )的定义域; (2)求f (-1),f (2)的值;(3)当a ≠-1时,求f (a +1)的值.这节课你的收获是什么?参考答案:一、1.设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说y 是x 的函数.其中x 叫自变量,y 叫因变量.2.(1)一次函数 (2)正比例函数 (3)反比例函数 (4)二次函数 二、探究一 1.不正确。
对应关系应为S=350t ,其中}1750|{},5.00|{11≤≤=∈≤≤=∈s s B s t t A t问题2 是函数,对应关系为w=350d,其中},6,5,4,3,2,1{2=∈A d}2100,1750,1400,1050,700,350{2=∈B w 。
2.不是。
自变量的取值范围不一样。
问题3 是,t 的变化范围是}240|{A 3≤≤=t t ,I 的范围是}1500|{I B 3<<=I 。
问题4 y 的取值范围是}2015,2014,2013,2012,2011,2010,2009,2008,2007,2006{A 4=,}10|{B 4≤<=r r r 的取值范围是, 恩格尔系数r 是年份y 的函数。
3.共同特征有:(1)都包含两个非空数集,用A ,B 来表示; (2)都有一个对应关系;(3)尽管对应关系的表示方法不同,但它们都有如下特性:对于数集A 中的任意一个数x ,按照对应关系,在数集B 中都有唯一确定的数y 和它对应。
5.想一想:一般地,f(a )表示当x=a 时的函数值,是一个常量。
f(x )表示自变量x 的函数,一般情况下是变量。
6.函数的值域是集合B 的子集。
问题1和问题2中,值域就是集合B 1和B 2;问题3和问题4中,值域是B3和B4的真子集。
牛刀小试 B例1 解:长方形的周长为20,设一边长为x ,面积为y ,那么y=x(10-x).其中,x 的取值范围是}100|{A <<=x x ,y 的取值范围是}250|{B ≤<=y y ,对应关系f 把每一个长方形的边长x ,对应到唯一确定的面积x(10-x).牛刀小试 (1)[5,6) (2)),9[+∞]1,5[)2,5[]1,3--=--∞- )(( 例2 解:(1)3+x 有意义的实数x 的集合是{x|x ≥-3},21+x 有意义的实数x 的集合是{x|x ≠-2},所以,这个函数的定义域就是}2,3|{-≠-≥x x x 且 . (2)123133)3(-=+-++-=-f83333833112321332)32(+=+=+++=f(3)因为a>0,所以)1(),(-a f a f 有意义。
213)(+++=a a a f , 11221131)1(+++=+-++-=-a a a a a f 探究三 1.定义域、对应关系、值域;函数的值域由函数的定义域和对应关系所确定;定义域相同,对应关系完全一致.例 3.解:),0()(12≥==x x x y )(这个函数与)(R x x y ∈=对应关系一样,定义域不同,所以和函数y=x 不相等。
)()2(33R v v v u ∈==,这个函数与)(R x x y ∈=对应关系一样,定义域相同,所以和函数y=x 相等。
⎩⎨⎧<≥===0,0,||32x x x x x x y )(,这个函数和)(R x x y ∈=定义域相同,但是当x<0时,它的对应关系为x y -=,所以和)(R x x y ∈=不相等。
(4)}0|{2≠==n n n nn m 的定义域是,这个函数与)(R x x y ∈=对应关系一样,但的定义不同,所以和)(R x x y ∈=不相等。
达标检测1.【解析】 根据函数的定义,对任意的一个x 都存在唯一的y 与之对应,而A 、B 、D 都是一对多,只有C 是多对一.故选C.【答案】 C2.【解析】 函数y =x 的定义域为R ;y =(x )2的定义域为[0,+∞);y =x 2=|x |,对应关系不同;y =⎩⎪⎨⎪⎧x ,(x >0)-x ,(x <0,对应关系不同;y =3x 3=x ,且定义域为R .故选D. 【答案】 D3.【解析】 当x =0时,y =0;当x =1时,y =1-2=-1;当x =2时,y =4-2×2=0;当x =3时,y =9-2×3=3,∴函数y =x 2-2x 的值域为{-1,0,3}.【答案】 A4.【解析】 ∵函数f (x )=x -4+1x -5,∴⎩⎪⎨⎪⎧x -4≥0x -5≠0,解得x ≥4,且x ≠5, ∴函数f (x )的定义域是[4,5)∪(5,+∞). 【答案】 [4,5)∪(5,+∞)5【解】 (1)要使函数f (x )有意义,必须使x ≠0,∴f (x )的定义域是(-∞,0)∪(0,+∞). (2)f (-1)=-1+1-1=-2,f (2)=2+12=52.(3)当a ≠-1时,a +1≠0,∴f (a +1)=a +1+1a +1.。