数列问题的题型与方法
- 格式:doc
- 大小:659.50 KB
- 文档页数:7
数列题型及解题方法题型1:等差数列解题方法:首先确定数列的首项和公差,然后使用递推公式an = a1 + (n-1)d,其中an表示数列的第n项,a1表示首项,d表示公差。
根据题目给出的条件,可以求得所求的项或者公式中的未知数。
题型2:等比数列解题方法:首先确定数列的首项和公比,然后使用递推公式an = a1 * r^(n-1),其中an表示数列的第n项,a1表示首项,r表示公比。
根据题目给出的条件,可以求得所求的项或者公式中的未知数。
题型3:斐波那契数列解题方法:斐波那契数列是指后一项等于前两项之和的数列,即an = an-1 + an-2。
根据题目给出的条件,可以使用递归或循环的方式计算斐波那契数列的第n项。
题型4:数列求和解题方法:对于等差数列和等比数列,可以使用求和公式直接计算数列的和。
等差数列的和用Sn = (n/2)(a1 + an)表示,等比数列的和用Sn = a1(1 - r^n)/(1 - r)表示。
根据题目给出的条件,代入公式计算即可得到所求的和。
题型5:数列拓展解题方法:有时候题目需要在基本的数列模型上进行拓展,可以根据数列的特点和题目的要求进行分析和解答。
可以使用递推公式或者递推关系式进行推导,并根据题目给出的条件计算所求的项或和。
题型6:递推关系式解题方法:有时候数列无法使用基本的递推公式进行求解,需要根据数列的特点建立递推关系式。
递推关系式是指数列的每一项与前面的若干项之间存在某种关系,通过这个关系可以递推求解数列的项或和。
根据题目给出的条件,建立递推关系式,并根据初始条件求解所求的项或和。
数列等差数列与等比数列1.根本量的思想:常设首项、〔公差〕比为根本量,借助于消元思想与解方程组思想等。
转化为“根本量〞是解决问题的根本方法。
2.等差数列与等比数列的联系1〕假设数列{}na是等差数列,那么数列}{n a a是等比数列,公比为d a,其中a是常数,d是{}na的公差。
〔a>0且a≠1〕;2〕假设数列{}na是等比数列,且na>,那么数列{}loga na是等差数列,公差为loga q,其中a是常数且0,1a a>≠,q是{}n a的公比。
3〕假设{}na既是等差数列又是等比数列,那么{}na是非零常数数列。
3.等差与等比数列的比拟【题型1】等差数列与等比数列的联系例1 〔2010文16〕{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.〔Ⅰ〕求数列{an}的通项;〔Ⅱ〕求数列{2an}的前n项和Sn.解:〔Ⅰ〕由题设知公差d≠0,由a1=1,a1,a3,a9成等比数列得121d+=1812dd++,解得d=1,d=0〔舍去〕,故{an}的通项an=1+〔n-1〕×1=n. (Ⅱ)由〔Ⅰ〕知2m a=2n,由等比数列前n项和公式得Sm=2+22+23+…+2n=2(12)12n--=2n+1-2.小结与拓展:数列{}na是等差数列,那么数列}{n a a是等比数列,公比为d a,其中a是常数,d是{}na的公差。
〔a>0且a≠1〕.【题型2】与“前n项和Sn与通项an〞、常用求通项公式的结合例2数列{an}的前三项与数列{bn}的前三项对应一样,且a1+2a2+22a3+…+2n-1an=8n对任意的n∈N*都成立,数列{bn+1-bn}是等差数列.求数列{an}与{bn}的通项公式。
解:a1+2a2+22a3+…+2n-1an=8n(n∈N*)①当n≥2时,a1+2a2+22a3+…+2n-2an-1=8(n-1)(n∈N*)②①-②得2n-1an=8,求得an=24-n,在①中令n=1,可得a1=8=24-1,∴an=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2,∴数列{bn+1-bn}的公差为-2-(-4)=2,∴bn+1-bn=-4+(n-1)×2=2n-6,法一〔迭代法〕bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)=8+(-4)+(-2)+…+(2n-8) =n2-7n+14(n∈N*).法二〔累加法〕即bn -bn -1=2n -8, bn -1-bn -2=2n -10, …b3-b2=-2, b2-b1=-4, b1=8,相加得bn =8+(-4)+(-2)+…+(2n -8) =8+(n -1)(-4+2n -8)2=n2-7n +14(n ∈N*).小结与拓展:1〕在数列{an}中,前n 项和Sn 与通项an 的关系为:⎩⎨⎧∈≥-===-)N n ,2( )1(111n S S n S a a n n n .是重要考点;2〕韦达定理应引起重视;3〕迭代法、累加法与累乘法是求数列通项公式的常用方法。
1数列典型例题分析【题型1】 等差数列与等比数列的联系 例1 (2010陕西文16)已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数列.(Ⅰ)求数列{a n }的通项;(Ⅱ)求数列{2an}的前n 项和S n . 解:(Ⅰ)由题设知公差d ≠0,由a 1=1,a 1,a 3,a 9成等比数列得=, 解得d =1,d =0(舍去), 故{a n }的通项a n =1+(n -1)×1=n.(Ⅱ)由(Ⅰ)知=2n,由等比数列前n 项和公式得S m =2+22+23+ (2)==2n+1-2.小结与拓展:数列{}na 是等差数列,则数列}{na a 是等比数列,公比为da ,其中a 是常数,d 是{}na 的121d +1812d d++2ma 2(12)12n --公差。
(a>0且a≠1).【题型2】与“前n项和Sn与通项an”、常用求通项公式的结合例 2 已知数列{a n}的前三项与数列{b n}的前三项对应相同,且a1+2a2+22a3+…+2n-1a n=8n对任意的n∈N*都成立,数列{b n+1-b n}是等差数列.求数列{a n}与{b n}的通项公式。
解:a1+2a2+22a3+…+2n-1a n=8n(n∈N*) ①当n≥2时,a1+2a2+22a3+…+2n-2a n-1=8(n-1)(n∈N*) ②①-②得2n-1a n=8,求得a n=24-n,在①中令n=1,可得a1=8=24-1,∴a n=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2,2∴数列{b n+1-b n}的公差为-2-(-4)=2,∴b n -b n=-4+(n-1)×2=2n-6,+1法一(迭代法)b n=b1+(b2-b1)+(b3-b2)+…+(b n-b n-1)=8+(-4)+(-2)+…+(2n-8)=n2-7n+14(n∈N*).法二(累加法)即b n-b n-1=2n-8,b n-1-b n-2=2n-10,…b3-b2=-2,b2-b1=-4,b1=8,相加得b n=8+(-4)+(-2)+…+(2n-8)34 =8+(n -1)(-4+2n -8)2=n 2-7n +14(n∈N *).小结与拓展:1)在数列{a n }中,前n 项和S n 与通项a n 的关系为:⎩⎨⎧∈≥-===-)N n ,2( )1(111n S S n S a a n n n.是重要考点;2)韦达定理应引起重视;3)迭代法、累加法及累乘法是求数列通项公式的常用方法。
五年级等差数列题型及解题方法一、等差数列的基本概念1. 定义等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。
这个常数叫做等差数列的公差,通常用字母d表示。
例如数列1,3,5,7,9,·s,公差d = 2。
2. 通项公式a_n=a_1+(n 1)d,其中a_n表示第n项的数值,a_1表示首项,n表示项数,d表示公差。
例如:已知一个等差数列a_1=3,d = 2,求第5项a_5。
解析:根据通项公式a_n=a_1+(n 1)d,将a_1=3,n = 5,d = 2代入公式,得到a_5=3+(5 1)×2=3 + 8=11。
3. 求和公式S_n=frac{n(a_1+a_n)}{2}或S_n=na_1+(n(n 1))/(2)d例如:求等差数列1,3,5,·s,99的和。
解析:方法一:首先求项数n,根据通项公式a_n=a_1+(n 1)d,这里a_1=1,d = 2,a_n=99。
由99 = 1+(n 1)×2,99=1 + 2n-2,2n=100,解得n = 50。
再根据求和公式S_n=frac{n(a_1+a_n)}{2},将n = 50,a_1=1,a_n=99代入,得到S_50=(50×(1 + 99))/(2)=2500。
方法二:直接用S_n=na_1+(n(n 1))/(2)d,n = 50,a_1=1,d = 2,则S_50=50×1+(50×(50 1))/(2)×2=50+50×49=2500。
二、常见题型及解题方法1. 求项数题目:在等差数列3,7,11,·s,43中,项数是多少?解析:已知a_1=3,d = 4,a_n=43。
根据通项公式a_n=a_1+(n 1)d,则43=3+(n 1)×4。
首先展开式子得到43=3 + 4n-4,即43 = 4n-1。
数列极限证明题型及解题方法
数列极限证明题型主要包括单调有界数列的极限证明、递推数列的极限证明、函数极限与数列极限的关系证明等。
下面介绍一些常见的数列极限证明题型及解题方法。
1. 单调有界数列的极限证明:
设数列{an}为单调递增数列且有上界,要证明序列{an}收敛。
一般可采用以下两种方法之一:
- 利用单调有界原理:由于数列{an}为单调递增且有上边界,根据单调有界原理,该数列必定存在极限。
- 找到上确界和下确界:由于该数列有上界,可设上界为M,同时查找下确界,证明数列{an}的极限存在。
2. 递推数列的极限证明:
设数列{an}满足递推关系an+1 = f(an),其中f(x)为已知函数。
一般可采用以下两种方法之一:
- 显式计算法:若递推关系能够推导出显式的解析表达式an = g(n),则可通过计算g(n)的极限来证明数列{an}的极限存在。
- 极限迭代法:设数列{an}的极限为L,对递推关系an+1 =
f(an)两边同时取极限,得到L = f(L),进而求得L的值。
3. 函数极限与数列极限的关系证明:
对于给定的函数f(x),要证明该函数在某点c处存在极限L,可以采用以下方法之一:
- 利用数列极限定义:构造数列{an},使得函数f(x)在点c附近的取值与数列{an}之间存在关系,然后利用数列的极限来证明函数的极限存在。
- 利用函数极限定义:对于给定的极限L,构造函数f(x),使得当x趋近于c时,函数f(x)的极限趋近于L。
数列精华题型归纳一、 等差数列的定义与性质() 定义:为常数,a a d d a a n d n n n +-==+-111() 等差中项:,,成等差数列x A y A x y ⇔=+2 ()()前项和n S a a n nan n d n n =+=+-11212{}性质:是等差数列a n()若,则;1m n p q a a a a m n p q +=++=+ {}{}{}()数列,,仍为等差数列;2212a a ka b n n n -+ S S S S S n n n n n ,,……仍为等差数列;232-- ()若三个数成等差数列,可设为,,;3a d a a d -+ ()若,是等差数列,为前项和,则;42121a b S T n a b S T n n n n m m m m =-- {}()为等差数列(,为常数,是关于的常数项为52a S an bn a b n n n ⇔=+ 0的二次函数){}S S an bn a n n n 的最值可求二次函数的最值;或者求出中的正、负分界=+2项,即:当,,解不等式组可得达到最大值时的值。
a d a a S n n n n 110000><≥≤⎧⎨⎩+当,,由可得达到最小值时的值。
a d a a S n n n n 110000<>≤≥⎧⎨⎩+{}如:等差数列,,,,则a S a a a S n n n n n n =++===--1831123(由,∴a a a a a n n n n n ++=⇒==----12113331()又·,∴S a a aa 31322233113=+===()()∴·S a a n a a n nn n n =+=+=+⎛⎝ ⎫⎭⎪=-12122131218 ∴=n 27) 二、等比数列的定义与性质 定义:(为常数,),a a q q q a a q n nn n +-=≠=1110 等比中项:、、成等比数列,或x G y G xy G xy ⇒==±2()前项和:(要注意)n S na q a q qq n n ==--≠⎧⎨⎪⎩⎪111111()()!{}性质:是等比数列a n()若,则··1m n p q a a a a m n p q +=+= (),,……仍为等比数列2232S S S S S n n n n n -- 三、求数列通项公式的常用方法 1、公式法2、n n a S 求由;(时,,时,)n a S n a S S n n n ==≥=--121113、求差(商)法{}如:满足……a a a a n n n n 121212251122+++=+<>解:n a a ==⨯+=1122151411时,,∴n a a a n n n ≥+++=-+<>--2121212215212211时,……<>-<>=12122得:n n a ,∴a n n =+21,∴a n n n n ==≥⎧⎨⎩+141221()()练习、{}数列满足,,求a S S a a a n n n n n +==++111534(注意到代入得:a S S S S n n n n n+++=-=1114 {}又,∴是等比数列,S S S n n n 144== n a S S n n n n ≥=-==--23411时,……· 4、叠乘法{}例如:数列中,,,求a a a a nn a n n n n 1131==++ 解:a a a a a a n n a a nn n n 213211122311·……·……,∴-=-= 又,∴a a nn 133==5、等差型递推公式由,,求,用迭加法a a f n a a a n n n -==-110()n a a f a a f a a f n n n ≥-=-=-=⎫⎬⎪⎪⎭⎪⎪-22321321时,…………两边相加,得:()()()a a f f f n n -=+++123()()()…… ∴……a a f f f n n =++++023()()()练习、{}()数列,,,求a a a a n a n n n n n 111132==+≥--()()a n n=-1231 6、等比型递推公式()a ca d c d c c d n n =+≠≠≠-1010、为常数,,, ()可转化为等比数列,设a x c a x n n +=+-1()⇒=+--a ca c x n n 11令,∴()c x d x d c -==-11∴是首项为,为公比的等比数列a d c a d c c n +-⎧⎨⎩⎫⎬⎭+-111 ∴·a d c a d c c n n +-=+-⎛⎝ ⎫⎭⎪-1111∴a a d c c d c n n =+-⎛⎝ ⎫⎭⎪---1111练习、{}数列满足,,求a a a a a n n n n 11934=+=+()a n n =-⎛⎝ ⎫⎭⎪+-843117、倒数法例如:,,求a a a a a n n n n 11122==++ ,由已知得:1221211a a a a n n n n+=+=+ ∴11121a a n n +-= , ∴⎧⎨⎩⎫⎬⎭=111121a a n 为等差数列,,公差为 ()()∴=+-=+11112121a n n n · ,∴a n n =+21三、 求数列前n 项和的常用方法1、公式法:等差、等比前n 项和公式2、裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。
高中数学数列题型及解题方法高中数学中,数列是一个非常重要的概念。
对于数列题型的掌握和解题方法的运用,对于学生在数学学习中起到至关重要的作用。
常见的数列题型包括等差数列、等比数列和斐波那契数列等。
下面将介绍这几种数列的定义和解题方法。
1. 等差数列:等差数列是指数列中相邻两项之差都相等的数列。
常见的解题方法有:- 求通项公式:通过已知条件求出公差d和首项a1,然后利用通项公式an=a1+(n-1)d来求解。
- 求和公式:通过已知条件求出公差d、首项a1和项数n,然后利用求和公式Sn=n/2(a1+an)来求解。
2. 等比数列:等比数列是指数列中相邻两项之比都相等的数列。
常见的解题方法有:- 求通项公式:通过已知条件求出公比r和首项a1,然后利用通项公式an=a1*r^(n-1)来求解。
- 求和公式:通过已知条件求出公比r、首项a1和项数n,然后利用求和公式Sn=a1*(1-r^n)/(1-r)来求解。
3. 斐波那契数列:斐波那契数列是指数列中每一项都是前两项之和的数列。
常见的解题方法有:- 递推公式:利用递推关系an=an-1+an-2来计算斐波那契数列的每一项。
- 通项公式:通过特征方程x^2=x+1,求出两个根φ和1-φ,然后利用通项公式an=Aφ^n+B(1-φ)^n来求解,其中A和B为常数,通过已知条件求解得出。
在解题过程中,可以根据已知条件,选择合适的方法来求解数列问题。
同时,还需要注意理解数列的性质,例如等差数列的公差为常数,等比数列的公比为常数等。
通过对不同类型数列的学习和练习,可以提高对数列问题的理解和解题能力。
高三数学第二轮复习教案第2讲 数列问题的题型与方法(3课时)一、考试内容数列;等差数列及其通项公式,等差数列前n 项和公式;等比数列及其通项公式,等比数列前n 项和公式。
二、考试要求1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。
2.理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能运用公式解答简单的问题。
3.理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能运用公式解决简单的问题。
三、复习目标1. 能灵活地运用等差数列、等比数列的定义、性质、通项公式、前n 项和公式解题; 2.能熟练地求一些特殊数列的通项和前n 项的和;3.使学生系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;4.通过解决探索性问题,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力.5.在解综合题的实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力.6.培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.四、双基透视1. 可以列表复习等差数列和等比数列的概念、有关公式和性质. 2.判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n≥2的任意自然数,验证11(/)n n n n a a a a ---为同一常数。
(2)通项公式法:①若= +(n-1)d= +(n-k )d ,则{}n a 为等差数列;②若,则{}n a 为等比数列。
(3)中项公式法:验证都成立。
3. 在等差数列{}n a 中,有关S n的最值问题——常用邻项变号法求解:(1)当>0,d<0时,满足的项数m使得取最大值.(2)当<0,d>0时,满足的项数m使得取最小值。
求数列通项专题题型一:定义法(也叫公式法)直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目例:等差数列}a {n 是递增数列,前n 项和为n S ,且931a ,a ,a 成等比数列,255a S =.求数列}a {n 的通项。
解:设数列}a {n 公差为)0d (d > ∵931a ,a ,a 成等比数列,∴9123a a a =,即)d 8a (a )d 2a (1121+=+,得d a d 12= ∵0d ≠,∴d a 1=………①∵255S a = ∴211)d 4a (d 245a 5+=⋅⨯+…………②由①②得:53a 1=,53d = ∴n 5353)1n (53a n =⨯-+=题型二:已知的关系求通项公式(或)n n S a 与()n n S f a =这种类型一般利用与消去⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)2()1(11n S S n S a n n n )()(11---=-=n n n n n a f a f S S a n S )2(≥n 或与消去进行求解。
)(1--=n n n S S f S )2(≥n n a 例:(1)已知数列的前项和,求数列的通项公式}{n a n 22+=n S n }{n a 解:当时,;1=n 311==S a 当时,; 2≥n 122)1(2221-=---+=-=-n n n S S a n n n ⎩⎨⎧≥-==∴)2(12)1(3n n n a n (2)已知数列的前项和满足,求数列的通项公式}{n a n n S 1)1(log 2+=+n S n }{n a 解:由,得,1)1(log 2+=+n S n 121-=+n n S ⎩⎨⎧≥==∴)2(2)1(3n n a nn 练习:1、已知数列{}的前n 项和为, 求.n a 32nn S =-n a 2、数列的前n 项和为,,,求的通项公式{}n a n S 11=a )(1121≥+=+n S a n n {}n a题型三:形如用累加法(也叫逐差求和法):)(1n f a a n n +=+(1)若f(n)为常数,即:,此时数列为等差数列,则=.d a a n n =-+1n a d n a )1(1-+(2)若f(n)为n 的函数时,用累加法. 方法如下: 由 得:)(1n f a a n n =-+时,,2≥n )1(1-=--n f a a n n ,)2(21-=---n f a a n n )2(23f a a =-以上各式相加得)1(12f a a =- 即:.)1()2()2()1(1f f n f n f a a n +++-+-=- ∑-=+=111)(n k n k f a a 为了书写方便,也可用横式来写:时,,2≥n )1(1-=--n f a a n n ∴112211)()()(a a a a a a a a n n n n n +-++-+-=--- =.1)1()2()2()1(a f f n f n f ++++-+- 例1:已知数列{a n }中,a 1=1,对任意自然数n 都有11(1)n n a a n n -=++,求n a .解:由已知得11(1)n n a a n n --=+,121(1)n n a a n n ---=-,……,32134a a -=⨯,21123a a -=⨯,以上式子累加,利用111(1)1n n n n =-++得 n a -1a =1111...23(2)(1)(1)(1)n n n n n n ++++⨯---+=1121n -+, 3121n a n ∴=-+例2:已知数列满足,求数列的通项公式。
知识框架数列的分类数列的通项公式数列的递推关系等差数列的疋义a n a n 1d(n2)等差数列的通项公式a n a1 (n1)d等差数列等差数列的求和公式Sn n /(a1a n) na1n(n 1)d 22等差数列的性质a n a m a p a q(m n p q)两个基本数列等比数列的定义ana n 1q(n2)等比数列的通项公式a n a1q n 1数列等比数列a1a n q a1(1q n)(q1)等比数列的求和公式S n 1 q 1 qn a© 1)等比数列的性质a n a m a p a q (m n [)q)公式法分组求和(1)观察法。
(2)由递推公式求通项。
对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。
⑴递推式为a n+i=a+d及a n+i=qa n(d,q为常数)例1、已知{a n}满足a n+i=a n+2,而且a i=1。
求a n。
例1、解■/a n+i-a n=2为常数••• {a n}是首项为1,公差为2的等差数列--a n=1+2 (n-1 )即a n=2n-11例2、已知{a n}满足a n 1 a n,而a1 2,求a n =?2(2)递推式为a n+1=a n+f (n)1例3、已知{a n}中a1,a n 12+ ( a n-a n-1 )数列求和错位相减求和裂项求和倒序相加求和解:由已知可知a n 1 a n1(2n 1)(2 n 1)1 1 12(2n 1 2n 1)累加累积令n=1,2,…,(n-1 ),代入得(n-1 )个等式累加,即(a2-a 1) + (a3-a 2) + …数列的应用分期付款其他掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。
一、典型题的技巧解法1、求通项公式★ 说明只要和a n C £(1f (1) +f (2) +…+f1 ) 4n 32n 1) 4n 2(n-1 )是可求的,就可以由a n+1=a n+f (n)以n=1,2,…,(n-1 )代入,可得n-1个等式累加而求a n ⑶递推式为a n+1=pa n+q (p, q为常数)数列的概念函数角度理解归纳猜想证明例 4、{a *}中,a i 1,对于 n > 1 (n € N )有 a n 3a “ 1 2,求 a n .求a * 。
第11讲数列问题的题型与方法数列是高中数学的重要内容,又是学习高等数学的基础。
高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。
有关数列的试卷经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试卷也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
探索性问题是高考的热点,常在数列解答题中出现。
本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。
近几年来,高考关于数列方面的命题主要有以下三个方面;<1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
<2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
<3)数列的应用问题,其中主要是以增长率问题为主。
试卷的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。
一、知识整合1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力.3.培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.二、方法技巧1.判断和证明数列是等差<等比)数列常有三种方法:(1>定义法:对于n≥2的任意自然数,验证为同一常数。
(2>通项公式法:①若 = +<n-1)d= +<n-k)d ,则为等差数列;②若,则为等比数列。
(3>中项公式法:验证中项公式成立。
2. 在等差数列中,有关的最值问题——常用邻项变号法求解:(1>当>0,d<0时,满足的项数m使得取最大值.(2>当<0,d>0时,满足的项数m使得取最小值。
在解含绝对值的数列最值问题时,注意转化思想的应用。
3.数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。
三、注意事项1.证明数列是等差或等比数列常用定义,即通过证明或而得。
2.在解决等差数列或等比数列的相关问题时,“基本量法”是常用的方法,但有时灵活地运用性质,可使运算简便,而一般数列的问题常转化为等差、等比数列求解。
3.注意与之间关系的转化。
如:=,=.4.数列极限的综合题形式多样,解题思路灵活,但万变不离其宗,就是离不开数列极限的概念和性质,离不开数学思想方法,只要能把握这两方面,就会迅速打通解题思路.5.解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向,形成解题策略.四、例题解读例1.已知数列{a}是公差d≠0的等差数列,其前n项和为S.(2>过点Q(1,a>,Q(2,a>作直线12,设l与l的夹角为θ,证明:(1>因为等差数列{a}的公差d≠0,所以Kp p是常数(k=2,3,…,n>.(2>直线l的方程为y-a=d(x-1>,直线l的斜率为d.例2.已知数列中,是其前项和,并且,⑴设数列,求证:数列是等比数列;⑵设数列,求证:数列是等差数列;⑶求数列的通项公式及前项和。
分析:由于{b}和{c}中的项都和{a}中的项有关,{a}中又有S=4a+2,可由S-S作切入点探索解题的途径.解:(1>由S=4a,S=4a+2,两式相减,得S-S=4(a-a>,即a=4a-4a.(根据b的构造,如何把该式表示成b与b的关系是证明的关键,注意加强恒等变形能力的训练>a-2a=2(a-2a>,又b=a-2a,所以b=2b①已知S=4a+2,a=1,a+a=4a+2,解得a=5,b=a-2a=3②由①和②得,数列{b}是首项为3,公比为2的等比数列,故b=3·2.当n≥2时,S=4a+2=2(3n-4>+2;当n=1时,S=a=1也适合上式.综上可知,所求的求和公式为S=2(3n-4>+2.说明:1.本例主要复习用等差、等比数列的定义证明一个数列为等差,等比数列,求数列通项与前项和。
解决本题的关键在于由条件得出递推公式。
2.解综合题要总揽全局,尤其要注意上一问的结论可作为下面论证的已知条件,在后面求解的过程中适时应用.例3.<04年浙江)设数列{a n}的前项的和S n=<a n-1) (n+>,<1)求a1。
a2。
(2>求证数列{a n}为等比数列。
解: (Ⅰ>由,得∴又,即,得.(Ⅱ>当n>1时,得所以是首项,公比为的等比数列.例4、<04年重庆)设a1=1,a2=,a n+2=a n+1-a n(n=1,2,--->,令b n=a n+1-a n(n=1,2--->求数列{b n}的通项公式,(2>求数列{na n}的前n项的和S n。
解:<I)因故{b n}是公比为的等比数列,且<II)由注意到可得记数列的前n项和为T n,则例5.在直角坐标平面上有一点列,对一切正整数,点位于函数的图象上,且的横坐标构成以为首项,为公差的等差数列。
⑴求点的坐标;⑵设抛物线列中的每一条的对称轴都垂直于轴,第条抛物线的顶点为,且过点,记与抛物线相切于的直线的斜率为,求:。
⑶设,等差数列的任一项,其中是中的最大数,,求的通项公式。
解:<1)<2)的对称轴垂直于轴,且顶点为.设的方程为:把代入上式,得,的方程为:。
,=<3),T中最大数.设公差为,则,由此得说明:本例为数列与解读几何的综合题,难度较大<1)、<2)两问运用几何知识算出,解决<3)的关键在于算出及求数列的公差。
例6.数列中,且满足⑴求数列的通项公式;⑵设,求;⑶设=,是否存在最大的整数,使得对任意,均有成立?若存在,求出的值;若不存在,请说明理由。
解:<1)由题意,,为等差数列,设公差为,由题意得,.<2)若,时,故<3)若对任意成立,即对任意成立,的最小值是,的最大整数值是7。
即存在最大整数使对任意,均有说明:本例复习数列通项,数列求和以及有关数列与不等式的综合问题。
.五、强化训练<一)用基本量方法解题1、<04年浙江)已知等差数列的公差为2,若a1,a3,a4成等比数列,则a2= <B )A -4B -6C -8D -10<二)用赋值法解题2、<96年)等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为<C )A 130B 170C 210D 2603、<01年)设{a n}是公比为q的等比数列,S n是{a n}的前n项和,若{S n}是等差数列,则q=__1_4、设数列{a n}的前项的和S n= <对于所有n1),且a4=54,则a1=__2___<三)用整体化方法解题5、<00年)已知等差数列{a n}满足a1+a2+a3+…+a101=0,则有<C )A a1+a101>0B a2+a100<0C a3+a99=0D a51=516、<02年)若一个等差数列的前3项和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为<A)A 13B 12C 11D 107、<03年上海)在等差数列{a n}中a5=3,a6=-2,a4+a5+…+a10=-49<四)用函数方法解题8、<04年天津)已知数列{a n},那么“对任意的n N+,点P n(n ,a n>都在直线y=x+1上”是“{a n}为等差数列”的< B)A必要条件 B 充分条件 C 充要条件 D 既不充分也不必要条件9、<99年上海)已知等差数列{a n}满足3a4=7a7,且a1>0,S n是{a n}的前n项和,S n取得最大值,则n=___9______.10、<01年上海)已知数列{a n}中a n=2n-7,(n N+>,++--+=_153___<五)用递推方法解题11、<03年全国)设{a n}是首项为1的正项数列,且<n+1)a2n+1-na n2+a n+1a n=0,求它的通项公式是__1/n12、<04年全国)已知数列{a n}满足a.1=1,a n=a1+2a2+3a3+---+(n-1>a n-1 (n>1>,则{a n}的通项a n=______a1=1。
a n=n 213、<04年北京)定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。
已知数列是等和数列,且,公和为5,那么的值为__3___,这个数列的前n项和的计算公式为__当n为偶数时,;当n为奇数时,14. <04年全国)已知数列{a n}中,a1=1,a2k=a2k-1+(-1>K,a2k+1=a2k+3k,其中k=1,2,3,…。
(1>求a3,a5; <2)求{a n}的通项公式解:<I)a2=a1+(-1>1=0,a3=a2+31=3.a4=a3+(-1>2=4 a5=a4+32=13, 所以,a3=3,a5=13.(II> a2k+1=a2k+3k= a2k-1+(-1>k+3k,所以a2k+1-a2k-1=3k+(-1>k,同理a2k-1-a2k-3=3k-1+(-1>k-1,a3-a1=3+(-1>.所以(a2k+1-a2k-1>+(a2k-1-a2k-3>+…+(a3-a1>=(3k+3k-1+…+3>+[(-1>k+(-1>k-1+…+(-1>],由此得a2k+1-a1=(3k-1>+[(-1>k-1],于是a2k+1=a2k= a2k-1+(-1>k=(-1>k-1-1+(-1>k=(-1>k=1.{a n}的通项公式为:当n为奇数时,a n=当n为偶数时,。