光学测量系统
- 格式:pdf
- 大小:891.27 KB
- 文档页数:16
TRIOPTICS GmbH高精度光学测量系统北京全欧光学检测仪器有限公司北京,朝阳区,酒仙桥东路1号,M7栋,东5层,100015Tel: (010)8456 6186, Fax: (010)8456 9901, E-mail: tianhebin@李崧/139******** 田贺斌/135******** 郑坤/151********德国TRIOPTICS GmbHTRIOPTICS公司成立于1991年,总部位于德国汉堡,二十多年来一直致力于全自动、高精度光学检测仪器的研究、开发和生产。
TRIOPTICS公司的产品在全球范围内的光学相关企业和科研院所都得到了广泛应用,部分产品的测试结果已成为公认的业界标准。
北京全欧光学检测仪器有限公司TRIOPTICS CHINA北京全欧光学检测仪器有限公司(TRIOPTICS CHINA)系德国TRIOPTICS GmbH在中国的分公司,总部位于北京,在上海、成都设有办事处。
全欧光学负责TRIOPTICS产品在中国的销售及技术支持,包括安装、培训及售后服务。
部分客户国内部分客户长春光机所西安光机所上海光机所上海技物所成都光电所福建光学所苏州医工所新疆理化所北京理化所上海天文台国家计量院福州计量所中科院空间中心清华北航山大天大浙大苏大北理工北工大哈工大浙师大长春理工军械学院国防科大014所205所209所211所298所613所618所218厂248厂318厂559厂630厂3304厂富士康伟创力捷普三洋玉晶松下亚洲光学LargenMOTOZeissNewportCBCSwissOptic中电11所中电44所中电53所航天13所航天33所航天206所航天502所航天508所航天802所航天803所航天8358所船舶717所公安部一所永新凤凰舜宇福晶高意大族华科大立高德上光宇迪福特科鑫圆锗业产品目录OptiSpheric 通用途光学测量系统(测焦仪)-P06OptiCentric 中心偏差测量仪-P11OptiSurf 镜面定位仪(透镜中心厚度及空气间隔测量系统)-P30PrismMaster 精密测角仪-P35Spherometer 超级球径仪-P37ImageMaster Universal 科研级高精度传函仪-P40ImageMaster HR 立式紧凑型传函仪-P45ImageMaster PRO 产线用快速传函仪-P47SpectroMaster 折射率测量仪-P49TriAngle 电子自准直仪/内调焦电子自准直仪-P52WaveMaster 波前测量系统-P56AsperoMaster 非球面面形测量仪-P61OptiSurf 300 纳米级高速表面轮廓测量仪-P62µPhase干涉仪-P65Optoliner CCD性能测试系统-P72OptiSpheric通用途光学测量系统(测焦仪)功能:EFL、BFL、FFL、轴上MTF、曲率半径等非接触式测量。
基于OSD交互的液晶显示器光学测试系统设计液晶显示器(LCD)是一种广泛应用于电视、计算机、手机等各类显示设备中的重要组件。
为了保证LCD的质量和性能,需要进行一系列的光学测试。
本文将基于光学测量仪器OSD(On-Screen Display)的交互,设计一个LCD光学测试系统。
首先,本系统需要实现对LCD的亮度、对比度、色彩、均匀度等各项指标的测试。
在测试过程中,需要将测试结果直接显示在LCD屏幕上,这就需要使用OSD功能。
OSD可以通过图标、文字等形式将测试结果以直观的方式呈现给用户。
例如,可以根据测试结果显示一个亮度条形图,来展示LCD的亮度分布情况。
其次,为了实现测试系统的交互性,我们可以引入触摸屏技术。
触摸屏可以用来控制光学测试系统的运行,并与OSD进行交互。
用户可以通过触摸屏上的菜单选择需要进行的测试项目,也可以通过触摸屏对测试参数进行调整。
例如,用户可以通过触摸屏选择测试亮度指标,并设定一个阈值,当LCD的亮度低于该阈值时,系统会自动报警。
同时,本系统还应具备数据存储和导出的功能。
测试结果可以保存在系统中的数据库中,并能够通过USB或网络等方式导出到外部设备。
这样,用户就可以随时查看和分析测试数据,并根据数据进行相应的改进和调整。
此外,为了提高测试效率和准确性,可以在系统中引入图像处理算法。
图像处理算法可以对采集到的LCD图像进行处理和分析,从而提取出更多的光学性能参数。
例如,可以利用算法来计算LCD的均匀度,通过比较不同区域的亮度差异来评估LCD的均匀性。
最后,为了保证测试系统的可靠性和精度,需要采用高精度的光学测量仪器。
这些仪器可以通过并口、USB等接口与系统连接,并通过标准校准来确保测量的准确性。
同时,系统还应具备自动校准和自动测试的功能,避免人为操作带来的误差。
总之,基于OSD交互的液晶显示器光学测试系统的设计需要包括对LCD各项指标的测试、触摸屏的交互、数据存储和导出、图像处理算法的引入以及高精度的光学测量仪器的使用。
第一章光学测量的基本知识。
光学测量系统的主要组成部分:常用光源、探测器与处理电路、调制方法等任一测量系统组成部分:(被测对象)传感器信号调理数据显示与记录(观察者)光学测量系统的基本组成部分: 光源、被测对象与被测量、光信号的形成与获得、光信号的转换、信号或信息处理光学测量的主要应用范围:辐射度量和光度量的测量非光物理量的测量光电子器件与材料及光电子系统特性的测试光学测量方法的优点:非接触性、高灵敏度、高精度光学测量技术主要特点:非接触性、高灵敏度、三维性、快速性与实时性技术现状(近代光学测量系统的主要特点): 从主观光学发展为客观光学,用光电探测器取代,提高测量精度和与效率。
用激光光源来取代常规光源,获得方向性极好的实际光束。
从光机结合的模式向光机电一体化的模式转换,实现测量与控制的一体化。
发展方向: 1.亚微米级、纳米级的高精密光学测量方法将优先得到发展,利用新的物理学原理和光电子学原理产生的光学测量方法将不断出现 2.以微细加工技术为基础的集成光学及其它微传感器将成为技术的主流方向 3.3D 测量技术取得突破,发展带存储功能的全场动态测量仪器4.发展闭环式光学测量技术,实现光学测量与控制的一体化5.发展光学诊断和光学无损检测,取代常规的无损检测方法光学测量方法分类:相位检测、时间探测、谱探测、衍射法、图像探测、各种物理效应方法选择依据:被测对象与被测量、测量范围、测量的灵敏度或精度、经济性、环境要求光源选择的基本要求:对光源发光光谱特性的要求对光源发光强度的要求对光源稳定性的要求光源的分类:按光辐射来源不同,分为自然光源和人工光源。
按工作原理不同,人工光源大致分为热光源,气体放电光源,固体光源和激光光源。
通常把能发出可见光的物体叫做光源,把能发出不可见光的物体叫做辐射源。
激光器:利用受激发射原理和激光腔的滤波效应。
主要特点: 有极小的光束发散角,方向性好和准直性好激光的单色性好,或者说相干性好功率密度很高分类:按工作物质的不同分为气体激光器、固体激光器、半导体激光器半导体激光器优点:体积小、重量轻、寿命长、具有高的转换效率光电探测器:把光辐射量转换为电量的光探测器。
光学系统像差测量实验RLE-ME01实验讲义版本:2012 发布日期:2012年8月前言实际光学系统与理想光学系统成像的差异称为像差。
光学系统成像的差异是《工程光学》课程重要章节,也是教学的难点章节,针对此知识点的教学实验产品匮乏。
RealLight®开发的像差测量实验采用专门设计的像差镜头,像差现象清晰;涉及知识点紧贴像差理论的重点内容,是学生掌握像差理论的非常理想的教学实验系统。
目录1.光学系统像差的计算机模拟1.1.引言---------------------------------------------11.2.实验目的-----------------------------------------11.3.实验原理-----------------------------------------11.4.实验仪器-----------------------------------------41.5.实验步骤-----------------------------------------41.6.思考题-------------------------------------------52. 平行光管的调节使用及位置色差的测量2.1.引言---------------------------------------------62.2.实验目的-----------------------------------------62.3.实验原理-----------------------------------------62.4.实验仪器-----------------------------------------72.5.实验步骤-----------------------------------------82.6.实验数据处理-------------------------------------92.7.思考题-------------------------------------------93. 星点法观测光学系统单色像差3.1.引言---------------------------------------------103.2.实验目的-----------------------------------------103.3.实验原理-----------------------------------------103.4.实验仪器-----------------------------------------113.5.实验步骤----------------------------------------123.6.思考题------------------------------------------144. 阴影法测量光学系统像差与刀口仪原理4.1.引言--------------------------------------------154.2.实验目的----------------------------------------154.3.实验原理----------------------------------------154.4.实验仪器----------------------------------------164.5.实验步骤----------------------------------------164.6.思考题------------------------------------------175. 剪切干涉测量光学系统像差5.1.引言--------------------------------------------185.2.实验目的----------------------------------------185.3.实验原理----------------------------------------185.4.实验仪器----------------------------------------215.5.实验步骤----------------------------------------215.6.思考题------------------------------------------266. 参考文献实验1 光学系统像差的计算机模拟1.1引言如果成像系统是理想光学系统,则同一物点发出的所有光线通过系统以后, 应该聚焦在理想像面上的同一点,且高度同理想像高一致。
一种激光三角测距光学系统的设计方法激光三角测距光学系统是一种常用的测量技术,用于测量目标物体与测量仪之间的距离。
该系统基于三角关系原理,通过测量物体上的特定点反射回来的激光信号的时间来计算距离。
本文将介绍一种激光三角测距光学系统的设计方法。
系统设计的第一步是确定所需的测量精度和距离范围。
这将决定激光器的功率和探测器的灵敏度。
一般来说,测量精度越高,功率和灵敏度要求就越高。
系统中最关键的组件是激光器和探测器。
激光器必须能够发射连续的激光束,并具有稳定的输出功率和短脉冲宽度。
探测器需要具有高灵敏度和快速响应时间,以捕获反射的激光信号。
接下来,确定激光器和探测器的工作波长。
常见的选择是红外激光器,因为红外波长的激光在大气中传播的损耗较小,并且对目标物体的反射光不会产生干扰。
系统的下一个重要组件是光路系统。
光路系统由凸透镜、反射镜和光栅组成,用于聚焦激光束、收集目标物体反射的激光信号,并将其转化为电信号。
设计光路系统时,需要考虑测量范围和物体的大小。
物体越远,激光束经过光路系统后会扩散得越大。
为了确保光束能够覆盖整个目标物体,可以使用可调焦距的凸透镜或反射镜。
在系统中加入散斑光源也是一种常用的设计方法。
散斑光源产生的散斑图案可以提高距离测量的精度。
通过测量散斑图案的形状和大小,可以更准确地计算距离。
在系统中加入滤光片也是必要的。
滤光片用于过滤掉环境光和其他干扰光束,从而提高信噪比和精度。
最后,系统需要一台计算机或微控制器来处理接收到的激光信号,并计算目标物体与测量仪之间的距离。
计算过程通常基于激光脉冲与接收到的反射信号之间的时间差。
设计完成后,需要进行系统的调试和校准。
校准过程中需要测量已知距离的标准物体,从而确定系统的测量误差,并进行校正。
总结起来,激光三角测距光学系统的设计方法包括确定测量精度和距离范围、选择合适的激光器和探测器、设计光路系统、加入散斑光源和滤光片,并进行系统的调试和校准。
这些步骤将确保系统能够准确地测量目标物体与测量仪之间的距离。
VDI/VDE准则2634 第1部分德国工程师协会(VEREIN DEUTSCHER INGENIEURE,简称VDI )德国电气工程师协会(VERBAND DER ELEKTROTECHNIK ELEKTRONIK INFORMATIONSTECHNIK,简称VDE)光学三维测量系统,逐点探测成像系统准则内容初步说明()1适用范围2符号参数3验收检测和复检原则4验收检测4.1品质参数“长度测量误差”的定义4.2检测样本4.3测量程序4.4结果评估4.5等级评定5检查5.1测量流程5.2评估5.3检测间隔(时效)和报告参考书目初步说明(概述)光学三维测量系统是一种通用的测量和测试设备。
在所有情况下,使用者一定要确保使用中的光学三维测量系统达到所需的性能规格,特别是最大允许测量误差不能超出要求。
就长远而言,这只能通过统一的验收标准和对设备的定期复检来确保。
这个职责归测量设备的制造者和使用者共同所有。
使用价位合理的检测样本且快速简单的方法被各种样式、自由度、型号的光学三维测量系统的验收和复检所需要。
这个目的可以通过长度标准和跟典型工件同样方式测量的检测样本实现。
本VDI/VDE准则2634的第一部分介绍了评估逐点探测式光学三维测量成像系统的准确性的实用的验收和复检方法。
品质参数“长度测量误差”的定义与ISO 10360-2中的定义类似。
独立的探测误差测试是不需要的,因为这个影响已经在长度测量误差的测定中考虑进去了。
VDI/VDE准则2634的第二部分介绍了用于表面探测的系统。
本准则由VDI/VDE协会测量与自动控制(GMA)的“光学三维测量”技术委员会和德国摄影测量与遥感协会的“近景摄影测量”工作组起草。
在联合委员会中,知名用户的代表与来自大学的专门研究光学三维测量系统领域的成员合作。
1适用范围本准则适用于可移动的、灵活的光学三维测量系统,该系统有一个或几个起三角测量(如摄影测量)作用的成像探头(如相机)。
光学测量系统的标定与精度分析1. 背景光学测量技术是一种重要的非接触式测量手段,广泛应用于精密工程、制造业、质量控制等领域光学测量系统通过测量被测物体表面的光学特性来获取其几何信息,具有高精度、高分辨率、快速测量等优点然而,为了确保光学测量结果的准确性和可靠性,必须对光学测量系统进行严格的标定和精度分析本文将介绍光学测量系统的标定方法和精度分析过程2. 光学测量系统的组成及原理光学测量系统主要由光源、光学传感器、光学系统、数据采集与处理系统等组成光学测量原理示意图如下:光源–> 光学系统–> 被测物体–> 光学传感器–> 数据采集与处理系统光学系统将光源发出的光线投射到被测物体表面,物体表面反射的光线进入光学传感器,传感器将光信号转换为电信号,经过数据采集与处理系统处理后,得到被测物体的几何信息3. 光学测量系统的标定光学测量系统的标定是为了确定光学系统的参数,以及消除系统误差,提高测量精度标定过程主要包括以下几个步骤:3.1 选择标定对象标定对象应具有明显的几何特征,如棋盘格、圆点等本文以棋盘格为例进行标定3.2 采集标定图像将被测物体(棋盘格)放置在光学测量系统的测量范围内,调整光学系统,使被测物体在传感器上获得清晰的图像3.3 特征提取与匹配通过图像处理算法,提取标定对象的特征点,如角点、边缘点等然后,利用特征点匹配算法,将不同图像的特征点进行匹配,得到特征点之间的对应关系3.4 参数估计与优化利用对应关系,采用最小二乘法等优化算法,求解光学系统的参数,如内参、外参等同时,通过迭代优化算法,进一步提高参数估计的精度3.5 误差评估与补偿分析标定结果的误差,如镜头畸变、光强不均匀等针对这些误差,采用相应的补偿算法,提高光学测量系统的测量精度4. 光学测量系统的精度分析光学测量系统的精度分析主要涉及以下几个方面:4.1 系统分辨率光学测量系统的分辨率取决于光学传感器的像素尺寸像素尺寸越小,系统的分辨率越高此外,光学系统的光学畸变也会影响系统分辨率4.2 系统误差系统误差主要包括镜头畸变、光强不均匀等通过标定过程,可以消除或减小这些误差此外,光学测量系统的稳定性也是影响精度的关键因素4.3 环境因素光学测量系统的精度受到环境因素的影响,如温度、湿度、振动等在实际测量过程中,应尽量控制环境条件,减小环境因素对测量精度的影响4.4 测量方法与算法光学测量方法与算法的选择也会影响系统的精度针对不同的测量对象和需求,选择合适的测量方法与算法,可以提高光学测量系统的精度5. 总结光学测量系统的标定与精度分析是确保测量结果准确可靠的关键环节通过对光学测量系统的组成、原理、标定方法和精度分析进行详细介绍,有助于深入理解和应用光学测量技术在实际应用中,还需根据具体情况,优化系统参数、改进测量方法,以提高光学测量系统的性能光学测量系统的标定与精度提升1. 背景光学测量技术是一种基于光学原理的非接触式测量方法,被广泛应用于精密工程、制造业、质量控制等领域光学测量系统通过捕捉被测物体表面的光学信息来获取其几何特性,具有高精度、高分辨率、快速测量等优点然而,为了确保光学测量结果的准确性和可靠性,必须对光学测量系统进行严格的标定和精度分析本文将重点讨论光学测量系统的标定方法和精度提升策略2. 光学测量系统的组成及原理光学测量系统主要由光源、光学传感器、光学系统、数据采集与处理系统等组成光学测量原理示意图如下:光源–> 光学系统–> 被测物体–> 光学传感器–> 数据采集与处理系统光学系统将光源发出的光线投射到被测物体表面,物体表面反射的光线进入光学传感器,传感器将光信号转换为电信号,经过数据采集与处理系统处理后,得到被测物体的几何信息3. 光学测量系统的标定光学测量系统的标定是为了确定光学系统的参数,以及消除系统误差,提高测量精度标定过程主要包括以下几个步骤:3.1 选择标定对象标定对象应具有明显的几何特征,如棋盘格、圆点等本文以圆点为例进行标定3.2 采集标定图像将被测物体(圆点)放置在光学测量系统的测量范围内,调整光学系统,使被测物体在传感器上获得清晰的图像3.3 特征提取与匹配通过图像处理算法,提取标定对象的特征点,如圆心、边缘点等然后,利用特征点匹配算法,将不同图像的特征点进行匹配,得到特征点之间的对应关系3.4 参数估计与优化利用对应关系,采用最小二乘法等优化算法,求解光学系统的参数,如内参、外参等同时,通过迭代优化算法,进一步提高参数估计的精度3.5 误差评估与补偿分析标定结果的误差,如镜头畸变、光强不均匀等针对这些误差,采用相应的补偿算法,提高光学测量系统的测量精度4. 光学测量系统的精度提升光学测量系统的精度提升主要涉及以下几个方面:4.1 系统分辨率光学测量系统的分辨率取决于光学传感器的像素尺寸像素尺寸越小,系统的分辨率越高此外,光学系统的光学畸变也会影响系统分辨率4.2 系统误差系统误差主要包括镜头畸变、光强不均匀等通过标定过程,可以消除或减小这些误差此外,光学测量系统的稳定性也是影响精度的关键因素4.3 环境因素光学测量系统的精度受到环境因素的影响,如温度、湿度、振动等在实际测量过程中,应尽量控制环境条件,减小环境因素对测量精度的影响4.4 测量方法与算法光学测量方法与算法的选择也会影响系统的精度针对不同的测量对象和需求,选择合适的测量方法与算法,可以提高光学测量系统的精度4.5 系统优化与调整根据实际测量需求,对光学测量系统进行优化与调整例如,通过调整光源亮度、改变光学系统参数等,使系统在最佳状态下工作,提高测量精度5. 总结光学测量系统的标定与精度提升是确保测量结果准确可靠的关键环节通过对光学测量系统的组成、原理、标定方法和精度提升策略进行详细介绍,有助于深入理解和应用光学测量技术在实际应用中,还需根据具体情况,优化系统参数、改进测量方法,以提高光学测量系统的性能应用场合光学测量系统的应用场合非常广泛,包括但不限于以下几个领域:1. 精密工程在精密工程领域,光学测量系统可用于零件加工、装配过程中的尺寸检测、形状误差测量等例如,在汽车、航空、电子等行业,光学测量系统可以帮助工程师准确地检测零部件的尺寸和形状,确保产品质量和性能2. 制造业在制造业中,光学测量系统可用于生产线的在线检测,实时监控产品尺寸、形状等几何特性,提高产品质量,减少废品率此外,光学测量系统还可以用于成品检验,确保产品符合设计要求3. 质量控制光学测量系统在质量控制领域具有重要作用通过定期对产品进行光学测量,可以及时发现质量问题,采取措施进行改进,保证产品质量4. 科研与教育在科研和教育领域,光学测量系统可用于各种实验和研究项目,如光学、物理、材料科学等同时,光学测量系统也是高校、研究所等教育机构进行实验教学的重要工具5. 医疗与生物工程在医疗和生物工程领域,光学测量系统可用于对人体组织、细胞等微小结构的尺寸、形状等进行精确测量,为疾病诊断、治疗和研究提供有力支持注意事项在使用光学测量系统时,需要注意以下几点:1. 环境条件光学测量系统对环境条件较为敏感,应尽量避免在温度、湿度、灰尘等条件变化较大的环境中使用如无法避免,需对环境进行控制,确保测量过程中环境条件稳定2. 设备维护与校准定期对光学测量系统进行维护和校准,确保设备性能稳定对于光学镜头、传感器等易损部件,需特别注意保护3. 操作规范操作光学测量系统时,应遵循操作规程,避免用力过猛、碰撞等可能导致设备损坏的行为同时,确保操作人员具备相关知识和技能4. 数据处理与分析光学测量系统获取的数据需经过专业软件进行处理和分析在数据处理过程中,应注意检查数据的一致性、有效性,避免因数据问题导致测量结果错误5. 标定与精度分析为确保光学测量系统的测量精度,需定期进行标定和精度分析在标定过程中,注意选择合适的标定对象和方法,确保标定结果的准确性6. 软件选择与更新选择适合光学测量系统的数据处理软件,并根据需要进行更新新版本的软件可能包含更多的功能和改进,有助于提高测量精度和效率7. 安全防护在使用光学测量系统时,应注意安全防护措施,避免激光、高温等对操作人员造成伤害为防止意外情况,可在设备周围设置防护罩、警示标志等8. 培训与交流定期对操作人员进行光学测量技术的培训,提高其技能水平同时,加强与其他领域专家的交流与合作,不断优化光学测量系统的应用光学测量系统在各种应用场合中具有重要作用为确保测量结果的准确性和可靠性,需注意以上几点,并根据实际情况进行调整和改进通过合理的操作和维护,光学测量系统将为各领域的研发和生产提供有力支持。
信息光学中的光学测量系统组成及应用光学测量系统是信息光学中重要的组成部分,它通过利用光学技术来测量物体的形状、尺寸、运动等特征。
本文将介绍光学测量系统的组成和应用,并探讨其在不同领域中的重要性和潜在应用前景。
一、光学测量系统组成光学测量系统通常由以下几个基本组成部分构成。
1. 光源:光源是光学测量系统中最基本的组成部分之一。
它可以是激光器、LED灯等,用来提供光的能量和信号。
不同的测量需求需要不同的光源选择,例如高精度测量一般会采用激光光源。
2. 光学元件:光学元件用于控制、调节和分析光的传播和折射。
常见的光学元件包括透镜、棱镜、滤光片等。
透镜用于变焦和聚焦,棱镜用于分光和折射,滤光片则用于滤除特定波长的光。
3. 接收器:接收器用来接收并检测经过测量物体反射、散射、透射的光信号。
接收器可以是光电二极管、光电探测器等。
它们能够将光信号转化为电信号,便于进一步处理和分析。
4. 数据处理系统:数据处理系统用来接收、处理和分析从接收器中获取的光信号。
其中包括模数转换器、数字信号处理器、计算机等。
数据处理系统可以对光信号进行数字滤波、频谱分析和图像处理,从而提取出所需的测量数据。
二、光学测量系统应用光学测量系统在工业、医疗、科研等领域广泛应用,下面将分别介绍其在这些领域中的应用及意义。
1. 工业应用光学测量系统在工业领域中被广泛使用,常见的应用包括三维形貌测量、表面缺陷检测、位移和变形测量等。
例如,在制造业中,光学测量系统可以实现对产品尺寸和形状的高精度测量,以确保产品质量满足设计要求。
此外,光学测量系统还可以用于产品组装和排列,提高生产效率和自动化水平。
2. 医疗应用光学测量系统在医疗领域的应用多种多样,包括眼科、影像学和生物医学研究等。
例如,在眼科领域,光学测量系统可以用于角膜曲率测量和屈光度检测,帮助医生诊断和治疗眼部疾病。
在影像学领域,光学测量系统可以生成高分辨率的医学图像,用于肿瘤检测和疾病监测。
课程名称:应用光学
实验项目名称:光学系统基点测量实验
图1 透镜组光路示意图
图2 节点位置判定图3回转轴通过光具组节点本实验以两个薄透镜组合为例,主要讨论如何测定透镜组的节点,并验证节点跟主点重合。
双光组
也是最基本的组合如图4所示。
L-S为待测透镜组,设L为已知透
图4 双光组组合光路示意图
则透镜组焦距为:
俯视图
主视图
图5 节点镜头读数
透镜之间的距离可通过节点镜头上方的刻度读取,刻度给出的距离为平凸透镜的平面所在位置,平凸透镜的物方主平面和球面顶点相切。
因此就算时需要加入透镜的厚度,f200mm透镜的厚度为透镜的厚度为6.5mm。
所示,f350mm透镜距离节点镜头0点距离为30mm,f200mm透镜距离节点镜头
图6 透镜基点测量实验装配图
要求:如实记录实验过程和现象以及相关数据,图表绘制要规范。
图7 物方节点测量数据
图8 节点镜头上方读数
图9 像方节点数据
六、实验数据分析及思考题:
要求:对实验数据进行分析,回答实验讲义或实验现场遇到的思考题。
对物方节点来说:
+8.5+6.5=91mm
f2=91−200−350=−459mm
=−419.4mm
=350×(200+350)
−459。