用卷积法证明中心极限定理
- 格式:doc
- 大小:260.00 KB
- 文档页数:7
中心极限定理是概率论中的一个重要定理,它描述了当从一个总体中随机抽取大量样本时,样本均值的分布会趋向于一个正态分布。
而蒂莫夫拉普拉斯中心极限定理是中心极限定理的一个特殊情况,它对二项分布和泊松分布进行了精确的描述和推导。
本文将详细介绍中心极限定理和蒂莫夫拉普拉斯中心极限定理的基本概念、证明过程和实际应用。
一、中心极限定理的基本概念中心极限定理是概率论中的一个重要定理,它指出对于任意具有有限方差的总体,当从总体中抽取大量的样本进行均值的抽样分布,这些样本均值将会近似服从正态分布。
在具体说明之前,我们先来解释一下什么是总体、样本和样本均值。
总体是指我们研究的对象的整体,例如全国人口的身高数据或者某种产品的质量数据等;而样本则是从总体中抽取出的一部分数据;而样本均值就是这些样本数据的平均值。
在中心极限定理中,我们关心的是当从总体中抽取大量的样本时,这些样本均值的分布情况。
中心极限定理的核心内容可以总结为:当样本量足够大时,不论总体的分布形态是什么样子,抽样均值的分布都近似服从正态分布。
二、中心极限定理的证明过程中心极限定理有多种不同的证明方法,其中最著名的是林德伯格-列维中心极限定理和莫亚-李维中心极限定理。
林德伯格-列维中心极限定理是以两数相加得到一数为基本原理,从而证明了中心极限定理的一般形式;而莫亚-李维中心极限定理则是以特征函数的相乘得到一函数为基本原理,从而得出了中心极限定理的另一种形式。
无论哪种证明方法,它们的核心思想都是利用数学推导和统计学的方法,通过对样本均值进行适当的转换和处理,最终将证明样本均值的分布近似服从正态分布。
这些证明方法都需要一定的数学基础和技巧,对概率论和数理统计有一定的了解才能够深入理解其证明过程。
三、中心极限定理的实际应用中心极限定理在实际应用中有着广泛的用途。
例如在工程、经济、医学、环境科学等领域中,我们经常需要对一定的数据进行抽样统计,然后利用样本均值来推断总体的特征值,比如总体的均值、方差等。
中心极限定理第一篇:中心极限定理中心极限定理中心极限定理(Central Limit Theorems)什么是中心极限定理大数定律揭示了大量随机变量的平均结果,但没有涉及到随机变量的分布的问题。
而中心极限定理说明的是在一定条件下,大量独立随机变量的平均数是以正态分布为极限的。
中心极限定理是概率论中最著名的结果之一。
它提出,大量的独立随机变量之和具有近似于正态的分布。
因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释为什么有很多自然群体的经验频率呈现出钟形(即正态)曲线这一事实,因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使正态分布有了广泛的应用。
中心极限定理的表现形式中心极限定理也有若干个表现形式,这里仅介绍其中四个常用定理:(一)辛钦中心极限定理设随机变量相互独立,服从同一分布且有有限的数学期望a和方差σ2,则随机变量,在n无限增大时,服从参数为a和的正态分布即n→∞时,将该定理应用到抽样调查,就有这样一个结论:如果抽样总体的数学期望a和方差σ2是有限的,无论总体服从什么分布,从中抽取容量为n的样本时,只要n足够大,其样本平均数的分布就趋于数学期望为a,方差为σ2 / n的正态分布。
(二)德莫佛——拉普拉斯中心极限定理设μn是n次独立试验中事件A发生的次数,事件A在每次试验中发生的概率为P,则当n无限大时,频率设μn / n趋于服从参数为的正态分布。
即:该定理是辛钦中心极限定理的特例。
在抽样调查中,不论总体服从什么分布,只要n充分大,那么频率就近似服从正态分布。
(三)李亚普洛夫中心极限定理设差:是一个相互独立的随机变量序列,它们具有有限的数学期望和方。
记,如果能选择这一个正数δ>0,使当n→∞时,则对任意的x有:该定理的含义是:如果一个量是由大量相互独立的随机因素影响所造成的,而每一个别因素在总影响中所起的作用不很大,则这个量服从或近似服从正态分布。
中心极限定理的内容一、引言中心极限定理是概率论中的一个重要定理,它描述了大量独立随机变量之和的分布情况。
该定理在统计学、自然科学、社会科学等领域都有广泛应用。
本文将对中心极限定理进行全面详细的介绍。
二、定义1. 独立随机变量:若随机变量X1,X2,...,Xn相互独立,则称它们是独立随机变量。
2. 标准正态分布:若随机变量Z服从期望为0,方差为1的正态分布,则称Z服从标准正态分布。
3. 中心极限定理:设X1,X2,...,Xn是独立同分布的随机变量,且具有期望E(Xi)=μ和方差Var(Xi)=σ^2(σ>0),则当n充分大时,其样本均值(Xi的平均数)服从正态分布N(μ,σ^2/n)近似成立。
三、证明中心极限定理有多种证明方法,其中比较常用的是利用特征函数进行证明。
以下是一种比较简单易懂的证明方法:假设X1,X2,...,Xn是独立同分布的随机变量,其期望为μ,方差为σ^2。
设S_n=X1+X2+...+Xn,则其期望为E(S_n)=nμ,方差为Var(S_n)=nσ^2。
我们定义随机变量Y_n=(S_n-nμ)/(σ√n),则有:E(Y_n)=E[(S_n-nμ)/(σ√n)]=0Var(Y_n)=Var[(S_n-nμ)/(σ√n)]=1因此,Y_n服从标准正态分布。
即:P(Y_n≤x)=(1/√(2π))*∫(-∞)^x exp(-t^2/2)dt将Y_n表示成X1,X2,...,Xn的函数:Y_n=(X1+X2+...+Xn-nμ)/(σ√n)则有:P(Y_n≤x)=P[(X1+X2+...+Xn-nμ)/(σ√n)≤x]=P[(Xi-μ)/σ≤(x√n)] (i=1,2,...,n)由于Xi是独立同分布的随机变量,因此它们的特征函数相同。
设它们的特征函数为φ(t),则有:φ(t)=E(exp(itXi))考虑到独立性,我们可以得到:φ(t)^n=E[exp(it(X1+X2+...+Xn))]=E[exp(itX1)]*E[exp(itX2)]*...*E[exp(itXn)]=[φ(t)]^n因此,有:φ(t)=[φ(t)]^n即:φ(t)=exp(inLog[φ(t)])当n充分大时,由于对数函数的泰勒展开式中高阶项的系数比较小,因此可以将其截断为一阶项,得到:Log[φ(t)]=in(1+itμ-σ^2t^2/2)+o(1)其中o(1)表示高阶项。
林德伯格中心极限定理的证明
中心极限定理:概率论中关于独立的随机变量序列()1,2,,
1,,i i n n ξ=- 的部分和
1
n
i
i ξ
=∑的分布渐近于正态分布的一类定理,是概率论中最重要的一类定理,
有广泛的实际应用背景,常见的是关于独立同分布随机变量之和的中心极限定理,即林德伯格—列维定理。
林德伯格—列维定理: 设()1,2,,
1,,i i n n ξ=- 为独立同分布的随机变
机变量n η依分布收敛于服从标准正态分布的随机变量X ,即
()lim 0 ,1.L
n n X N η→∞
−−→ 随机变量
引理(—特征函数的定义及性质)
随机变量X 的特征函数()()iXt
X t E e
ϕ=;
独立随机变量和的特征函数等于每个随机变量特征函数的乘积。
证明:用特征函数来证明。
令=i i λξμ-,于是有:i λ独立同分布,且2
()0,() i i E D λλσ==。
设=i i
λξμ-的特征函数为()t ϕ(()t ϕ正态随机变量的概率密度函数),则n η的特征函数为
开。
正好是服从标准正态分布()0,1N 的随机变量X 的特征函数,即n η的特征函数收敛于标准正态分布随机变量的特征函数,所以由特征函数理论可得知,n η的分布函数()n F η弱收敛于(依分布收敛于)标准正态分布随机变量X 的分布函数()x Φ,即
n
ηL
−−→随机变量() 0,1. X N
证毕。
(完整版)8-第五章⼤数定律和中⼼极限定理解析第五章⼤数定律和中⼼极限定理⼤数定律和中⼼极限定理是概率论中两类极限定理的统称,前者是从理论上证明随机现象的“频率稳定性”,并进⼀步推⼴到“算术平均值法则”;⽽后者证明了独⽴随机变量标准化和的极限分布是正态分布或近似正态分布问题,这两类极限定理揭⽰了随机现象的重要统计规律,在理论和应⽤上都有很重要的意义。
§5.1 ⼤数定律设ΛΛ,,,,21n X X X 是互相独⽴的⼀列随机变量,每个随机变量取值于⼆元集合{0,1},并有相同的概率分布函数()()0,1,1j j P X q P X p p q ====+=易计算它们的数学期望和⽅差为 (),()j j E X p D X pq ==如果取这些j X 的部分和 n n X X X S +++=Λ21并考虑它们的平均值∑==n j j n n Xn S 1/)(/,易知它的数学期望和⽅差为;nnS S pq E p D n n n == ? ?利⽤定理4.2.13给出的切⽐雪夫不等式可知:对任何⼀个正数t 有2n S pq P p t n t n-≥≤ ? 令∞→n ,有2lim lim 0n n n S pq P p t n t n→∞→∞??-≥≤= 即lim 0n n S P p t n →∞??-≥=(5.1.1) 可见当n 很⼤时,部分和的平均值/n S n 与p 相距超过任何⼀个数0>t 的概率都很⼩,⽽当∞→n 时, 这个概率趋于0。
(5.1.1)式的结果称为弱⼤数定律,也称伯努利⼤数定律, 因为这个定律是伯努利在1713年⾸先证明的,是从理论上证明随机现象的频率具有稳定性的第⼀个定律。
注意式(5.1.1)等价于lim 1n n S P p t n →∞??-≤=(5.1.2) 把它完整地叙述如以下定理:定理5.1.1(伯努利⼤数定律)设ΛΛ,,,,21n X X X 是互相独⽴的取值于⼆元集合{0,1}的⼀列随机变量,并有相同的概率分布函数()()0,1,1j j P X q P X p p q ====+=⼜设 n n X X X S +++=Λ21则 lim 0n n S P p t n →∞??-≥=或等价地lim 1n n S P p t n →∞??-≤=。
中心极限定理及其应用中心极限定理是概率论和数理统计中重要的一条定理,它描述了大量独立随机变量之和的分布趋于正态分布的现象。
本文将介绍中心极限定理的基本概念、证明方法以及其在实际问题中的应用。
一、中心极限定理的基本概念中心极限定理是指在一定条件下,大量独立随机变量的和的分布会逐渐接近于正态分布。
这个定理是概率论和统计学中非常重要的一条定理。
二、中心极限定理的证明方法1.特征函数法特征函数法是中心极限定理证明的一种重要方法。
特征函数是一个复数函数,可以完全描述一个随机变量的分布特性。
利用特征函数的性质,我们可以推导出随机变量之和的特征函数,并通过特征函数的极限形式得到中心极限定理。
2.特征值法特征值法也是中心极限定理证明的一种常用方法,它通过矩阵的特征值来分析随机变量之和的分布性质。
通过矩阵的运算和特征值的性质,我们可以得到随机变量之和的分布收敛于正态分布。
三、中心极限定理的应用1.统计推断中心极限定理为统计推断提供了理论基础。
在实际问题中,我们往往只能获得样本数据,而无法获得全部总体数据。
利用中心极限定理,我们可以通过样本数据的统计量(如均值、方差)来近似推断总体的分布情况。
2.假设检验假设检验是统计学中常用的一种方法,用于根据样本数据判断总体参数的真实情况。
中心极限定理可以用于推导出检验统计量的分布近似为正态分布,从而进行假设检验。
3.财务风险评估中心极限定理在财务风险评估中也有着广泛的应用。
通过对大量单个事件的风险评估,可以利用中心极限定理来估计整体风险的分布情况,从而帮助决策者制定相应的风险管理策略。
四、中心极限定理的局限性中心极限定理在应用中也存在一定的局限性。
首先,适用于中心极限定理的随机变量必须是独立同分布的。
其次,中心极限定理只是给出了随机变量之和的分布趋近于正态分布,并且收敛的速度是较慢的。
因此,在实际应用中需要注意对样本数据的合理处理和精确计算。
总结:中心极限定理是概率论和统计学中重要的一条定理,它描述了大量独立随机变量之和的分布趋于正态分布的现象。
中心极限定理证明中心极限定理证明中心极限定理证明一、例子例1] 高尔顿钉板试验.图中每一个黑点表示钉在板上的一颗钉子.每排钉子等距排列,下一排的每个钉子恰在上一排两相邻钉子之间.假设有排钉子,从入口中处放入小圆珠.由于钉板斜放,珠子在下落过程中碰到钉子后以的概率滚向左边,也以的概率滚向右边.如果较大,可以看到许多珠子从处滚到钉板底端的格子的情形如图所示,堆成的曲线近似于正态分布. 如果定义:当第碰到钉子后滚向右边,令;当第碰到钉子后滚向左边,令.则是独立的,且那么由图形知小珠最后的位置的分布接近正态.可以想象,当越来越大时接近程度越好.由于时,.因此,显然应考虑的是的极限分布.历史上德莫佛第一个证明了二项分布的极限是正态分布.研究极限分布为正态分布的极限定理称为中心极限定理.二、中心极限定理设是独立随机变量序列,假设存在,若对于任意的,成立称服从中心极限定理.例2] 设服从中心极限定理,则服从中心极限定理,其中为数列. 解:服从中心极限定理,则表明其中.由于,因此故服从中心极限定理.三、德莫佛-拉普拉斯中心极限定理在重贝努里试验中,事件在每试验中出现的概率为为试验中事件出现的数,则例3] 用频率估计概率时的误差估计.由德莫佛—拉普拉斯极限定理,由此即得第一类问题是已知,求,这只需查表即可.第二类问题是已知,要使不小于某定值,应至少做多少试验?这时利用求出最小的.第三类问题是已知,求.解法如下:先找,使得.那么,即.若未知,则利用,可得如下估计: .例4] 抛掷一枚均匀的骰子,为了至少有0.95的把握使出现六点的概率与之差不超过0.01,问需要抛掷多少?解:由例4中的第二类问题的结论,.即.查表得.将代入,便得. 由此可见,利用比利用契比晓夫不等式要准确得多.例5] 已知在重贝努里试验中,事件在每试验中出现的概率为为试验中事件出现的数,则服从二项分布:的随机变量.求.解:因为很大,于是所以利用标准正态分布表,就可以求出的值.例6] 某单位内部有260架电话分机,每个分机有0.04的时间要用外线通话,可以认为各个电话分机用不用外线是是相互独立的,问总机要备有多少条外线才能以0.95的把握保证各个分机在使用外线时不必等候.解:以表示第个分机用不用外线,若使用,则令;否则令.则.如果260架电话分机同时要求使用外线的分机数为,显然有.由题意得,查表得,,故取.于是取最接近的整数,所以总机至少有16条外线,才能有0.95以上的把握保证各个分机在使用外线时不必等候.例7] 根据孟德尔遗传理论,红黄两种番茄杂交第二代结红果植株和结黄果植株的比率为3:1,现在种植杂交种0株,试求结黄果植株介于83和117之间的概率.解:将观察一株杂交种的果实颜色看作是一试验,并假定各试验是独立的.在0株杂交种中结黄果的株数记为,则.由德莫佛—拉普拉斯极限定理,有其中,即有四、林德贝格-勒维中心极限定理若是独立同分布的随机变量序列,假设,则有证明:设的特征函数为,则的特征函数为又因为,所以于是特征函数的展开式从而对任意固定的,有而是分布的特征函数.因此,成立.例8] 在数值计算时,数用一定位的小数来近似,误差.设是用四舍五入法得到的小数点后五位的数,这时相应的误差可以看作是上的均匀分布.设有个数,它们的近似数分别是,.,.令用代替的误差总和.由林德贝格——勒维定理,以,上式右端为0.997,即以0.997的概率有例9] 设为独立同分布的随机变量序列,且互相独立,其中,证明:的分布函数弱收敛于.证明:为独立同分布的随机变量序列,且互相独立,所以仍是独立同分布的随机变量序列,易知有由林德贝格——勒维中心极限定理,知的分布函数弱收敛于,结论得证.作业:P222 EX 32,33,,五、林德贝尔格条件设为独立随机变量序列,又令,对于标准化了的独立随机变量和的分布当时,是否会收敛于分布?例10] 除以外,其余的均恒等于零,于是.这时就是的分布函数.如果不是正态分布,那么取极限后,分布的极限也就不会是正态分布了.因而,为了使得成立,还应该对随机变量序列加上一些条件.从例题中看出,除以外,其余的均恒等于零,在和式中,只有一项是起突出作用.由此认为,在一般情形下,要使得收敛于分布,在的所有加项中不应该有这种起突出作用的加项.因为考虑加项个数的情况,也就意味着它们都要“均匀地斜.设是独立随机变量序列,又,,这时(1)若是连续型随机变量,密度函数为,如果对任意的,有(2)若是离散型随机变量,的分布列为如果对于任意的,有则称满足林德贝尔格条件.例11] 以连续型情形为例,验证:林德贝尔格条件保证每个加项是“均匀地斜.证明: 令,则于是从而对任意的,若林德贝尔格条件成立,就有这个关系式表明, 的每一个加项中最大的项大于的概率要小于零,这就意味着所有加项是“均匀地斜.六、费勒条件设是独立随机变量序列,又,,称条件为费勒条件.林德贝尔格证明了林德贝尔格条件是中心极限定理成立的充分条件,但不是必要条件.费勒指出若费勒条件得到满足,则林德贝尔格条件也是中心极限定理成立的必要条件.七、林德贝尔格-费勒中心极限定理引理1 对及任意的,证明:记,设,由于因此, ,其,对,用归纳法即得.由于,因此,对也成立.引理2 对于任意满足及的复数,有证明:显然因此,由归纳法可证结论成立.引理3 若是特征函数,则也是特征函数,特别地证明定义随机变量其中相互独立,均有特征函数,服从参数的普哇松分布,且与诸独立,不难验证的特征函数为,由特征函数的性质即知成立.林德贝尔格-费勒定理定理设为独立随机变量序列,又 .令 ,则(1)与费勒条件成立的充要条件是林德贝尔格条件成立.证明:(1)准备部分记(2)显然(3)(4)以及分别表示的特征函数与分布函数,表示的分布函数,那么 (5) 这时因此林德贝尔格条件化为:对任意,(6)现在开始证明定理.设是任意固定的实数.为证(1)式必须证明(7)先证明,在费勒条件成立的假定下,(7)与下式是等价的:(8)事实上,由(3)知,又因为故对一切,把在原点附近展开,得到因若费勒条件成立,则对任意的,只要充分大,均有(9)这时(10)对任意的,只要充分小,就可以有(11)因此,由引理3,引理2及(10),(11),只要充分大,就有(12)因为可以任意小,故左边趋于0,因此,证得(7)与(8)的等价性.(2)充分性先证由林德贝尔格条件可以推出费勒条件.事实上,(13)右边与无关,而且可选得任意小;对选定的,由林德贝尔格条件(6)知道第二式当足够大时,也可以任意地小,这样,费勒条件成立.其证明林德贝尔格条件能保证(1)式成立.注意到(3)及(4),可知,当时,当时,因此(14)对任给的,由于的任意性,可选得使,对选定的,用林德贝尔格条件知只要充分大,也可使.因此,已证得了(8),但由于已证过费勒条件成立,这时(8)与(7)是等价的,因而(7)也成立.(3)必要性由于(1)成立,因此相应的特征函数应满足(7).但在费勒条件成立时,这又推出了(8),因此,(15)上述被积函数的实部非负,故而且(16)因为对任意的,可找到,使,这时由(15),(16)可得故林德贝尔格条件成立.八、李雅普诺夫定理设为独立随机变量序列,又.令,若存在,使有则对于任意的,有。
中心极限定理证明中心极限定理(Central Limit Theorem)是概率论中的一个重要定理,指的是当样本容量足够大时,样本均值的分布逼近于正态分布。
这一定理的证明可以从两个方面入手,一是通过独立随机变量的和的特点,二是通过特征函数的性质。
下面将依次介绍这两种证明方法。
首先从独立随机变量的和的特点进行证明。
设X1, X2, ..., Xn为独立同分布的随机变量序列,其期望和方差分别为μ和σ^2,定义Sn = (X1 + X2 + ... + Xn) / n为这n个随机变量的均值。
根据大数定理,当n趋向于无穷大时,Sn的极限为μ,即Sn依概率收敛于μ。
根据协方差的性质,有Var(Sn) = Var((X1 + X2 + ... + Xn) / n) = (1/n^2) * (Var(X1) + Var(X2) + ... + Var(Xn))。
由于X1,X2, ..., Xn为独立同分布的随机变量,它们的方差都相等,即Var(X1) = Var(X2) = ... = Var(Xn) = σ^2,所以Var(Sn) = σ^2 / n。
根据切比雪夫不等式,对于任意ε > 0,有P(|Sn - μ| ≥ ε) ≤ Var(Sn) / ε^2 = σ^2 / (nε^2)。
当n趋向于无穷大时,右边的概率趋近于0,即Sn依概率收敛于μ。
接下来,我们通过特征函数的性质进行证明。
设X1, X2, ..., Xn 为独立同分布的随机变量序列,其特征函数分别为φ(t) = E(e^itX1),则Sn的特征函数为φ(t/n)^n。
根据独立随机变量和的特征函数的性质,有φ(t/n)^n = φ(t/n) * φ(t/n) * ... * φ(t/n),其中有n个φ(t/n)相乘。
考虑到φ(t)的级数展开形式为φ(t) = 1 + itμ - (t^2σ^2)/ 2 + R(t),其中R(t)为误差项。
将φ(t/n)带入展开形式得到:φ(t/n) = 1 + itμ/n - (t^2σ^2) / (2n^2) + R(t/n)。
第47讲中⼼极限定理§5.2 中⼼极限定理中⼼极限定理的概念Central Limit Theorems在客观实际中有许多随机变量,它们是由⼤量相互独⽴的随机因素的综合影响所形成,⽽其中每⼀个别因素在总的影响中所起的作⽤是微⼩的。
这种随机变量往往近似地服从正态分布。
这种现象就是中⼼极限定理的客观背景。
本节将⽤中⼼极限定理来说明这种现象。
四川⼤学徐⼩湛中⼼极限定理是说:在⼀定条件下,充分多的相互独⽴的随机变量的算术平均值将服从正态分布,不管这些随机变量本⾝服从什么分布。
本节介绍了三个中⼼极限定理1.列维-林德伯格定理(独⽴同分布的中⼼极限定理)2.李雅普诺夫定理(独⽴不同分布的中⼼极限定理)3.棣莫弗-拉普拉斯定理(⼆项分布的极限分布)列维-林德伯格定理独⽴同分布的中⼼极限定理定理 1 列维-林德伯格 (Levy -Lindberg) 定理(独⽴同分布的中⼼极限定理)设随机变量 X 1, X 2, …, X n , … 相互独⽴,服从同⼀分布,且 E (X k )=µ , D (X k )=σ 2 >0 (k =1,2, …),的分布函数 F n (x ) =P {Y n ≤x }满⾜当 n 很⼤时, Y n 近似地服从标准正态分布 N (0, 1) 则随机变量n n →∞ n →∞ lim F (x ) = lim P {Y ≤ x }= Φ(x ) = n定理 1 (独⽴同分布的中⼼极限定理)设随机变量 X 1, X 2, …, X n , … 相互独⽴,服从同⼀分布,且 E (X k )=µ , D (X k )=σ2 >0 (k =1,2, …),则随机变量n n 的分布函数 F (x ) =P {Y ≤x }满⾜n n n →∞ n →∞ n →∞lim F (x ) = lim P {Y ≤ x }= lim以上定理表⽰:若随机变量 X 1, X 2, …, X n , … 相互独⽴同分布,且 E (X k )=µ , D (X k )=σ 2 >0 (k =1,2, …),则当n 很⼤时,近似地有n n k X 的标准化变量 1n Y 是 X = ∑ k =1 n k 1 n = D ( ∑ k =1 2 1 n k D (X ) n X ) = ∑ k =1 = D (X ) 独⽴性 k k =1 nk 1 n k =1 X ) = ∑ E (X ) = n E (X ) = E (1∑ nnnk 1nk=1Y 是X = ∑以上定理表明,在定理的条件下,⽆论{Xk} 服从什么分布,当n很⼤时,其前n项的算术均值X的准化服从正态分布N(0,1)。
用卷积法证明中心极限定理郝越 B10050724 (Q3-32) naotilus9112@ Dec, 26th, 2011中心极限定理是概率论中十分重要的一个定理,它揭示了大量独立同概率分布的随机变量之和(或平均值)逼近正太分布的规律,具有非常高的理论和实用价值。
然而在高等教育出版社的《概率论与数理统计教程》这本教材中的227页举例解释了通过卷积公式导出中心极限定理的来历,然而书中指出“由于卷积计算相当复杂,无法写出当随机变量数趋于无限时其和或平均值的概率分布函数形式”,这给证明带来了困难。
本文将信号与系统中的观点,通过Matlab 实验给出直觉,并使用傅里叶变换的方法“化积为乘”求出卷积,以证明该定理。
中心极限定理(Central Limit Theorem )数学定义如下:设{}n X 是独立同分布(identically independent distributed, IID )的随机变量序列,且()i E X μ=,2()0i Var X σ=>。
记*n Y =…则对任意实数y ,有2*2()().limt yn n P Y y y e dt --∞→+∞≤=Φ=卷积公式如下()()().g x f y h x y dy ∞-∞=-⎰在频域()()().G w F w H w =为证明该定理,首先要说明随机变量和的概率密度分布和卷积的关系。
在概率论中,我们知道两个随机变量和的分布是其各自概率分布的卷积。
证明方法也很简单:设1X 是2X 是独立随机变量,其概率分布为11()P x ,22()Px 那么对于任何t 有:1212112212()()().x x tP X X t P x P x dx dx +≤+≤=⎰⎰用换元法:1u x =,12v x x =+;那么1212()()()tP X X t P u P v u dudv +∞-∞-∞+≤=-⎰⎰()12()()tP u P v u du dv +∞-∞-∞=-⎰⎰()()12*tP P v dv -∞=⎰可见求出12*P P 便可以得到12()P x x +。