最新八年级数学上几何典型试题及答案
- 格式:pdf
- 大小:422.82 KB
- 文档页数:10
初二上册几何试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是线段的中点?A. 线段的两个端点B. 线段的两个端点的连线的交点C. 线段上距离两端点距离相等的点D. 线段的垂直平分线上的任意一点答案:C2. 一个角的度数是90°,那么这个角是:A. 锐角B. 直角C. 钝角D. 平角答案:B3. 如果两个角的和为180°,那么这两个角是:A. 互补角B. 互余角C. 相等角D. 同位角答案:A4. 一个三角形的三个内角之和是:A. 90°B. 180°C. 270°D. 360°答案:B5. 一个多边形的外角和是:A. 90°B. 180°C. 270°D. 360°答案:D6. 一个圆的周长是直径的多少倍?A. 2倍B. 3倍C. π倍D. 2π倍答案:C7. 一个圆的面积公式是:A. πr²B. 2πrC. πdD. πd²答案:A8. 一个正方形的对角线与边长的关系是:A. 相等B. 两倍C. 根号2倍D. 根号3倍答案:C9. 一个矩形的长和宽分别是a和b,那么它的面积是:A. a+bB. abC. a²D. b²答案:B10. 一个平行四边形的对角线互相:A. 平行B. 垂直C. 相等D. 相交答案:D二、填空题(每题3分,共30分)1. 一个等腰三角形的顶角是100°,那么它的两个底角分别是______。
答案:40°2. 如果一个角是30°的角,那么它的余角是______。
答案:60°3. 一个圆的半径是5cm,那么它的直径是______。
答案:10cm4. 一个正五边形的内角和是______。
答案:540°5. 一个梯形的上底和下底分别是3cm和7cm,高是4cm,那么它的面积是______。
八年级数学几何现象测试题及答案1. 问题:已知直线AB与直线CD平行,角∠ABC = 35°,求∠CDA的度数。
答案:∠CDA = 35°。
2. 问题:已知直线EF垂直于直线GH,角∠EFH = 75°,求∠GHE的度数。
答案:∠GHE = 75°。
3. 问题:平行四边形ABCD中,角∠ADC = 120°,求∠ABD 的度数。
答案:∠ABD = 60°。
4. 问题:平行四边形PQRS中,角∠PQR = 70°,求∠RQS的度数。
答案:∠RQS = 70°。
5. 问题:直角三角形XYZ中,∠X = 90°,∠Y = 37°,求∠Z的度数。
答案:∠Z = 90° - 37° = 53°。
6. 问题:等腰直角三角形ABC中,∠B = 90°,∠C = 45°,求∠A的度数。
答案:∠A = 180° - 90° - 45° = 45°。
7. 问题:等边三角形DEF中,∠D = 60°,求∠E和∠F的度数。
答案:∠E = ∠F = (180° - 60°) / 2 = 60°。
8. 问题:正方形IJKL中,角∠JKL = 90°,求∠ILJ的度数。
答案:∠ILJ = 90°。
9. 问题:长方形MNOP中,角∠MNO = 90°,求∠OMN的度数。
答案:∠OMN = 90°。
10. 问题:菱形QRSTUV中,角∠R = 75°,求∠S的度数。
答案:∠S = 75°。
11. 问题:梯形WXYZ中,∠W = 60°,∠Y = 120°,求∠X和∠Z的度数。
答案:∠X = 180° - 60° - 120° = 0°(不存在);∠Z = 0°。
几何复习专题卷题号一二三总分得分一、选择题(每题3分,共30分)1.[母题·教材P41目标与评定T1 2024·温州期末]用三根木棒首尾相接围成△ABC,其中AC=6 cm,BC=9 cm,则AB的长可能是( )A.2 cm B.3 cm C.14 cm D.15 cm2.[新考向知识情境化]如图,在平分角的仪器中,AB=AD,BC=DC,将点A放在一个角的顶点,AB和AD分别与这个角的两边重合,能说明AC就是这个角的平分线的数学依据是( )(第2题)A.SSS B.ASA C.SAS D.AAS3.如图,已知O是△ABC中∠ABC,∠ACB的平分线的交点,OD∥AB交BC于点D,OE∥AC交BC于点E.若BC=10 cm,则△ODE 的周长为( )(第3题)A.10 cm B.8 cmC.12 cm D.20 cm4.[2024·宁波奉化区期末]下列命题的逆命题是假命题的是( ) A.直角三角形的两个锐角互余B.两直线平行,内错角相等C.三条边对应相等的两个三角形是全等三角形D.同角的余角相等5.过直线l外一点P作直线l的垂线PQ,下列尺规作图错误的是( )A B C D 6.[2024·杭州西湖区期末]如图,阴影部分表示以直角三角形各边为直径的三个半圆所组成的两个新月形,已知S1+S2=9,且AC+BC=10,则AB的长为( )(第6题)A.6B.7C.8D.627.如图,AB=AD,AC=AE,∠DAB=∠CAE=50°,以下结论:①△ADC≌△ABE;②CD=BE;③∠DOB=50°;④CD平分∠ACB.其中正确的有( )(第7题)A.1个B.2个C.3个D.4个8.如图,在△ABC中,∠BAC=90°,点D在边BC上,AD=AB,则有( )(第8题)A.若AC=2AB,则∠C=30°B.若3AC=4AB,则7BD=18CDC.若∠B=2∠C,则AC=2ABD.若∠B=2∠C,则S△ABD=2S△ACD9.[2024·宁波奉化区期末]如图,在△ABC中,AB=23,∠B=60°,∠A=45°,D为BC上一点,点P,Q分别是点D关于AB,AC的对称点,则PQ的最小值是( )(第9题)A.6B.8C.32D.310.[2023·金华]如图,在Rt△ABC中,∠ACB=90°,以其三边为边在AB的同侧作三个正方形,点F在GH上,CG与EF交于点P,CM与BE交于点Q.若HF=FG,则S四边形PCQE的值是( )S正方形ABEF(第10题)A.14B.15C.312D.625二、填空题(每题4分,共24分)11.如图,在△ABC中,∠ACB=90°,D为AB的中点,AC=6,BC =8,则CD= .(第11题)12.如图,在△ABC的边AB上取点D,以D为圆心,DA长为半径画圆弧,交AC于点E;以E为圆心,ED长为半径画圆弧,交AB 于点F.若∠CEF=∠BFE,则∠A= °.(第12题)13.[2024·温州期末]如图,在等腰三角形ABC中,AD是底边BC 上的高线,CE⊥AB于点E,交AD于点F.若∠BAC=45°,AF =6,则BD的长为 .(第13题)14.如图,D为等边三角形ABC的AB边的中点,P是BC上的一个动点,连结DP,将△DBP沿DP翻折,得到△DEP,连结AE,若∠BAE=40°,则∠BDP的度数为 .(第14题)15.如图,在长方形ABCD中,AB=4,AD=3,长方形内有一个点P,连结AP,BP,CP,已知∠APB=90°,CP=CB,延长CP交AD于点E,则AE等于 .(第15题)16.[新考法分类讨论法]如图①是一副直角三角板,已知在△ABC和△DEF中,∠BAC=∠EDF=90°,∠B=45°,∠F=30°,点B,D,C,F在同一直线上,点A在DE上.如图②,△ABC固定不动,将△EDF绕点D逆时针旋转α(0°<α<135°),得到△E'DF',当直线E'F'与直线AC,BC所围成的三角形为等腰三角形时,α的大小为 .(第16题)三、解答题(共66分)17.(6分) [新视角·动手操作题2024·金华月考]如图,在正方形网格中,每个小正方形的边长都为1,△ABC的三个顶点均在格点上,请按要求完成下列问题(仅用无刻度的直尺作图,且保留必要的作图痕迹):(1)在AB上找一点D,使CD⊥AB;(2)在AC上找一点E,使BE平分∠ABC.18.(6分)如图,BD是△ABC的角平分线,DE∥BC,交AB于点E.(1)求证:∠EBD=∠EDB;(2)当AB=AC时,请判断CD与ED的大小关系,并说明理由.19.(6分)“儿童散学归来早,忙趁东风放纸鸢”.又到了放风筝的最佳时节,某实践探究小组在放风筝时想测量风筝离地面的垂直高度,通过勘测,得到如下记录表:测量示意图的全部数据就可以计算出风筝离地面的垂直高度AD.请完成以下任务.(1)如图,在Rt△ABC中,∠ACB=90°,BC=15 m,AB=17 m,求线段AD的长.(2)如果小明想要风筝沿DA方向再上升12 m,BC长度不变,则他应该再放出多少米线?20.(8分) [新考法构造全等三角形法]如图,在四边形ABCD中,∠B=∠D=90°,点E,F分别在AB,AD上,且AE=AF,CE=CF.(1)求证:CB=CD;(2)若AE=CE=5,AB=AD=8,求线段EF的长.21.(8分)[2024·杭州西湖区期中]如图,在△ABC中,点D,E分别在边AB,AC上,连结CD,BE,BD=BC=BE.(1)若∠A=30°,∠ACB=70°,求∠BDC,∠ACD的度数;(2)设∠ACD=α,∠ABE=β,求α与β之间的数量关系,并说明理由.22.(10分)[2023·宁波七中期中]如图,在△ABC中,AB=AC=2,∠A=90°.D为BC边的中点,E,F分别在边AB,AC上,DE⊥DF.(1)求证:△DEF是等腰三角形;(2)求EF的最小值.23.(10分)[2024·衢州月考]如图①,在等腰三角形ABC中,AD是BC边上的中线,延长BC至点E,使AD=DE,连结AE.(1)求证:△ADE是等腰直角三角形;(2)如图②,过点B作AC的垂线交AE于点P,试判断△ABP的形状,并说明理由;(3)如图③,在(2)的条件下,AD=4,连结CP,若△CPE是直角三角形,求CE的长.24.(12分)如果两个顶角相等的等腰三角形具有公共的顶角顶点,并将它们的底角顶点分别对应连结起来得到两个全等三角形,那么我们把这样的图形称为“手拉手”图形.如图①,在“手拉手”图形中,AB=AC,AD=AE,∠BAC=∠DAE,连结BD,CE,则△ABD ≌△ACE.(1)请证明图①的结论成立;(2)如图②,△ABC和△ADE是等边三角形,连结BD,EC交于点O,求∠BOC的度数;(3)如图③,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠BCD的数量关系.答案一、1.C 2.A 3.A 4.D 5.C 6.C7.C 【点拨】∵∠DAB =∠CAE ,∴∠DAB +∠BAC =∠CAE +∠BAC .∴∠DAC =∠BAE .在△ADC 和△ABE 中,{AD =AB ,∠DAC =∠BAE ,AC =AE ,∴△ADC ≌△ABE (SAS ).∴CD =BE ,∠ADC =∠ABE .又∵∠AFD =∠BFO ,∴∠DOB =∠DAB =50°,故①②③正确.现有条件无法得到CD 平分∠ACB .8.B 【点拨】A .若AC =2AB ,则BC =AB 2+AC 2=5AB ,若∠C =30°,则易得BC =2AB ,故A 选项错误.B .若3AC =4AB ,则AC =43AB ,∴BC =AB 2+AC 2=53AB .作AE ⊥BC ,则S △ABC =12AB ·AC =12BC ·AE ,可得AE =AB ·AC BC =45AB .∵AD =AB ,∴BE =DE =AB 2-AE 2=35AB .∴BD =65AB .∴DC =BC -BD =715AB .∴7BD =18CD ,故B 选项正确.C .若∠B =2∠C ,∵∠BAC =90°,∴∠B +∠C =90°.∴∠C =30°,∠B =60°.∴易得BC =2AB .∴AC <2AB ,故C 选项错误.D .若∠B =2∠C ,由选项C 可得∠C =30°,∠B =60°.∵AD =AB ,∴△ABD 为等边三角形.∴∠ADB=60°.∴∠DAC=∠ADB-∠C=30°=∠C.∴AD=DC=BD,即AD为△ABC的中线.∴S△ABD=S△ACD,故D选项错误.9.C 【点拨】连结AD,AP,AQ.∵点P,Q分别是点D关于AB,AC的对称点,∴AD=AP,AD=AQ,∠PAD=2∠DAB,∠QAD=2∠DAC.∴AD=AP=AQ,∠PAQ=2(∠BAD+∠CAD)=2∠BAC=90°.∴△PAQ是等腰直角三角形.∴易知PQ=2AP=2AD.∵D为BC上一点,∴当AD⊥BC时,AD取得最小值,此时PQ取得最小值.当AD⊥BC时,∠ADB=90°.∵∠ABD=60°,∴∠BAD=180°-∠ABD-∠ADB=30°.AB=3.∴AD=AB2-BD2=3.∴易得BD=12∴PQ=2AD=32.∴PQ的最小值为32.10.B 【点拨】设AC=b,AB=c,BC=a,HF=FG=x,则a2+b2=c2.∵四边形ACGH,四边形BCMN,四边形ABEF都是正方形,∴AC=AH=HG=b,AB=AF,∠H=∠G=∠EBA=∠AFE=∠BCM=90°.∴b=2x.在Rt△AHF与Rt△ACB中,∵AH=AC,AF=AB,∴Rt△AHF≌Rt△ACB(HL).∴HF=BC=FG=a=x,∠HFA=∠ABC,S△AHF=S△ACB.∵∠HFA+∠GFP=180°-90°=90°=∠ABC+∠CBQ,∴∠GFP =∠CBQ.在△GFP与△CBQ中,∵∠G=∠BCQ=90°,FG=BC,∠GFP=∠CBQ,∴△GFP≌△CBQ(ASA).∴S△GFP=S△CBQ.∵S正方形ACGH=S△AHF+S△PFG+S四边形ACPF=b2,∴S正方形ACGH=S△ABC+S△BCQ+S四边形ACPF=b2.∴S四边形PCQE=S正方形ABEF-(S△ABC+S△BCQ+S四边形ACPF)=S正方形ABEF-S正方形ACGH=c2-b2=a2.在Rt△ABC中,由勾股定理得c2=b2+a2=(2x)2+x2=5x2.∴S四边形PCQE S正方形ABEF =a2c2=x25x2=15.二、11.5 12.3613.3 【点拨】在等腰三角形ABC中,AD是底边BC上的高线,∴AD⊥BC,BD=CD.∴∠ADC=90°.∵CE⊥AB,∴∠AEF=∠CEB=90°.又∵∠BAC=45°,∴∠ACE=45°=∠BAC.∴AE=CE.∵∠ADC=∠AEF=90°,∠AFE=∠CFD,∴∠BAD=∠BCE.∴△AEF≌△CEB(ASA).∴AF=BC=6.∴BD=3.14.40° 【点拨】∵D为等边三角形ABC的AB边的中点,∴AD=BD,将△DBP沿DP翻折,得到△DEP,∴BD=DE=AD,∠BDP=∠PDE.∴∠BAE=∠AED=40°.∴∠BDE=40°+40°=80°.∠BDE=40°.∴∠BDP=12 【点拨】延长AP交CD于点F.15.43∵∠APB=90°,∴∠FPB=90°,∠OAB+∠ABP=90°.∴∠CPF+∠CPB=90°.∵四边形ABCD是长方形,∴∠D=∠DAB=∠ABC=90°,CD=AB=4,BC=AD=3.∴∠EAP+∠BAP=∠ABP+∠BAP=∠ABP+∠CBP=90°.∴∠EAP=∠ABP.∵CP=CB=3,∴∠CPB=∠CBP.∴∠CPF=∠ABP=∠EAP.又∵∠EPA=∠CPF,∴∠EAP=∠APE.∴AE=PE.在Rt△CDE中,CD2+DE2=CE2,.∴42+(3-AE)2=(3+AE)2,解得AE=4316.7.5°或75°或97.5°或120°【点拨】设直线E'F'与直线AC,BC分别交于点P,Q,∵△CPQ为等腰三角形,∴∠PCQ为顶角或∠CPQ为顶角或∠CQP为顶角.①当∠PCQ为顶角时,∠CPQ=∠CQP,若∠PCQ为钝角,如图①,∵∠BAC=90°,∠B=45°,∴∠ACB=45°.∴∠CPQ+∠CQP=∠ACB=45°.∴∠CQP=22.5°.∵∠E'F'D=30°,∴∠F'DQ=∠E'F'D-∠CQP=30°-22.5°=7.5°,即α=7.5°.若∠PCQ为锐角,如图②,则∠CPQ=∠CQP=67.5°.∵∠E'DF'=90°,∠F'=30°,∴∠E'=60°.∴∠E'DQ=∠CQP-∠E'=67.5°-60°=7.5°.∴α=90°+7.5°=97.5°.②当∠CPQ为顶角时,∠CQP=∠PCQ=45°,如图③.∵∠DE'F'=∠CQP+∠QDE',∴∠QDE'=∠DE'F'-∠CQP=60°-45°=15°.∴α=90°-15°=75°.③当∠CQP为顶角时,∠CPQ=∠PCQ=45°,如图④,∴∠CQP=90°.∴∠QDF'=90°-∠DF'E'=60°.∴∠QDE'=∠E'DF'-∠QDF'=30°,∴α=90°+30°=120°.综上所述,α的大小为7.5°或75°或97.5°或120°.三、17.【解】(1)如图,点D即为所求.(2)如图,点E即为所求.18.(1)【证明】∵BD是△ABC的角平分线,∴∠CBD=∠EBD.∵DE∥BC,∴∠CBD=∠EDB.∴∠EBD=∠EDB.(2)【解】CD=ED,理由如下:∵AB=AC,∴∠C=∠ABC.∵DE∥BC,∴∠ADE=∠C,∠AED=∠ABC.∴∠ADE=∠AED.∴AD=AE.∴CD=BE.由(1)得∠EBD=∠EDB,∴BE=DE.∴CD=ED.19.【解】(1)由题易知CD=1.7 m.∵在△ABC中,∠ACB=90°,BC=15 m,AB=17 m,∴AC=AB2-BC2=172-152=8(m).∴AD=AC+CD=8+1.7=9.7(m).(2)∵风筝沿DA方向再上升12 m后,AC=8+12=20(m),∴此时风筝线的长为202+152=25(m).25-17=8(m).答:他应该再放出8 m线.20.(1)【证明】如图,连结AC.在△AEC与△AFC中,{AC=AC,CE=CF,AE=AF,∴△AEC≌△AFC(SSS).∴∠CAE=∠CAF.又∵∠B=∠D=90°,∴CB=CD.(2)【解】如图,过F作FG⊥AB,垂足为G.∵AE=CE=5,AB=8,∴EB=3,AF=5,∠ACE=∠CAE.由勾股定理得BC=4.由(1)知△AEC≌△AFC,∴∠ECA=∠FCA.∴∠FCA=∠CAE.∴AE∥CF.∴FG=BC=4.易知AG=3,∴EG=2.在Rt△EFG中,易知EF=20.21.【解】(1)∵∠A+∠ACB+∠ABC=180°,∠A=30°,∠ACB=70°,∴∠ABC=80°.=50°.在△BDC中,BD=BC,∴∠BDC=∠BCD=180°-80°2∴∠ACD=∠BDC-∠A=20°.(2)2α=β.理由:设∠BCD=x,则∠BDC=x,∴∠DBC=180°-2x.∵BE=BC,∴∠BEC=∠BCE=α+x.∴∠EBC=180°-2(α+x).∴∠DBC-∠EBC=180°-2x°-[180°-2(α+x)]=2α.又∵∠DBC-∠EBC=∠ABE=β,∴2α=β.22.(1)【证明】如图,连结AD.∵AB=AC,∠BAC=90°,∴∠B=45°.∵D 为BC 边的中点,∴AD ⊥BC ,∠BAD =∠CAD =12∠BAC =45°=∠B .∴AD =BD =12BC ,∠ADB =90°.∵DE ⊥DF ,∴∠EDF =90°.∴∠ADF =90°-∠ADE =∠BDE .在△ADF 和△BDE 中,{∠DAF =∠B ,AD =BD ,∠ADF =∠BDE ,∴△ADF ≌△BDE (ASA ).∴DF =DE .∴△DEF 是等腰三角形.(2)【解】∵AB =AC =2,∠BAC =90°,∴BC =AB 2+AC 2=22+22=8.∴AD =12BC =12×8=82.如图,取EF 的中点G ,连结AG ,DG .∵∠EAF =∠EDF =90°,∴AG =DG =12EF .∴EF =2AG =AG +DG .又∵AG +DG ≥AD ,∴EF ≥82.∴EF 的最小值为82.23.(1)【证明】∵AB =AC ,AD 是BC 边上的中线,∴AD ⊥BC .∴∠ADC =90°.又∵AD =DE ,∴△ADE 是等腰直角三角形.(2)【解】△ABP 是等腰三角形.理由如下:∵∠ADC =90°,∴∠CAD +∠DCA =90°.∵BP ⊥AC ,∴易得∠PBE +∠DCA =90°.∴∠CAD=∠PBE.∵AB=AC,AD是BC边上的中线,∴∠BAD=∠CAD.∴∠BAD=∠PBE.∵△ADE是等腰直角三角形∴∠DAE=∠E.∴∠BAD+∠DAE=∠PBE+∠E,即∠BAP=∠BPA.∴BA=BP.∴△ABP是等腰三角形.(3)【解】①如图①,若∠PCE=90°.在△ABD和△BPC中,{∠BDA=∠BCP=90°,∠BAD=∠PBC,AB=BP,∴△ABD≌△BPC(AAS)(证△ACD≌△BPC亦可).∴BC=AD=DE =4.∵AD是BC边上的中线,∴BD=CD.设CE=x,则CD=4-x,∴BD=4-x.∴BC=8-2x.∴8-2x=4,解得x=2,即CE=2.②如图②,若∠CPE=90°.作PF⊥CE于点F,同理可证△ABD≌△BPF,∴BF=AD=4.设EF=x,易知∠E=45°,∴易得CF=EF=x.∴CD=4-2x.∴BD=4-2x.∴BC=8-4x.∴BF=8-3x.∴8-3x =4,解得x =43.∴CE =2x =83.综上,CE 的长为2或83.24.(1)【证明】∵∠BAC =∠DAE ,∴∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD =∠CAE .在△ABD 和△ACE 中,{AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE (SAS ).(2)【解】由题意可知△ABD ≌△ACE .∴∠ADB =∠AEC .在等边三角形ADE 中,∠DAE =60°.记AD 与CE 的交点为G .∵∠AGE =∠DGO ,∴∠DOE =∠DAE =60°.∴∠BOC =∠DOE =60°.(3)【解】如图,延长DC 至点P ,使DP =DB .∵∠BDC =60°,∴△BDP 是等边三角形.∴BD =BP ,∠DBP =60°.∵∠ABC =60°=∠DBP ,∴∠ABD =∠CBP .∵AB =CB ,∴△ABD ≌△CBP (SAS ).∴∠BCP =∠A .又∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.21。
F八年级数学几何经典题【含答案】1、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .2、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.3、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF ..4、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .B5、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .求证:PA =PF .6、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .7如图,△ABC 中,∠C 为直角,∠A=30°,分别以AB 、AC 为边在△ABC 的外侧作正△ABE 与正△ACD ,DE 与AB 交于F 。
求证:EF=FD 。
8如图,正方形ABCD 中,E 、F 分别为AB 、BC 的中点,EC 和DF 相交于G ,连接AG ,求证:AG=AD 。
9、已知在三角形ABC 中,AD 是BC 边上的中线,E 是AD 上的一点,且BE=AC,延长BE 交AC 与F,求证AF=EFD FEP CB AFPDE CBA,九年级数学【答案】1.如下图连接AC 并取其中点Q ,连接QN 和QM ,所以可得∠QMF=∠F ,∠QNM=∠DEN 和∠QMN=∠QNM ,从而得出∠DEN =∠F 。
2.过E,C,F 点分别作AB 所在直线的高EG ,CI ,FH 。
可得PQ=2EGFH。
由△EGA ≌△AIC ,可得EG=AI ,由△BFH ≌△CBI ,可得FH=BI 。
初二几何试题及答案1. 已知三角形ABC中,AB=AC,D是BC边上的中点。
求证:AD垂直于BC。
答案:因为AB=AC,所以三角形ABC是等腰三角形。
根据等腰三角形的性质,底边的中线、高线和角平分线重合。
因此,AD既是BC边上的中线,也是高线,所以AD垂直于BC。
2. 一个矩形的长是宽的两倍,且对角线长为10cm。
求矩形的长和宽。
答案:设矩形的宽为x cm,则长为2x cm。
根据勾股定理,对角线的长度满足方程x^2 + (2x)^2 = 10^2。
解得x^2 + 4x^2 = 100,即5x^2 = 100,所以x^2 = 20,x = √20。
因此,矩形的宽为√20 cm,长为2√20 cm。
3. 一个圆的直径是10cm,求这个圆的面积。
答案:圆的面积公式为A = πr^2,其中r是圆的半径。
因为直径是10cm,所以半径r = 10/2 = 5cm。
代入公式得A = π * 5^2 = 25π cm^2。
4. 一个梯形的上底是8cm,下底是12cm,高是5cm。
求梯形的面积。
答案:梯形的面积公式为A = (a + b) * h / 2,其中a和b分别是上底和下底的长度,h是高。
代入数据得A = (8 + 12) * 5 / 2 = 20 * 5 / 2 = 50 cm^2。
5. 已知一个直角三角形的两条直角边分别是6cm和8cm,求斜边的长度。
答案:根据勾股定理,斜边的长度c满足方程c^2 = a^2 + b^2,其中a和b分别是两条直角边的长度。
代入数据得c^2 = 6^2 + 8^2 = 36+ 64 = 100,所以c = √100 = 10cm。
6. 一个正六边形的边长是4cm,求它的面积。
答案:正六边形可以被分成6个等边三角形,每个等边三角形的边长都是4cm。
等边三角形的面积公式为A = (√3 / 4) * a^2,其中a是边长。
因此,正六边形的面积为6 * (√3 / 4) * 4^2 = 6 * √3 * 4 = 24√3 cm^2。
初二上期几何习题集含答案1、如图:在△ABC中,∠C=2∠B,AD是△ABC的角平分线,∠1=∠B,试说明AB=AC+CD2、如图,AD是∠BAC的角平分线,DE⊥AB垂足为E,DF⊥AC,垂足为点F,且BD=CD 求证:BE=CF3、如图,点B和点C分别为∠MAN两边上的点,AB=AC。
(1)按下列语句画出图形:①AD⊥BC,垂足为D;②∠BCN的平分线CE与AD的延长线交于点E;③连结BE;(2)在完成(1)后不添加线段和字母的情况下,请你写出除△ABD≌△ACD外的两对全等三角形:____≌____,____≌____;(3)并选择其中的一对全等三角形予以证明。
已知:AB=AC,AD⊥BC,CE平分∠BCN,求证:△ADB≌△ADC;△BDE≌△CDE。
AB D CM NE4、如图,PB、PC分别是△ABC的外角平分线且相交于点P.求证:点P在∠A的平分线上AB C5、如图,△ABC中,p是角平分线AD,BE的交点. 求证:点p在∠C的平分线上6、下列说法中,错误的是()A.三角形任意两个角的平分线的交点在三角形的内部B.三角形两个角的平分线的交点到三边的距离相等C.三角形两个角的平分线的交点在第三个角的平分线上D.三角形任意两个角的平分线的交点到三个顶点的距离相等7、如图在三角形ABC中BM=MC∠ABM=∠ACM求证AM平分∠BAC8、如图,AP、CP分别是△ABC外角∠MAC与∠NCA的平分线,它们相交于点P,PD⊥BM于点D,PF⊥BN于点F.求证:BP为∠MBN的平分线。
9、如图,在∠AOB的两边OA,OB上分别取OM=ON,OD=OE,DN和EM相交于点C.求证:点C在∠AOB 的平分线上.10、如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)若连接AM,则AM是否平分∠BAD?请你证明你的结论;(2)线段DM与AM有怎样的位置关系?请说明理由.11、八(1)班同学上数学活动课,利用角尺平分一个角(如图所示).设计了如下方案:(Ⅰ)∠AOB是一个任意角,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.(Ⅱ)∠AOB是一个任意角,在边OA、OB上分别取OM=ON,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.(1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由;PM⊥OA,PN⊥OB.此方案是否可行?请说明理由.ADEBFC求证:(1)PE=PF;(2)点P在∠BAC的角平分线上。
初二上几何试题及答案详解试题一:证明题题目:已知三角形ABC中,点D、E、F分别是边BC、CA、AB上的点,且DE平行于AC,DF平行于AB。
求证:三角形DEF与三角形ABC相似。
答案详解:1. 根据题意,我们知道DE平行于AC,DF平行于AB。
2. 根据平行线的性质,我们可以得出∠DEF = ∠BAC(对应角相等)。
3. 同理,我们可以得出∠DFE = ∠ABC。
4. 因为∠DEF + ∠DFE + ∠FDE = 180°(三角形内角和为180°),所以∠FDE = ∠BCA。
5. 根据相似三角形的判定定理,如果两个三角形的两组对应角相等,那么这两个三角形是相似的。
6. 由于∠DEF = ∠BAC,∠DFE = ∠ABC,∠FDE = ∠BCA,我们可以得出三角形DEF与三角形ABC相似。
试题二:计算题题目:在直角三角形ABC中,∠C是直角,已知AB = 10cm,AC = 6cm,求BC的长度。
答案详解:1. 根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。
2. 设BC的长度为x,则有AB² = AC² + BC²。
3. 代入已知数值,我们得到10² = 6² + x²。
4. 计算得100 = 36 + x²。
5. 解方程,得到x² = 100 - 36 = 64。
6. 求解x,得到x = √64 = 8cm。
7. 因此,BC的长度为8cm。
试题三:作图题题目:在平面直角坐标系中,给定点A(2,3)和点B(5,1),请画出线段AB,并求出线段AB的长度。
答案详解:1. 首先,在平面直角坐标系中标出点A(2,3)和点B(5,1)。
2. 连接点A和点B,画出线段AB。
3. 为了求出线段AB的长度,我们可以使用两点间距离公式:d =√[(x₂ - x₁)² + (y₂ - y₁)²]。
人教版八年级上册数学几何练习题1、已知:在⊿ABC中,∠A=90,AB=AC,在BC上任取一点P,作PQ∥AB交AC于Q,作PR∥CA交BA于R,D是BC的中点,求证:⊿RDQ是等腰直角三角形。
2、已知:在⊿ABC中,∠A=90,AB=AC,D是AC的中点,AE⊥BD,AE延长线交BC于F,求证:∠ADB=∠FDC。
B3、已知:在⊿ABC中BD、CE是高,在BD、CE或其延长线上分别截取BM=AC、CN=AB,求证:MA⊥NA。
C4、已知:如图,在△ABC中,BP、CP分别平分∠ABC 和∠ACB,DE过点P交AB于D,交AC于E,且DE∥BC.求证:DE-DB=EC. APE DBC图⑴5、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。
写出点O到△ABC的三个顶点A、B、C的距离的大小关系;如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。
A M B6、如图,△ABC为等边三角形,延长BC到D,延长BA到E,AE=BD,连结EC、ED,求证:CE=DE7、如图,等腰三角形ABC中,AB=AC,∠A=90°,BD平分∠ABC,DE⊥BC且BC=10,求△DCE的周长。
几何证明习题答案1. 连接AD,由△ABC为等腰直角三角形可得AD垂直AC,且AD=BD,∠DAQ=∠DBR=45度, 又由平行关系得,四边形RPQA为矩形,所以AQ=RP, △BRP也是等腰直角三角行,即BR=PR,所以AQ=BR由边角边,△BRD全等于△AQD,所以∠BDR=∠ADQ,DR=DQ, ∠RDQ=∠RDA+∠ADQ=∠RDA+∠BDR=90度, 所以△RDQ是等腰RT△。
2. 作AG平分∠BAC交BD于G ∵∠BAC=90° ∴∠CAG= ∠BAG=45° ∵∠BAC=90° AC=AB ∴∠C=∠ABC=45°∴∠C=∠BAG ∵AE⊥BD ∴∠ABE+∠BAE=90°∵∠CAF+∠BAE=90° ∴∠CAF=∠ABE ∵ AC=AB ∴△ACF ≌△BAG ∴CF=AG ∵∠C=∠DAG =45°CD=AD ∴△CDF ≌△ADG ∴∠CDF=∠ADB3. 易证△ABM≌△NAC.∠NAM=∠NAE+∠BAM=∠NAE+ANE=90°4. 略5.因为直角三角形的斜边中点是三角形的外心,所以O到△ABC的三个顶点A、B、C距离相等;△OMN是等腰直角三角形。
人教版八年级数学上几何精品全等三角形轴对称图形试题组卷及详细解析一.选择题(共9小题)1.下列说法正确的是()A.三角形的角平分线是射线B.过三角形的顶点,且过对边中点的直线是三角形的一条中线C.一个三角形同一边上的中线、高及这条边所对的角的平分线中,高最短D.三角形的高、中线、角平分线一定在三角形的内部2.如图,D、E分别是△ABC的边AC、BC的中点,则下列说法不正确的是()第2题第3题第5题A.DE是△ABC的中线B.BD是△ABC的中线C.AD=DC,BE=EC D.DE是△BCD的中线3.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF4.给出下列命题:①两边及第三边上的高线对应相等的两个三角形全等;②腰上的高线和底边对应相等的两个等腰三角形全等;③斜边上的中线及一锐角对应相等的两个直角三角形全等.其中属于真命题的是()A.①②B.①③C.②③D.①②③5.如图,△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD和CE交于O,AO的延长线交BC 于F,则图中全等的直角三角形有()A.3对 B.4对 C.5对 D.6对6.如图,已知平行四边形ABCD中,对角线AC、BD交于点O,过点O的直线分别交AD、BC于E、F,则图中的全等三角形共有()A.2对 B.4对 C.6对 D.8对第6题第7题第8题第9题7.已知:如图在△ABC中,边AB、BC的垂直平分线交于点P.下列结论一定成立的有()个.①PA=PB=PC.②点P在AC的垂直平分线上.③∠APB=2∠ACB ④∠BPC=90°+∠BAC⑤∠BAP=∠CAP.A.2个 B.3个 C.4个 D.5个8.如图所示,点A为∠MON的角平分线上一点,过A任作一直线分别与∠MON的两边交于B、C,P为BC的中点,过P作BC的垂线交OA于点D.∠MON=50°,则∠BDC=()A.120°B.130°C.140°D.150°9.如图,点A为∠MON的角平分线上一点,过A任作一直线分别与∠MON的两边交于B、C,P 为BC的中点,过P作BC的垂线交OA于点D,∠MON=130°,则∠BDC=()A.50°B.60°C.70°D.不确定二.填空题(共6小题)10.如果多边形的内角和等于外角和,则这个多边形的边数是4;如果多边形的内角和等于外角和的2倍,则这个多边形的边数是6;如果多边形的内角和等于外角和的3倍,则这个多边形的边数是8;…;如果多边形的内角和等于外角和的n倍,则这个多边形的边数是.(n为正整数,用n表示)11.以下三题任选一题作答:①等腰三角形一边长为4,周长为11,则腰长是.②如果等腰三角形一个内角等于62°,则它的底角等于.③从中午12时整到下午3时整,钟表时针所转过的角的度数是.12.如图,点M是△ABC两个内角平分线的交点,点N是△ABC两个外角平分线的交点,如果∠CMB:∠CNB=3:2,那么∠CAB=度.第12题第14题第15题13.在△ABC中,AD是中线,已知AB=5,AC=3,那么中线AD的取值范围是.14.如图,D是△ABC的边AB上一点,DF交AC于点E,给出3个论断:①DE=FE;②AE=CE;③FC∥AB,以其中一个论断为结论,其余两个论断为条件,可作出3个命题,其中正确命题的个数是.15.如图,若BD⊥AE于B,DC⊥AF于C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF=.三.解答题(共10小题)16.有两张完全重合的三角形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到三角形AMF (如图1),若此时他测得BD=8cm,∠ADB=30°.(1)试探究线段BD与线段MF的数量关系,并简要说明理由;(2)小红与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求旋转角β的度数;(3)在图2基础上小强同学继续探究,过点K作KC∥B1D1交AB1于点C,连接CM,(如图3)求证:△ACM∽△AKF;(4)若将△AFM沿AB方向平移得到△A2F2M2(如图4),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离是多少?17.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),求点B的坐标.18.阅读下列材料:如图1,在四边形ABCD中,已知∠ACB=∠BAD=105°,∠ABC=∠ADC=45°.求证:CD=AB.小刚是这样思考的:由已知可得,∠DCA=60°,∠DAC=75°,∠CAB=30°,∠ACB+∠DAC=180°,由求证及特殊角度数可联想到构造特殊三角形.即过点A作AE⊥AB交BC的延长线于点E,则AB=AE,∠E=∠D.∵在△ADC与△CEA中,∴△ADC≌△CEA,得CD=AE=AB.请你参考小刚同学思考问题的方法,解决下面问题:如图2,在四边形ABCD中,若∠ACB+∠CAD=180°,∠B=∠D,请问:CD与AB是否相等?若相等,请你给出证明;若不相等,请说明理由.19.已知:如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,EF交AD于点G.(1)判断AD与EF的位置关系,并加以说明理由.(2)若AE=,DE=2,求EF的长.20.如图,已知B(﹣1,0),C(1,0),A为y轴正半轴上一点,点D为第二象限一动点,E在BD的延长线上,CD交AB于F,且∠BDC=∠BAC.(1)求证:∠ABD=∠ACD;(2)求证:AD平分∠CDE;(3)若在D点运动的过程中,始终有DC=DA+DB,在此过程中,∠BAC的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC的度数?21.正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数.22.如图,已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE.G、F分别是DC与BE的中点.(1)求证:DC=BE;(2)当∠DAB=80°,求∠AFG的度数;(3)若∠DAB=α,则∠AFG与α的数量关系是.23.△ABC中,射线AD平分∠BAC,AD交边BC于E点.(1)如图1,若AB=AC,∠BAC=90°,则;(2)如图2,若AB≠AC,则(1)中的结论是否仍成立?若成立,请证明;若不成立,请说明理由;(3)如图3,若AB>AC,∠BAC=∠BDC=90°,∠ABD为锐角,DH⊥AB于H,则线段AB、AC、BH 之间的数量关系是,并证明.24.如图,在△ABC中,∠ACB=90°,AC=BC,∠PCQ=45°,把∠PCQ绕点C旋转,在整个旋转过程中,过点A作AD⊥CP,垂足为D,直线AD交CQ于E.(1)如图①,当∠PCQ在∠ACB内部时,求证:AD+BE=DE;(2)如图②,当CQ在∠ACB外部时,求证:AD﹣BE=DE;=2S△ACD,求AE的长.(直接写结果)(3)在(1)的条件下,若CD=18,S△BCE25.如图①所示,已知AE⊥FE,垂足为E,且E是DC的中点(1)如图①,如果FC⊥DC,AD⊥DC,垂足分别为C、D,且AD=DC,判断AE是∠FAD的角平分线吗?(不必说明理由)(2)如图②,如果(1)中的条件去掉“AD=DC”,其余条件不变,(1)中的结论成立吗?请说明理由.(3)如图③,如果(1)的条件改为,AD∥FC,(1)中的结论仍成立吗?请说明理由.人教版八年级数学上几何精品全等三角形轴对称图形试题组卷及详细解析参考答案与试题解析一.选择题(共9小题)1.下列说法正确的是()A.三角形的角平分线是射线B.过三角形的顶点,且过对边中点的直线是三角形的一条中线C.一个三角形同一边上的中线、高及这条边所对的角的平分线中,高最短D.三角形的高、中线、角平分线一定在三角形的内部【解答】解:A、三角形的角平分线是线段,故本选项错误;B、应为过三角形的顶点,且过对边中点的线段是三角形的一条中线,故本选项错误;C、由垂线段最短,一个三角形同一边上的中线、高及这条边所对的角的平分线中,高最短正确,故本选项正确;D、三角形的中线、角平分线一定在三角形的内部,高线不一定在三角形的内部,故本选项错误.故选:C.2.如图,D、E分别是△ABC的边AC、BC的中点,则下列说法不正确的是()A.DE是△ABC的中线B.BD是△ABC的中线C.AD=DC,BE=EC D.DE是△BCD的中线【解答】解:∵D、E分别是△ABC的边AC、BC的中点,∴DE是△ABC的中位线,不是中线;BD是△ABC的中线;AD=DC,BE=EC;DE是△BCD的中线;故选:A.3.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF【解答】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.4.给出下列命题:①两边及第三边上的高线对应相等的两个三角形全等;②腰上的高线和底边对应相等的两个等腰三角形全等;③斜边上的中线及一锐角对应相等的两个直角三角形全等.其中属于真命题的是()A.①②B.①③C.②③D.①②③【解答】解:①有两边及第三边上的高对应相等,这两边的夹角有可能一个是锐角一个是钝角,所以这两个三角形不一定全等,故为假命题;②腰上的高线和底边对应相等的两个等腰三角形全等是真命题;③斜边上的中线及一锐角对应相等的两个直角三角形全等是真命题,故选:C.5.如图,△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD和CE交于O,AO的延长线交BC 于F,则图中全等的直角三角形有()A.3对 B.4对 C.5对 D.6对【解答】解:∵BD⊥AC,CE⊥AB,∴∠ADB=∠AEC=90°,∵AC=AB,∵∠CAE=∠BAD,∴△AEC≌△ADB;∴CE=BD,∵AC=AB,∴∠CBE=∠BCD,∵∠BEC=∠CDB=90°,∴△BCE≌△CBD;∴BE=CD,∴AD=AE,∵AO=AO,∴△AOD≌△AOE;∵∠DOC=∠EOB,∴△COD≌△BOE;∴OB=OC,∵AB=AC,∴CF=BF,AF⊥BC,∴△ACF≌△ABF,△COF≌△BOF.∵∠ABO=∠ACO共6对,故选D.6.如图,已知平行四边形ABCD中,对角线AC、BD交于点O,过点O的直线分别交AD、BC于E、F,则图中的全等三角形共有()A.2对 B.4对 C.6对 D.8对【解答】解:∵四边形ABCD为平行四边形,其平行四边形的对角线相互平分,∴AB=CD,AD=BC,AO=CO,BO=DO,EO=FO,∠DAO=∠BCO,又∠AOB=∠COD,∠AOD=∠COB,∠AOE=∠COF,∴△AOB≌△COD(SSS),△AOD≌△COB(SSS),△AOE≌△COF(ASA),△DOE≌△BOF(ASA),△ABC≌△CDA(SSS),△ABD≌△CDB(SSS).故图中的全等三角形共有6对.故选:C.7.已知:如图,在△ABC中,边AB、BC的垂直平分线交于点P.则下列结论一定成立的有()个.①PA=PB=PC.②点P在AC的垂直平分线上.③∠APB=2∠ACB④∠BPC=90°+∠BAC⑤∠BAP=∠CAP.A.2个 B.3个 C.4个 D.5个【解答】解:∵边AB、BC的垂直平分线交于点P,∴PA=PB=PC,①成立;∵PA=PC,∴点P在AC的垂直平分线上,②正确;∵边AB、BC的垂直平分线交于点P,∴点P是△ABC的外心,∴∠BPC=2∠BAC,③正确;∠BPC不一定等于90°+∠BAC,④错误;AP不一定是∠BAC的平分线,∴∠BAP不一定等于∠CAP,⑤错误;故选:B.8.如图所示,点A为∠MON的角平分线上一点,过A任作一直线分别与∠MON的两边交于B、C,P为BC的中点,过P作BC的垂线交OA于点D.∠MON=50°,则∠BDC=()A.120°B.130°C.140°D.150°【解答】解:过点D作DE⊥OM于点E,作DF⊥ON于点F,如图,∵P为BC的中点,且DP⊥BC,∴DB=DC,∵OD平分∠MON,∴DE=DF,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL),∴∠DCF=∠DBE,∵∠DBE+∠OBD=180°∴∠DCF+∠OBD=180°,∴∠MON+∠BDC=180°,∵∠MON=50°,∴∠BDC=130°.9.如图,点A为∠MON的角平分线上一点,过A任作一直线分别与∠MON的两边交于B、C,P 为BC的中点,过P作BC的垂线交OA于点D,∠MON=130°,则∠BDC=()A.50°B.60°C.70°D.不确定【解答】解:如图:过D作DE⊥OM于E,DF⊥ON于F,则∠DEB=∠DFC=∠DFO=90°,∵∠MON=130°,∴∠EDF=360°﹣90°﹣90°﹣130°=50°,∵DE⊥OM,DF⊥ON,OD∠MON,∴DE=DF,∵P为BC中点,DP⊥BC,∴BD=CD,在Rt△DEB和Rt△DFC中,,∴Rt△DEB≌Rt△DFC(HL),∴∠EDB=∠CDF,∴∠BDC=∠BDF+CDF=∠BDF+∠EDB=∠EDF=50°.故选:A.二.填空题(共6小题)10.如果多边形的内角和等于外角和,则这个多边形的边数是4;如果多边形的内角和等于外角和的2倍,则这个多边形的边数是6;如果多边形的内角和等于外角和的3倍,则这个多边形的边数是8;…;如果多边形的内角和等于外角和的n倍,则这个多边形的边数是2n+2.(n为正整数,用n表示)【解答】解:如果多边形的内角和等于外角和,则这个多边形的边数是2×1+2=4;如果多边形的内角和等于外角和的2倍,则这个多边形的边数是2×2+2=6;如果多边形的内角和等于外角和的3倍,则这个多边形的边数是2×3+2=8;…;如果多边形的内角和等于外角和的n倍,则这个多边形的边数是2n+2,故答案为:2n+2.11.以下三题任选一题作答:①等腰三角形一边长为4,周长为11,则腰长是 3.5或4.②如果等腰三角形一个内角等于62°,则它的底角等于59°或62°.③从中午12时整到下午3时整,钟表时针所转过的角的度数是90°.【解答】解:①此题分两种情况:(1)当底长为4cm,腰长是:(11﹣4)÷2=3.5cm;(2)腰长即为4cm,此时底长为:11﹣2×4=3cm;经检验两种情况均符合三角形三边关系.故答案为3.5或4.②当62°的角为等腰三角形的顶角时,底角的度数=(180﹣62)÷2=59°;当62°的角为等腰三角形的底角时,其底角为62°,故它的底角的度数是59°或62°.故答案为:59°或62°.③时针经过3个小时,那么它转过的角度是30°×3=90°.故答案为:90°.12.如图,点M是△ABC两个内角平分线的交点,点N是△ABC两个外角平分线的交点,如果∠CMB:∠CNB=3:2,那么∠CAB=36度.【解答】解:由题意得:∠NCM=∠NBM=×180°=90°,∴可得:∠CMB+∠CNB=180°,又∠CMB:∠CNB=3:2,∴∠CMB=108°,∴(∠ACB+∠ABC)=180°﹣∠CMB=72°,∴∠CAB=180°﹣(∠ACB+∠ABC)=36°.故答案为:36°.13.在△ABC中,AD是中线,已知AB=5,AC=3,那么中线AD的取值范围是1<AD<4.【解答】解:如图,延长AD至E,是DE=AD,连接CE,∵AD是△ABC的中线,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴AB=CE,∵AB=5,AC=3,5﹣3=2,5+3=8,∴2<AE<8,∴1<AD<4.故答案为:1<AD<4.14.如图,D是△ABC的边AB上一点,DF交AC于点E,给出3个论断:①DE=FE;②AE=CE;③FC∥AB,以其中一个论断为结论,其余两个论断为条件,可作出3个命题,其中正确命题的个数是3.【解答】解:第一种情况:若以①②条件,以③为结论.证明:在△ADE与△CFE中,⇒△ADE≌△CFE⇒∠A=∠ECF⇒FC∥AB本结论成立;第二种情况:若以①③条件,以②为结论.证明:∵FC∥AB∴∠ADE=∠CFE在△ADE与△CFE中,⇒△ADE≌△CFE⇒AE=CE本结论成立;第三种情况:以②③条件,以①为结论.证明:∵FC∥AB∴∠ADE=∠CFE在△ADE与△CFE中,⇒△ADE≌△CFE⇒DE=FE本结论成立;总上证明正确命题的个数是3.故答案为3.15.如图,若BD⊥AE于B,DC⊥AF于C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF=150°.【解答】解:∵BD⊥AE于B,DC⊥AF于C,且DB=DC,∴AD是∠BAC的平分线,∵∠BAC=40°,∴∠CAD=∠BAC=20°,∴∠DGF=∠CAD+∠ADG=20°+130°=150°.故答案为:150°.三.解答题(共10小题)16.有两张完全重合的三角形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到三角形AMF (如图1),若此时他测得BD=8cm,∠ADB=30°.(1)试探究线段BD与线段MF的数量关系,并简要说明理由;(2)小红与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求旋转角β的度数;(3)在图2基础上小强同学继续探究,过点K作KC∥B1D1交AB1于点C,连接CM,(如图3)求证:△ACM∽△AKF;(4)若将△AFM沿AB方向平移得到△A2F2M2(如图4),F2M2与AD交于点P,A2M2与BD交于点N,当NP∥AB时,求平移的距离是多少?【解答】(1)线段BD与MF的数量关系是:BD=MF.证明:∵△MAF是由△BAD旋转得来的,∴△BAD≌△MAF.∴BD=MF.∴BD与MF的数量关系是:BD=MF.(2)解:当∠F为顶角时,∴∠AKF=∠KAF,∴∠AKF+∠KAF+∠F=180°,且∠F=30°.∴∠KAF==75°.∴∠MAK=15°.即β=15°.当∠F为底角时,∠F=∠KAF,∵∠F=30°.∴∠KAF=30°.∴∠MAK=60°,即β=60°.综上所述:当∠F为顶角时,β=15°.当∠F为底角时,β=60°.(3)证明:∵KC∥B1D1,∴△ACK∽△AB1D1.∴=.∵△AB1D1≌△AMF,∴AB1=AM,AF=AD1,∴=.∵∠B1AD1=∠MAF=90°,∴∠B1AM=∠D1AF,∴△ACM∽△AKF.(4)解:如图4,由题意知四边形PNA2A为矩形,设A2A=x,则PN=x.在Rt△A2M2F2中,∵M2F2=MF=BD=8,∠A2F2M2=∠AFM=∠ADB=30°.∴M2A2=4,A2F2=,∴AF2=﹣x.在Rt△PAF2中,∵∠PF2A=30°.∴AP=AF2•tan30°=(﹣x)•=4﹣x.∴PD=AD﹣AP=﹣4+x.∵NP∥AB,∴∠DNP=∠B.∵∠D=∠D,∴△DNP∽△DBA.∴=∴=,解得x=6﹣.即A2A=6﹣.故平移的距离是(6﹣)cm.17.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),求点B的坐标.【解答】解:过A和B分别作AD⊥OC于D,BE⊥OC于E,∵∠ACB=90°,∴∠ACD+∠CAD=90°∠ACD+∠BCE=90°,∴∠CAD=∠BCE,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴DC=BE,AD=CE,∵点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),∴OC=2,AD=CE=3,OD=6,∴CD=OD﹣OC=4,OE=CE﹣OC=3﹣2=1,∴BE=4,∴则B点的坐标是(1,4).18.阅读下列材料:如图1,在四边形ABCD中,已知∠ACB=∠BAD=105°,∠ABC=∠ADC=45°.求证:CD=AB.小刚是这样思考的:由已知可得,∠DCA=60°,∠DAC=75°,∠CAB=30°,∠ACB+∠DAC=180°,由求证及特殊角度数可联想到构造特殊三角形.即过点A作AE⊥AB交BC的延长线于点E,则AB=AE,∠E=∠D.∵在△ADC与△CEA中,∴△ADC≌△CEA,得CD=AE=AB.请你参考小刚同学思考问题的方法,解决下面问题:如图2,在四边形ABCD中,若∠ACB+∠CAD=180°,∠B=∠D,请问:CD与AB是否相等?若相等,请你给出证明;若不相等,请说明理由.【解答】解:结论:CD=AB.证明:延长BC至E使AE=AB,则∠B=∠E.∵∠B=∠D∴∠D=∠E∵∠ACB+∠CAD=180°,∠ACB+∠ACE=180°,∴∠CAD=∠ACE在△CAD与△ACE中,∴△CAD≌△ACE∴CD=AE,∵AE=AB,∴CD=AB.19.已知:如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E,F,EF交AD于点G.(1)判断AD与EF的位置关系,并加以说明理由.(2)若AE=,DE=2,求EF的长.【解答】(1)解:AD⊥EF.理由如下:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF.∴D在线段EF的垂直平分线上.∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°,在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL).∴AE=AF.又∵∠EAD=∠FAD,AG=AG,∴△AEG≌△AFG,∴EG=GF,∠AGE=∠AGF=90°,∴AD是线段EF的垂直平分线.∴EF⊥AD;(2)在直角△AED中,根据勾股定理,得AD=3.∵AE•DE=AD•EG,∴EG=,∴EF=2EG=.20.如图,已知B(﹣1,0),C(1,0),A为y轴正半轴上一点,点D为第二象限一动点,E在BD的延长线上,CD交AB于F,且∠BDC=∠BAC.(1)求证:∠ABD=∠ACD;(2)求证:AD平分∠CDE;(3)若在D点运动的过程中,始终有DC=DA+DB,在此过程中,∠BAC的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC的度数?【解答】证明:(1)∵∠BDC=∠BAC,∠DFB=∠AFC,又∵∠ABD+∠BDC+∠DFB=∠BAC+∠ACD+∠AFC=180°,∴∠ABD=∠ACD;(2)过点A作AM⊥CD于点M,作AN⊥BE于点N.则∠AMC=∠ANB=90°.∵OB=OC,OA⊥BC,∴AB=AC,∵∠ABD=∠ACD,∴△ACM≌△ABN (AAS)∴AM=AN.∴AD平分∠CDE.(到角的两边距离相等的点在角的平分线上);(3)∠BAC的度数不变化.在CD上截取CP=BD,连接AP.∵CD=AD+BD,∴AD=PD.∵AB=AC,∠ABD=∠ACD,BD=CP,∴△ABD≌△ACP.∴AD=AP;∠BAD=∠CAP.∴AD=AP=PD,即△ADP是等边三角形,∴∠DAP=60°.∴∠BAC=∠BAP+∠CAP=∠BAP+∠BAD=60°.21.正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求∠EAF的度数.【解答】解:延长EB使得BG=DF,连接AG,在△ABG和△ADF中,由,可得△ABG≌△ADF(SAS),∴∠DAF=∠BAG,AF=AG,又∵EF=DF+BE=EB+BG=EG,AE=AE,在△AEG和△AEF中,∴△AEG≌△AEF(SSS),∴∠EAG=∠EAF,∵∠DAF+∠EAF+∠BAE=90°∴∠EAG+∠EAF=90°,∴∠EAF=45°.答:∠EAF的角度为45°.22.如图,已知△ABC,分别以AB、AC为边作△ABD和△ACE,且AD=AB,AC=AE,∠DAB=∠CAE,连接DC与BE.G、F分别是DC与BE的中点.(1)求证:DC=BE;(2)当∠DAB=80°,求∠AFG的度数;(3)若∠DAB=α,则∠AFG与α的数量关系是.【解答】解:(1)∵∠DAB=∠CAE,∴∠DAB+∠BAC=∠CAE+∠BAC,∴∠DAC=∠BAE.在△ADC和△ABE中,∴△ADC≌△ABE(SAS),∴DC=BE;(2)连接AG.∵△ADC≌△ABE,∴∠ADC=∠ABE.AD=AB.∵G、F分别是DC与BE的中点,∴DG=DC,BF=BE,∴DG=BF.在△ADG和△ABF中,∴△ADG≌△ABF(SAS),∴AG=AF,∠DAG=∠BAF,∴∠AGF=∠AFG,∠DAG﹣∠BAG=∠BAF﹣∠BAG,∴∠DAB=∠GAF.∵∠DAB=80°,∴∠GAF=80°.∵∠GAF+∠AFG+∠AGF=180°,∴∠AFG=50°.答:∠AFG=50°;(3)∵∠DAB=α,∴∠GAF=α.∵∠GAF+∠AFG+∠AGF=180°,∴α+2∠AFG=180°,∴∠AFG=90°﹣α.故答案为:∠AFG=50°,90°﹣α.23.△ABC中,射线AD平分∠BAC,AD交边BC于E点.(1)如图1,若AB=AC,∠BAC=90°,则=;(2)如图2,若AB≠AC,则(1)中的结论是否仍成立?若成立,请证明;若不成立,请说明理由;(3)如图3,若AB>AC,∠BAC=∠BDC=90°,∠ABD为锐角,DH⊥AB于H,则线段AB、AC、BH 之间的数量关系是AB﹣AC=2BH.,并证明.【解答】解:(1)∵AB=AC,AD平分∠BAC,∴BE=CE.∴.∵AB=AC,∴,∴=.故答案为:=;(2)成立,证明:作EH⊥AB于H,EQ⊥AC于Q,AN⊥BC于N,则EH=EQ,设AB=c,AC=b,BE=m,EC=n,EH=h1,AN=h2,∵S△ABE:S△AEC=h1c÷h1b=c:b,S△ABE:S△AEC=h2m÷h2n=m:n,∴c:b=m:n,即=;(3)AB﹣AC=2BH.理由:作DQ⊥AC交AC的延长线于Q,∴∠Q=90°∵DH⊥AB,AD平分∠BAC,∴DH=DQ,∠AHD=90°,∠HAD=∠CAD.∴∠AHD=∠Q.在△AHD和△AQD中,,∴△AHD≌△AQD(AAS),∴AH=AQ.∵∠BAC=90°,∠AHD=∠Q=90°,∴四边形AHDQ是矩形,∴∠HDQ=90°.∵∠BDC=90°,∴∠HDQ=∠BDC,∴∠HDQ﹣∠HDC=∠BDC=∠HDC,∴∠CDQ=∠BDH.在△DHB和△DQC中∴△DHB≌△DQC(AAS),∴BH=CQ,∵AB﹣BH=AH,∴AB﹣BH=AQ,∴AB﹣BH=AC+CQ,∴AB﹣AC=2BH.故答案为:AB﹣AC=2BH.24.如图,在△ABC中,∠ACB=90°,AC=BC,∠PCQ=45°,把∠PCQ绕点C旋转,在整个旋转过程中,过点A作AD⊥CP,垂足为D,直线AD交CQ于E.(1)如图①,当∠PCQ在∠ACB内部时,求证:AD+BE=DE;(2)如图②,当CQ在∠ACB外部时,求证:AD﹣BE=DE;=2S△ACD,求AE的长.(直接写结果)(3)在(1)的条件下,若CD=18,S△BCE【解答】解:(1)如图①,延长DA到F,使DF=DE,∵CD⊥AE,∴CE=CF,∴∠DCE=∠DCF=∠PCQ=45°,∴∠ACD+∠ACF=∠DCF=45°,又∵∠ACB=90°,∠PCQ=45°,∴∠ACD+∠BCE=90°﹣45°=45°,∴∠ACF=∠BCE,在△ACF和△BCE中,∵,∴△ACF≌△BCE(SAS),∴AF=BE,∴AD+BE=AD+AF=DF=DE,即AD+BE=DE;(2)如图②,在AD上截取DF=DE,∵CD⊥AE,∴CE=CF,∴∠DCE=∠DCF=∠PCQ=45°,∴∠ECF=∠DCE+∠DCF=90°,∴∠BCE+∠BCF=∠ECF=90°,又∵∠ACB=90°,∴∠ACF+∠BCF=90°,∴∠ACF=∠BCE,∵在△ACF和△BCE中,,∴△ACF≌△BCE(SAS),∴AF=BE,∴AD=AF+DF=BE+DE,即AD﹣BE=DE;(3)∵∠DCE=∠DCF=∠PCQ=45°,∴∠ECF=45°+45°=90°,∴△ECF是等腰直角三角形,∴CD=DF=DE=18,=2S△ACD,∵S△BCE∴AF=2AD,∴AD=×18=6,∴AE=AD+DE=6+18=24.25.如图①所示,已知AE⊥FE,垂足为E,且E是DC的中点(1)如图①,如果FC⊥DC,AD⊥DC,垂足分别为C、D,且AD=DC,判断AE是∠FAD的角平分线吗?(不必说明理由)(2)如图②,如果(1)中的条件去掉“AD=DC”,其余条件不变,(1)中的结论成立吗?请说明理由.(3)如图③,如果(1)的条件改为,AD∥FC,(1)中的结论仍成立吗?请说明理由.【解答】解:(1)AE是∠FAD的角平分线;(2)成立,如图②,延长FE交AD于点B,∵E是DC的中点,∴EC=ED,∵FC⊥DC,AD⊥DC,∴∠FCE=∠EDB=90°,在△FCE和△BDE中,,∴△FCE≌△BDE,∴EF=EB,∵AE⊥FE,∴AF=AB,∴AE是∠FAD的角平分线;(3)成立,如图③,延长FE交AD于点B,∵AD=DC,∴∠FCE=∠EDB,在△FCE和△BDE中,,∴△FCE≌△BDE,∴EF=EB,∵AE⊥FE,∴AF=AB,∴AE是∠FAD的角平分线;。
人教版数学八年级上册【几何模型三角形轴对称】试卷测试卷附答案一、八年级数学全等三角形解答题压轴题(难)1.(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段EF,BE,FD之间的数量关系.小明同学探究的方法是:延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论是(直接写结论,不需证明);(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC,CD上的点,且∠EAF是∠BAD的二分之一,上述结论是否仍然成立,并说明理由.(3)如图3,四边形ABCD是边长为5的正方形,∠EBF=45°,直接写出三角形DEF的周长.【答案】(1)EF=BE+DF.(2)成立,理由见解析;(3)10.【解析】【分析】(1)如图1,延长FD到G,使得DG=DC,先证△ABE≌△ADG,得到AE=AG,∠BAE=∠DAG,进一步根据题意得∠EAF=∠GAF,再证明△AEF≌△AGF,得到EF=FG,最后运用线段的和差证明即可.(2)如图2,延长FD到点G.使DG=BE.连结AG,证得△ABE≌△ADG,得到AE=AG,∠BAE=∠DAG,再结合题意得到∠EAF=∠GAF,再证明△AEF≌△AGF,得到EF=FG,最后运用线段的和差证明即可.(3)如图3,延长DC到点G,截取CG=AE,连接BG,先证△AEB≌△CGB,得到BE=BG,∠ABE=∠CBG,结合已知条件得∴∠CBF+∠CBG=45°,再证明△EBF≌△GBF,得到EF=FG,最后求三角形的周长即可.【详解】解答:(1)解:如图1,延长FD到G,使得DG=DC在△ABE和△ADG中,∵DC DGB ADGAB AD=⎧⎪∠=∠⎨⎪=⎩∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAFAF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为:EF=BE+DF.(2)解:结论EF=BE+DF仍然成立;理由:如图2,延长FD到点G.使DG=BE.连结AG在△ABE和△ADG中,∵DG BEB ADGAB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;(3)解:如图3,延长DC到点G,截取CG=AE,连接BG,在△AEB与△CGB中,∵AE CGA BOG AF BF=⎧⎪∠=∠⎨⎪=⎩,∴△AEB≌△CGB(SAS),∴BE=BG,∠ABE=∠CBG.∵∠EBF=45°,∠ABC=90°,∴∠ABE+∠CBF=45°,∴∠CBF+∠CBG=45°.在△EBF与△GBF中,∵BE BGEBF GBF BF BF=⎧⎪∠=∠⎨⎪=⎩,∴△EBF≌△GBF(SAS),∴EF=GF,∴△DEF的周长=EF+ED+CF=AE+CF+DE+DF=AD+CD=10.【点睛】本题主要考查了三角形全等的判定和性质,灵活运用全等三角形的性质和判定是解答本题的关键.但本题分为三问,难度不断增加,对提升思维能力大有好处.2.如图1,等腰△ABC中,AC=BC=42∠ACB=45˚,AO是BC边上的高,D为线段AO上一动点,以CD为一边在CD下方作等腰△CDE,使CD=CE且∠DCE=45˚,连结BE.(1) 求证:△ACD≌△BCE;(2) 如图2,在图1的基础上,延长BE至Q, P为BQ上一点,连结CP、CQ,若CP=CQ=5,求PQ的长.(3) 连接OE,直接写出线段OE的最小值.【答案】(1)证明见解析;(2)PQ=6;(3)OE=422-【解析】试题分析:()1根据SAS即可证得ACD BCE≌;()2首先过点C作CH BQ⊥于H,由等腰三角形的性质,即可求得45DAC∠=︒,则根据等腰三角形与直角三角形中的勾股定理即可求得PQ的长.()3OE BQ⊥时,OE取得最小值.试题解析:()1证明:∵△ABC与△DCE是等腰三角形,∴AC=BC,DC=EC,45ACB DCE∠=∠=,45ACD DCB ECB DCB∴∠+∠=∠+∠=,∴∠ACD=∠BCE;在△ACD和△BCE中,,AC BCACD BCEDC EC=⎧⎪∠=∠⎨⎪=⎩(SAS)ACD BCE∴≌;()2首先过点C作CH BQ⊥于H,(2)过点C作CH⊥BQ于H,∵△ABC是等腰三角形,∠ACB=45˚,AO是BC边上的高,45DAC∴∠=,ACD BCE≌,45PBC DAC∴∠=∠=,∴在Rt BHC中,2242422CH BC=⨯=⨯=,54PC CQ CH===,,3PH QH∴==,6.PQ∴=()3OE BQ⊥时,OE取得最小值.最小值为:42 2.OE=-3.(1)已知△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A等于60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变(如图②),(1)的结论是否成立,并说明理由.【答案】(1)证明见解析(2)证明见解析【解析】试题分析:(1)作DF∥BC交AC于F,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,证明△ABC是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF是等边三角形,∠DFC=120°,得出AD=DF,由已知条件得出∠FDC=∠DEC,ED=CD,由AAS证明△DBE≌△CFD,得出EB=DF,即可得出结论;(2)作DF∥BC 交AC 的延长线于F ,同(1)证出△DBE≌△CFD,得出EB=DF ,即可得出结论.试题解析:(1)证明:如图,作DF ∥BC 交AC 于F ,则△ADF 为等边三角形∴AD=DF ,又∵ ∠DEC=∠DCB ,∠DEC+∠EDB=60°,∠DCB+∠DCF=60° ,∴ ∠EDB=∠DCA ,DE=CD ,在△DEB 和△CDF 中,120EBD DFC EDB DCF DE CD ,,∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△DEB≌△CDF ,∴BD=DF ,∴BE=AD .(2). EB=AD 成立;理由如下:作DF ∥BC 交AC 的延长线于F ,如图所示:同(1)得:AD=DF ,∠FDC=∠ECD ,∠FDC=∠DEC ,ED=CD ,又∵∠DBE=∠DFC=60°,∴△DBE ≌△CFD(AAS ),∴EB=DF ,∴EB=AD.点睛:此题主要考查了三角形的综合,考查等边三角形的判定与性质,全等三角形的判定与性质,等腰三角形的判定与性质,等腰直角三角形的判定与性质,平行线的性质等知识,综合性强,有一定的难度,证明三角形全等是解决问题的关键.4.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.【答案】(1)见解析(2)成立(3)△DEF为等边三角形【解析】解:(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=900.∵∠BAC=900,∴∠BAD+∠CAE=900.∵∠BAD+∠ABD=900,∴∠CAE=∠ABD.又AB="AC" ,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE="AE+AD=" BD+CE.(2)成立.证明如下:∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=1800—α.∴∠DBA=∠CAE.∵∠BDA=∠AEC=α,AB=AC,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE.(3)△DEF为等边三角形.理由如下:由(2)知,△ADB≌△CEA,BD=AE,∠DBA =∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=600.∴∠DBA+∠ABF=∠CAE+∠CAF.∴∠DBF=∠FAE.∵BF=AF,∴△DBF≌△EAF(AAS).∴DF=EF,∠BFD=∠AFE.∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600.∴△DEF为等边三角形.(1)因为DE=DA+AE,故由AAS证△ADB≌△CEA,得出DA=EC,AE=BD,从而证得DE=BD+CE.(2)成立,仍然通过证明△ADB≌△CEA,得出BD=AE,AD=CE,所以DE=DA+AE=EC+BD.(3)由△ADB≌△CEA得BD=AE,∠DBA =∠CAE,由△ABF和△ACF均等边三角形,得∠ABF=∠CAF=600,FB=FA,所以∠DBA+∠ABF=∠CAE+∠CAF,即∠DBF=∠FAE,所以△DBF≌△EAF,所以FD=FE,∠BFD=∠AFE,再根据∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600得到△DEF是等边三角形.5.如图,在ABC ∆中,903, 7C AC BC ∠=︒==,,点D 是BC 边上的动点,连接AD ,以AD 为斜边在AD 的下方作等腰直角三角形ADE .(1)填空:ABC ∆的面积等于 ;(2)连接CE ,求证:CE 是ACB ∠的平分线;(3)点O 在BC 边上,且1CO =, 当D 从点O 出发运动至点B 停止时,求点E 相应的运动路程.【答案】(1)212;(2)证明见解析;(3)32【解析】【分析】 (1)根据直角三角形的面积计算公式直接计算可得;(2)如图所示作出辅助线,证明△AEM ≌△DEN (AAS ),得到ME=NE ,即可利用角平分线的判定证明;(3)由(2)可知点E 在∠ACB 的平分线上,当点D 向点B 运动时,点E 的路径为一条直线,再根据全等三角形的性质得出CN=1()2AC CD +,根据CD 的长度计算出CE 的长度即可.【详解】解:(1)903, 7C AC BC ∠=︒==, ∴112137222ABC S AC BC =⨯=⨯⨯=, 故答案为:212 (2)连接CE ,过点E 作EM ⊥AC 于点M ,作EN ⊥BC 于点N ,∴∠EMA=∠END=90°,又∵∠ACB=90°,∴∠MEN=90°,∴∠MED+∠DEN=90°,∵△ADE 是等腰直角三角形∴∠AED=90°,AE=DE∴∠AEM+∠MED=90°,∴∠AEM=∠DEN∴在△AEM与△DEN中,∠EMA=∠END=90°,∠AEM=∠DEN,AE=DE∴△AEM≌△DEN(AAS)∴ME=NE∴点E在∠ACB的平分线上,即CE是ACB∠的平分线(3)由(2)可知,点E在∠ACB的平分线上,∴当点D向点B运动时,点E的路径为一条直线,∵△AEM≌△DEN∴AM=DN,即AC-CM=CN-CD在Rt△CME与Rt△CNE中,CE=CE,ME=NE,∴Rt△CME≌Rt△CNE(HL)∴CM=CN∴CN=1() 2AC CD+,又∵∠MCE=∠NCE=45°,∠CME=90°,∴CE=22() CN AC CD=+,当AC=3,CD=CO=1时,CE=2(31)22 2+=当AC=3,CD=CB=7时,CE=2(37)52+=∴点E的运动路程为:522232-=,【点睛】本题考查了全等三角形的综合证明题,涉及角平分线的判定,几何中动点问题,全等三角形的性质与判定,解题的关键是综合运用上述知识点.6.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,他们的运动时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由(2)判断此时线段PC和线段PQ的关系,并说明理由。
八年级数学上几何典型试题及答案一.选择题(共10小题)1.(2013?铁岭)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DC C.B C=DC,∠A=∠D D.∠B=∠E,∠A=∠D2.(2011?恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7D.3.53.(2013?贺州)如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm4.(2010?海南)如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.5.(2013?珠海)点(3,2)关于x轴的对称点为()A.(3,﹣2)B.(﹣3,2)C.(﹣3,﹣2)D.(2,﹣3)6.(2013?十堰)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()A .7cmB .10cmC .12cmD .22cm7.(2013?新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A .12B .15C .12或15D .188.(2013?烟台)下列各运算中,正确的是()A .3a+2a=5a2B .(﹣3a 3)2=9a 6C .a 4÷a 2=a3D .(a+2)2=a 2+49.(2012?西宁)下列分解因式正确的是()A .3x 2﹣6x=x (3x ﹣6)B .﹣a 2+b 2=(b+a )(b ﹣a )C .4x 2﹣y 2=(4x+y )(4x ﹣y )D .4x 2﹣2xy+y 2=(2x ﹣y )210.(2013?恩施州)把x 2y ﹣2y 2x+y 3分解因式正确的是()A .y (x 2﹣2xy+y 2)B .x 2y ﹣y2(2x ﹣y )C .y (x ﹣y )2D .y (x+y )2二.填空题(共10小题)11.(2013?资阳)如图,在Rt △ABC 中,∠C=90°,∠B=60°,点D 是BC 边上的点,CD=1,将△ABC 沿直线AD 翻折,使点C 落在AB 边上的点E 处,若点P 是直线AD 上的动点,则△PEB 的周长的最小值是_________.12.(2013?黔西南州)如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG=CD,DF=DE,则∠E=_________度.13.(2013?枣庄)若,,则a+b 的值为_________.14.(2013?内江)若m 2﹣n 2=6,且m ﹣n=2,则m+n=_________.15.(2013?菏泽)分解因式:3a 2﹣12ab+12b 2=_________.16.(2013?盐城)使分式的值为零的条件是x=_________.17.(2013?南京)使式子1+有意义的x 的取值范围是_________.18.(2012?茂名)若分式的值为0,则a 的值是_________.19.在下列几个均不为零的式子,x 2﹣4,x 2﹣2x,x 2﹣4x+4,x 2+2x,x 2+4x+4中任选两个都可以组成分式,请你选择一个不是最简分式的分式进行化简:_________.20.不改变分式的值,把分式分子分母中的各项系数化为整数且为最简分式是_________.三.解答题(共8小题)21.(2013?遵义)已知实数a 满足a 2+2a ﹣15=0,求﹣÷的值.22.(2013?重庆)先化简,再求值:÷(﹣a ﹣2b )﹣,其中a,b 满足.23.(2007?资阳)设a 1=32﹣12,a 2=52﹣32,…,a n =(2n+1)2﹣(2n ﹣1)2(n 为大于0的自然数).(1)探究a n 是否为8的倍数,并用文字语言表述你所获得的结论;(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出a 1,a 2,…,a n ,…这一列数中从小到大排列的前4个完全平方数,并指出当n 满足什么条件时,a n 为完全平方数(不必说明理由).24.在△ABC 中,若AD 是∠BAC 的角平分线,点E 和点F 分别在AB 和AC 上,且DE ⊥AB,垂足为E,DF ⊥AC,垂足为F (如图(1)),则可以得到以下两个结论:①∠AED+∠AFD=180°;②DE=DF .那么在△ABC 中,仍然有条件“AD 是∠BAC 的角平分线,点E 和点F,分别在AB 和AC 上”,请探究以下两个问题:(1)若∠AED+∠AFD=180°(如图(2)),则DE 与DF 是否仍相等?若仍相等,请证明;否则请举出反例.(2)若DE=DF,则∠AED+∠AFD=180°是否成立?(只写出结论,不证明)25.(2012?遵义)如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.26.(2005?江西)将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下图的形式,使点B、F、C、D在同一条直线上.(1)求证:AB⊥ED;(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.27.(2013?沙河口区一模)如图,Rt△ABC中,∠C=90°,AC=3,BC=4.点M在AB边上以1单位长度/秒的速度从点A向点B运动,运动到点B时停止.连接CM,将△ACM沿着CM对折,点A的对称点为点A′.(1)当CM与AB垂直时,求点M运动的时间;(2)当点A′落在△ABC的一边上时,求点M运动的时间.28.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,(1)如图1,若∠ACD=60°,则∠AFB=_________;如图2,若∠ACD=90°,则∠AFB=_________;如图3,若∠ACD=120°,则∠AFB=_________;(2)如图4,若∠ACD=α,则∠AFB=_________(用含α的式子表示);(3)将图4中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图5所示的情形,若∠ACD=α,则∠AFB与α的有何数量关系?并给予证明.环球优学八年级(上)典型题参考答案与试题解析一.选择题(共10小题)1.(2013?铁岭)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DC C.B C=DC,∠A=∠D D.∠B=∠E,∠A=∠D考点:全等三角形的判定.分析:根据全等三角形的判定方法分别进行判定即可.解答:解:A、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;D、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意;故选:C.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2.(2011?恩施州)如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11 B.5.5 C.7D.3.5考点:角平分线的性质;全等三角形的判定与性质.专题:计算题;压轴题.分析:作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF的面积转化为三角形DNM的面积来求.解答:解:作DM=DE交AC于M,作DN⊥AC,∵DE=DG,DM=DE,∴DM=DG,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,在Rt△DEF和Rt△DMN中,,∴Rt△DEF≌Rt△DMN(HL),∵△ADG和△AED的面积分别为50和39,∴S△MDG=S△ADG﹣S△ADM=50﹣39=11,S△DNM=S△DEF=S△MDG==5.5故选B.点评:本题考查了角平分线的性质及全等三角形的判定及性质,解题的关键是正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求.3.(2013?贺州)如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm考点:全等三角形的判定与性质.分析:求出∠FBD=∠CAD,AD=BD,证△DBF≌△DAC,推出BF=AC,代入求出即可.解答:解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC(ASA),∴BF=AC=8cm,故选C.点评:本题考查了等腰三角形的性质,全等三角形的性质和判定,三角形的内角和定理的应用,关键是推出△DBF≌△DAC.4.(2010?海南)如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.考点:全等三角形的判定.分析:根据全等三角形的判定方法进行逐个验证,做题时要找准对应边,对应角.解答:解:A、与三角形ABC有两边相等,而夹角不一定相等,二者不一定全等;B、选项B与三角形ABC有两边及其夹边相等,二者全等;C、与三角形ABC有两边相等,但角不是夹角,二者不全等;D、与三角形ABC有两角相等,但边不对应相等,二者不全等.故选B.点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.5.(2013?珠海)点(3,2)关于x轴的对称点为()A.(3,﹣2)B.(﹣3,2)C.(﹣3,﹣2)D.(2,﹣3)考点:关于x轴、y轴对称的点的坐标.分析:根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接写出答案.解答:解:点(3,2)关于x轴的对称点为(3,﹣2),故选:A.点评:此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.6.(2013?十堰)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()A.7cm B.10cm C.12cm D.22cm考点:翻折变换(折叠问题).分析:首先根据折叠可得AD=BD,再由△ADC的周长为17cm可以得到AD+DC的长,利用等量代换可得BC的长.解答:解:根据折叠可得:AD=BD,∵△ADC的周长为17cm,AC=5cm,∴AD+DC=17﹣5=12(cm),∵AD=BD,∴BD+CD=12cm.故选:C.点评:此题主要考查了翻折变换,关键是掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7.(2013?新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12 B.15 C.12或15 D.18考点:等腰三角形的性质;三角形三边关系.分析:因为已知长度为3和6两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.解答:解:①当3为底时,其它两边都为6,3、6、6可以构成三角形,周长为15;②当3为腰时,其它两边为3和6, ∵3+3=6=6,∴不能构成三角形,故舍去, ∴答案只有15.故选B .点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.8.(2013?烟台)下列各运算中,正确的是()A .3a+2a=5a 2B .(﹣3a 3)2=9a6C .a 4÷a 2=a3D .(a+2)2=a 2+4。