化学元素周期律
- 格式:docx
- 大小:12.80 KB
- 文档页数:1
一.元素周期表1.原子序数=核电荷数=核内质子数=核外电子数2.主族元素最外层电子数=主族序数3.电子层数=周期序数4.碱金属元素:密度逐渐增大,熔沸点逐渐变大,自上而下反应越来越剧烈银白色金属,密度小,熔沸点低,导电导热性强5.判断元素金属性强弱的方法:单质与水(酸)反应置换出氢的难易程度最高价氧化物的水化物(氢氧化物)的碱性强弱单质间的置换6.卤族元素:密度逐渐增大,熔沸点逐渐升高与氢气反应剧烈程度越来越弱,生成氢化物稳定性渐弱7.判断元素非金属性强弱的方法:与氢气生成气态氢化物的难易程度以及氢化物的稳定性最高价氧化物的水化物的酸性单质间的置换8.质量数:核内所有质子和中子的相对质量取近似整数相加9.核素:具有一定数目质子和一定数目的中子的一种原子10.同位素:质子数相同而中子数不同的同一元素的不同原子互称为同位素天然稳定存在的同位素,无论是游离态还是化合态各同位素所占的原子个数百分比一般是不变的在相同状况下,各同位素的化学性质基本相同(几乎完全一样),物理性质有所不同12.原子相对原子质量=1个原子的质量/(1/12 C12的原子质量)13.原子的近似相对原子质量=质量数14.元素的相对原子质量=各同位素的相对原子质量的平均值= A·a%+B·b%…15.元素的近似相对原子质量=各同位素质量数的平均值= A·a%+B·b%…二.元素周期律1.K、L、M、N、O、P、Q(1,2,3,4,5,6,7,)层数越大,电子离核越远,其能量越高2.能量最低原理3.各电子层最多容纳电子数:2n^24.最外层不超过8,次外层18,倒数第三层325.原子半径:同周期主族元素,原子半径从左到右逐渐减小同主族元素,元素原子半径从上到下逐渐增大6.元素性质的周期性变化是元素原子的核外电子排布的周期性变化的结果(实质)7.同一周期元素,电子层数相同,从左到右,核电荷数增多,原子半径减小,失电子的能力逐渐减弱,得电子的能力逐渐增强8.同一主族,自上而下,元素的金属性逐渐增强,非金属性逐渐减弱,最外层电子数相同,电子层数增多,原子半径增大9.最高正价=最外层电子数最低负价=8—最外层电子数10.各周期元素种类:2,8,8,18,32,3211.稀有气体原子序数;2,10,18,36,54,8612.同族上下相邻的原子序数差:2,8,18,3213.同周期IIA族与IIIA族原子序数相差:1,1,11,11,2514.电子层数不同,原子序数(核电荷数)均不同时,电子层数越多,半径越大15.电子层数相同,原子序数(核电荷数)不同时,原子序数(核电荷数)越大,半径越小16.电子层数,原子序数(核电荷数)均相同时,核外电子数越多,半径越大17.电子排布相同的离子,离子半径随核电荷数递增而减小选修三.原子结构与性质1.原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈纺锤形,d轨道和f轨道较复杂.各轨道的伸展方向个数依次为1、3、5、7.2.电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小.3.原子核外电子排布原理.①.能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道.②.泡利不相容原理:每个轨道最多容纳两个自旋状态不同的电子.③.洪特规则:在能量相同的轨道上排布时,电子尽可能分占不同的轨道,且自旋状态相同.4.洪特规则的特例:对于一个能级,当电子排布为充满、半充满或全空时,是比较稳定的5.元素电离能:第一电离能:气态电中性基态原子失去1个电子,转化为气态基态正离子所需要的能量叫做第一电离能。
高考化学元素周期律知识高考化学元素周期律知识元素周期律是现代化学的基础知识之一,也是高考化学中必考的知识点。
掌握元素周期律的知识不仅可以帮助我们更好地了解元素的性质和特点,还能在高考中取得更好的成绩。
下面,我们来详细了解一下高考化学中与元素周期律相关的知识。
一、元素周期律的概念元素周期律是一种对元素周期性变化规律的总结和表述。
它是由俄罗斯的化学家门捷列夫在1869年提出的,并且在深入探究了物质的性质和结构后得到了迅速发展和完善。
元素周期律是将元素按照其原子序数大小,分为周期和族。
周期是位于同一水平列的元素所具有的共同特征,而族则是位于同一竖直列的元素的化学性质具有相似性的元素组。
二、元素周期律的排列元素周期律的排列方式是按照元素的原子序数大小排列的,大致分为横向和纵向两个方向。
横向就是周期,周期从左至右递增,原子序数也随之递增。
每个周期的第一个元素称为“碱金属”,后面则逐渐变成“过渡金属”、“半金属”,直至到达最右端的气体元素——“稀有气体”。
纵向则是族,族从上至下递增,原子序数也逐渐递增。
每个族有一个代表元素,例如第一族的代表元素是氢、第二族的代表元素是锂。
三、元素周期律的性质元素周期律有许多独特的性质,例如周期性、相似性、电子排布规则等。
周期性是指元素在元素周期表中的位置决定了其化学性质,元素的周期数就是其原子中的电子层数。
相似性是指在同一族的元素中,其化学性质会相对相似,像第一族中的金属都可能与水反应,放出氢气。
电子排布规则是指在元素周期表中,第一周期的元素氢和第二周期的元素氦都只由一个主量子数为1的电子占据最外层的轨道;第三周期的元素锂和第四周期的元素铍都由两个电子占据最外层的轨道,以此类推。
这种规律被称为“奇偶原则”。
四、元素周期律的应用元素周期律不仅在高考化学中有着广泛的应用,而且在工业、生产、农业等领域都有很多的应用。
例如,在化肥生产中,根据元素周期律的规律,我们可以知道,钾肥和磷肥是成分相似的化肥,它们都属于第五周期元素,因此结合这种规律可以用相同的肥料来补充植物所需要的营养素。
元素周期律知识点总结元素周期律是现代化学的基础之一,它是根据元素的原子序数和原子结构的周期性规律将元素按照一定顺序排列的表格。
以下是元素周期律的一些重要知识点总结:1. 元素周期律的排列方式:元素周期律中元素按照原子序数顺序排列,一般从左上角到右下角,纵列称为“周期”,横行称为“族”。
2. 周期表的组成:周期表分为横行(周期)和竖列(族)。
横行称为周期,表示电子层的数量,竖列称为族,表示原子中对外电子的数量和性质。
3. 周期表的区域划分:周期表可以分为主族元素和过渡元素两部分。
主族元素位于周期表的1A到8A族,对外电子为s和p电子;过渡元素位于4B到11B族和3A到8A 族,对外电子为d和s电子。
不包含2A族和3B族的过渡元素。
4. 周期表的电子层结构:周期表中的行数代表电子层数,从1行到7行依次填充电子,并按能级顺序填充。
例如,第1行只有1s轨道,第2行有2s和2p轨道,依此类推。
5. 周期表的周期性规律:周期表中的元素按照一定规律呈现周期性变化。
例如,原子半径逐渐减小,电离能逐渐增大,在同一周期内,电负性逐渐增大等。
6. 主族元素的性质:主族元素的性质随族数的增加而呈现一定的规律性。
例如,1A族元素是碱金属,具有低电离能、低电负性、金属性等特征;7A族元素是卤素,具有高电离能、高电负性、非金属性等特征。
7. 过渡元素的性质:过渡元素具有多样的性质,但总体上具有较高的电离能和电负性,良好的催化性能和各种维度的配位化学。
这些是元素周期律中的一些重要知识点,但仅仅列举了一小部分。
元素周期律是化学研究的基础,涉及到更多的化学性质和规律。
高中化学元素周期律知识点总结-CAL-FENGHAI.-(YICAI)-Company One1第一节课时1元素周期表的结构一、元素周期表的发展历程二、现行元素周期表的编排与结构1.原子序数(1)含义:按照元素在元素周期表中的顺序给元素编号,得到原子序数。
(2)原子序数与原子结构的关系原子序数=核电荷数=质子数=核外电子数。
2.元素周期表的编排原则(1)原子核外电子层数目相同的元素,按原子序数递增的顺序从左到右排成横行,称为周期。
(2)原子核外最外层电子数相同的元素,按电子层数递增的顺序由上而下排成纵行,称为族。
3.元素周期表的结构(1)周期(横行)①个数:元素周期表中有7个周期。
②特点:每一周期中元素的电子层数相同。
③分类(3短4长)短周期:包括第一、二、三周期(3短)。
长周期:包括第四、五、六、七周期(4长)。
(2)族(纵行)①个数:元素周期表中有18个纵行,但只有16个族。
②特点:元素周期表中主族元素的族序数等于其最外层电子数。
③分类④常见族的特别名称 第ⅠA 族(除H):碱金属元素;第ⅦA 族:卤族元素;0族:稀有气体元素;ⅣA 族:碳族元素;ⅥA 族:氧族元素。
课时2 元素的性质与原子结构一、碱金属元素——锂(Li)、钠(Na)、钾(K)、铷(Rb)、铯(Cs)、钫(Fr) 1.原子结构(1)相似性:最外层电子数都是__1__。
(2)递变性:Li ―→Cs ,核电荷数增加,电子层数增多,原子半径增大。
2.碱金属单质的物理性质3.碱金属元素单质化学性质的相似性和递变性 (1)相似性(用R 表示碱金属元素)单质R —⎩⎪⎨⎪⎧与非金属单质反应:如Cl 2+2R===2RCl 与水反应:如2R +2H 2O===2ROH +H 2↑与酸溶液反应:如2R +2H +===2R ++H 2↑化合物:最高价氧化物对应水化物的化学式为ROH ,且均呈碱性。
(2)递变性具体表现如下(按从Li→Cs 的顺序)①与O 2的反应越来越剧烈,产物越来越复杂,如Li 与O 2反应只能生成Li 2O ,Na 与O 2反应还可以生成Na 2O 2,而K 与O 2反应能够生成KO 2等。
高中化学之元素周期律知识点一、原子序数1、原子序数的编排原则按核电荷数由小到大的顺序给元素编号,这种编号,叫做原子序数。
2、原子序数与原子中各组成粒子数的关系原子序数=核电荷数=质子数=核外电子数二、元素周期律我们知道:一切客观事物本来是互相联系的和具有内部规律的,所以,各元素间也应存在着相互联系及内部规律。
1.核外电子排布的周期性从3-18号元素,随着原子序数递增,最外层电子数从1个递增至8个,达到稀有气体元素原子的稳定结构,然后又重复出现原子最外层电子数从1个递增至8个的变化。
18号以后的元素,尽管情况比较复杂,但每隔一定数目的元素,也会出现原子最外层电子数从1个递增到8个的变化规律。
可见,随原子序数递增,元素原子的最外层电子排布呈周期性的变化。
2.原子半径的周期性变化从3-9号元素,随原子序数递增,原子半径由大渐小,经过稀有气体元素Ne后,从11-18号元素又重复出现上述变化。
如果把所有的元素按原子序数递增的顺序排列起来,我们会发现随着原子序数的递增,元素的原子半径发生周期性的变化。
注意:①原子半径主要是由核外电子层数和原子核对核外电子的作用等因素决定的。
②稀有气体元素原子半径的测定方法与其它原子半径的测定方法不同,所以稀有气体的原子半径与其他原子的原子半径没有可比性。
一般不比较稀有气体与其它原子半径的大小。
③粒子半径大小比较的一般规律:电子层数越多,半径越大,电子层数越少,半径越小;当电子层结构相同时,核电荷数大的半径小,核电荷数小的半径大;对于同种元素的各种粒子半径,核外电子数越多,半径越大;核外电子数越少,半径越小。
例如,粒子半径:H->H>H+;Fe3+<Fe2+。
3.元素主要化合价的周期性变化从3-9号元素看,元素化合价的最高正价与最外层电子数相同(O、F不显正价);其最高正价随着原子序数的递增由+1价递增至+7价;从中部的元素开始有负价,负价是从-4递变到-1。
从11-17号元素,也有上述相同的变化,即:元素化合价的最高正价与最外层电子数相同;其最高正价随着原子序数的递增重复出现由+1价递增至+7价的变化;从中部的元素开始有负价,负价是从-4递变到-1。
化学元素周期律化学元素周期律指的是元素在周期表中按照它们的原子序数依次排列的规律,它是19世纪初德国化学家斯特拉斐特(Lothar Meyer)和俄国化学家格里尔(Dmitri Mendeleev)发现的。
他们发现,当把现有的化学元素按原子序数排序时,发现它们具有一定的规律性:随着原子序数的增加,元素原子团外层电子数总是递增1,元素特性归类为7系,每个系内有8个元素而形成“元素周期”。
这就是所谓的“化学元素周期律”。
化学元素周期律的关键所在在于,原子序数在原子团外层电子数上的增加,会使原子团外层电子数递增1,从而影响元素原子团外层电子构型和电子结构,以及元素的化学性质。
譬如,原子团外层电子数增加1,会使元素的中子数+1而电荷数-1,从而引起稳定性的变化,从而影响元素的化学性质,从而形成元素周期性质的变化。
因此,元素周期律是由原子序数和元素的化学性质共同决定的。
由于原子序数的增加,会引起元素的化学性质的变化,从而衍生出元素周期特点。
从原子序数增加的角度,每七个原子序数构成一组,叫做一个周期,每个周期共有8种元素,称为每个周期元素。
即每组它们原子序数增加7,但元素本质特征依然如出一辙,因而称之为元素周期律。
每个周期元素都有自己的特点,可以根据周期律给出基本的分类。
一般而言,每个周期元素都有自己的化学性质,如碳和氢等位于第一组的元素,具有很强的化学活性;第四组的元素如钾和锂,具有较大的沸点等特点;第八组的元素,如氦和氖,具有极强的化学稳定性。
此外,周期律中的元素也与它们的原子结构有着重大的关系。
比如,锂在第四组有2个电子,在周期元素中是唯一一种这样的元素,所以它的电子结构与它的周期位置有很强的联系。
这种特点使得它们在化学反应中有独特的作用,影响着化学反应的过程,因此,构型和电子结构是原子序数和稳定性关系的关键性因素。
综上所述,斯特拉斐特和格里尔发现的化学元素周期律,可以帮助我们了解原子构型,掌握元素稳定性,从而研究化学反应中各种元素的浓度和极性等因素,为进一步深入化学研究奠定基础。
初中化学《元素周期律》优秀教案第一章:元素周期律的发现1.1 科学家的探索-介绍道尔顿、门捷列夫等科学家对元素周期律的贡献1.2 元素周期律的定义-解释元素周期律的概念:元素周期律是元素性质随着原子序数的递增而呈周期性变化的规律1.3 元素周期律的表述-介绍元素周期律的表述方式:周期表第二章:元素周期律的规律2.1 周期性变化-解释元素周期律的周期性变化:原子半径、化合价、金属性和非金属性等2.2 周期表的结构-介绍周期表的结构:周期、族、周期表的排列规律2.3 周期表的应用-讲解周期表在化学学习和实际应用中的重要性第三章:周期表中的主族元素3.1 碱金属族-介绍碱金属族的元素特点、性质及应用3.2 碱土金属族-介绍碱土金属族的元素特点、性质及应用3.3 卤族元素-介绍卤族元素的元素特点、性质及应用第四章:周期表中的过渡元素4.1 过渡元素的分类-讲解过渡元素的分类:d区和ds区4.2 过渡元素的性质-介绍过渡元素的性质:金属性、非金属性、氧化还原性等4.3 过渡元素的应用-讲解过渡元素在催化剂、合金等领域的应用第五章:周期表中的镧系和锕系元素5.1 镧系和锕系元素的发现-介绍镧系和锕系元素的发现背景及意义5.2 镧系和锕系元素的性质-介绍镧系和锕系元素的元素特点、性质及应用5.3 镧系和锕系元素的研究意义-讲解镧系和锕系元素在核反应、超导体等领域的研究价值第六章:原子结构和元素周期律6.1 原子核外电子的排布-解释原子核外电子的排布规律及其与元素周期律的关系6.2 元素周期律的量子化学解释-介绍量子化学对元素周期律的解释和意义6.3 原子半径的周期性变化-讲解原子半径的周期性变化及其在周期表中的应用第七章:元素周期律与化学反应7.1 元素化合价的周期性变化-解释化合价的周期性变化及其对化学反应的影响7.2 金属性和非金属性的周期性变化-介绍金属性和非金属性的周期性变化及其在化学反应中的应用7.3 元素周期律在化学反应预测中的应用-讲解如何利用元素周期律预测化学反应的可能性及产物第八章:元素周期律在材料科学中的应用8.1 金属材料的设计与制备-介绍如何利用元素周期律设计和制备金属材料8.2 半导体材料的应用-讲解半导体材料在电子、光电子领域的应用及其与元素周期律的关系8.3 超级合金及其他先进材料-介绍超级合金及其他先进材料的设计原理及其与元素周期律的关系第九章:元素周期律在环境化学中的应用9.1 环境污染与元素周期律-解释环境污染与元素周期律的关系及其在污染治理中的应用9.2 元素生物地球化学循环-介绍元素生物地球化学循环的规律及其与元素周期律的关系9.3 环境监测与元素周期律-讲解如何利用元素周期律进行环境监测和污染物分析第十章:元素周期律在药物化学中的应用10.1 药物设计与元素周期律-介绍药物设计与元素周期律的关系及其在药物研发中的应用10.2 药物分子结构的优化-解释如何利用元素周期律优化药物分子结构以提高药效10.3 元素周期律在药物筛选中的应用-讲解元素周期律在药物筛选和构效关系研究中的作用第十一章:元素周期律在材料科学中的应用(续)11.1 纳米材料与元素周期律-介绍纳米材料的设计与元素周期律的关系11.2 复合材料的应用-讲解复合材料在各个领域的应用及其与元素周期律的关系11.3 功能材料的研究与发展-介绍功能材料的研究与发展趋势及其与元素周期律的联系第十二章:元素周期律在生物化学中的应用12.1 生物体内元素的分布与周期律-解释生物体内元素分布与元素周期律的关系12.2 酶与元素周期律-介绍酶的活性中心元素与元素周期律的关系12.3 生物地球化学与元素周期律-讲解生物地球化学研究中元素周期律的应用第十三章:元素周期律在宇宙化学中的应用13.1 宇宙中的元素分布-介绍宇宙中元素分布的特点及其与元素周期律的关系13.2 恒星演化与元素周期律-解释恒星演化过程中元素周期律的应用13.3 行星地球化学与元素周期律-讲解行星地球化学研究中元素周期律的应用第十四章:元素周期律在现代化学分析中的应用14.1 原子吸收光谱分析-介绍原子吸收光谱分析原理及其与元素周期律的关系14.2 质谱分析与应用-讲解质谱分析原理及其在元素周期律研究中的应用14.3 X射线荧光光谱分析-介绍X射线荧光光谱分析原理及其与元素周期律的关系第十五章:元素周期律的综合应用与研究前景15.1 元素周期律在多领域中的应用-总结元素周期律在多个领域的应用及其重要性15.2 元素周期律的研究新进展-介绍元素周期律研究的新技术、新方法及发展趋势15.3 元素周期律的挑战与机遇-探讨元素周期律在现代科学中的挑战及未来发展的机遇重点和难点解析本文主要介绍了初中化学《元素周期律》的相关知识,包括元素周期律的发现、规律、应用以及其在不同领域的重要性。
元素周期律知识点总结
一、元素周期律
1、定义:元素周期律(Periodic Law)是指按元素原子序数从小到大
排序,当元素所具有的质子数和中子数有一定的定律性变化时,元素
的化学性质也有相应的定律性变化的现象。
2、元素周期表:体现元素周期律的就是元素周期表,所有元素依据质
子数从小到大排列,形成由7条表排成形状似番茄坐放的元素周期表。
表中的每一行称为一个“周期”,每一列称为一个“族(Group)”。
3、物理化学性质的变化规律:
(1)质子数增加——元素的原子半径随着质子数增加而减小,元素的
熔点和沸点也随着质子数的增加而减小;
(2)族的变化——族之间的元素逐步由金属性变为非金属性;
(3)周期的变化——随着原子序数增加,周期中金属和非金属类型及
性质便开始改变。
4、戴拿贝定律:戴拿贝定律(Dobbine's Law)指出,元素周期表中前
8种元素的化学性质比较特殊,质子数介于1~8的元素的化学性质也专
有几分,它们的化学性质呈”8乘“型组织,每一组成份化学性质相似。
简言之,其中前8种元素的化学性质会有重复性,例如第一,八组
(1—8)都是氢族(无色、气态、可溶性);第二,九组(9—16)都是碱金属族(金属态、有色、可溶性);第三,十七组(17—24)都是非金属族(非金属态、不可溶性),以此类推。
5、定律的意义:元素周期律反映了原子内结构的一般规律性变化,使人们能够预测未知元素的性质,比较容易地判断出元素之间的特征及关联性,为元素的分类提供了重要的理论依据。
化学元素周期律
化学元素周期律是一种分类、归类元素的规律,是化学家哥本哈根提出的。
他把元素按照原子量的大小排序,发现元素的化学特性与它们的原子结构有着密不可分的关系,并归纳出一组存在一定规律的法则,也就是所谓的化学元素周期律。
元素周期律的规律性体现在它的周期和组的连续性上。
周期是指元素周期表中元素的诸性质,如原子序数、共价半径、化学性质等,随着原子序数增加而重复出现,并形成一定规律的周期性变化,又称为“周期律” 。
组则是指在元素周期表中,每组元素原子半径大小相似,而化学性质则开始重新变化,第二级元素周期律体现在每组元素的相似性上,又称为“组律” 。
通过查看元素周期表,元素周期律的规律性显而易见。
它把所有元素分为四大类:金属类(由左至右依次是锌、铝、钒、铬…)、半金属类(由左至右依次是硒、碲、锗、砷…)、非金属类(由左至右依次是氮、硫、氯、磷…)及隐藏类(由左至右依次是氧、氟、氖…)。
此外,元素周期律还表明,某些元素具有相同的化学性质,分为共性组和特性组,如第一组元素都是氢气,第七组元素都是氯等,只要元素在同一周期内,它们总具有相同的化学性质。
另外,元素周期表还可以很好地帮助化学家推测某些还没有发现的元素的性质,从而完善元素周期表。
总之,元素周期律是一种规律性为佳,它把元素有机地分成四大类,看似无关,实则密不可分,给科学家探究元素本质提供了宝贵帮助,这正是它的神奇之处。
高三化学知识元素周期律高三化学知识:元素周期律元素周期律是化学中的一个基本原理,它揭示了元素的周期性变化规律。
对于高中生来说,理解和掌握元素周期律对于深入学习化学知识和解决化学题目具有重要意义。
本文将从元素周期律的发现、基本原理、周期表的结构、元素周期律的应用等方面进行详细讲解。
元素周期律的发现元素周期律的发现要归功于俄国化学家门捷列夫。
在1869年,门捷列夫发现了元素周期律,并首次编制了元素周期表。
他发现,当元素按照原子序数递增排列时,元素的性质会出现周期性的变化。
这一发现极大地简化了化学学习和元素的研究。
基本原理元素周期律的基本原理是基于元素的电子排布。
元素的性质主要由其最外层电子的数目和排布决定。
根据元素周期律,元素的性质会随着原子序数的增加而周期性地变化。
这种变化主要体现在以下几个方面:1.原子半径:原子半径随着原子序数的增加而周期性地变化。
在同一周期内,从左到右原子半径逐渐减小;在同一族内,从上到下原子半径逐渐增大。
2.电负性:电负性是指元素吸引电子的能力。
电负性随着原子序数的增加而周期性地变化。
在同一周期内,从左到右电负性逐渐增大;在同一族内,从上到下电负性逐渐减小。
3.价态:元素的价态也呈现出周期性的变化。
在同一周期内,元素的价态从左到右逐渐增加;在同一族内,元素的价态相同。
4.化合物的性质:元素形成的化合物性质也会出现周期性的变化。
在同一周期内,元素的化合物性质从左到右逐渐变化;在同一族内,元素的化合物性质相同。
周期表的结构元素周期表是元素周期律的具体表现形式。
它将元素按照原子序数递增的顺序排列,并将其分为若干个周期和族。
周期表中的水平行称为周期。
每个周期代表了元素原子的一个电子层的填充。
周期表共有7个周期,从第1周期到第7周期。
在同一周期内,元素的原子半径、电负性等性质会随着原子序数的增加而周期性地变化。
族也称为族系,是周期表中的垂直列。
族代表了具有相同外层电子数的元素。
周期表共有18个族,分为7个主族、7个副族、1个0族和1个第Ⅷ族。
化学元素周期律知识点总结周期律是化学学科中最基本、最基础的知识,它是全部化学知识的基础。
本文将简要回顾化学元素周期律的知识点,总结化学元素周期律的基本概念和定律。
一、化学元素周期律的定义化学元素周期律是一种规律性质,它根据元素的原子序数,将元素分成周期列,2013年诺贝尔奖得主塔波拉-纳塔斯特瑞发现的现代原子理论强调了化学元素周期律。
二、化学元素周期律的基本性质1.期性:化学元素周期律分成周期列,元素从左到右、从上到下以固定的规律排列,每一周期的元素都具有相同或相似的性质,发现这种周期性的人是英国化学家索尔塞特。
2.复性:在化学元素周期律中,元素的相互关系具有重复性,随着原子序数的增加,元素在周期列中每7个即可形成前一组元素的重复,这也是周期律以7个元素组成一伏望律的原因。
三、化学元素周期律的定律1.期律:周期律定律说明了元素在周期列中从左到右、从上到下,每一组元素具有相同或相似的性质,这种相同性质由原子序数决定,原子序数和性质成正比。
2.朗定律:布朗定律指的是每一周期的元素的原子半径,从左到右、从上到下呈现出递减的规律,且原子序数和原子半径成反比。
3.垒定律:势垒定律也叫戈尔斯多夫势垒定律,它指的是元素发生电子受阻的能力随着原子序数的增加,周期性变化,原子序数和电子受阻能力成正比。
四、化学元素周期律的应用化学元素周期律不仅用于元素性质的研究,还可以用于归类元素,推测未知元素的性质,研究元素间的相关性,并在医学、农业、几何等领域开展研究,发现新的应用价值。
以上就是关于化学元素周期律的一些基本知识点的总结,它是掌握化学知识的基础,也是广泛应用的基础。
它构成了每一个元素的性质,也是化学谱系的基础。
只有充分熟悉它,才能更好地掌握化学知识,为今后的科学研究奠定基础。
高中化学元素周期律知识点规律大全1.元素周期律:元素周期律是按照原子核中质子数的大小和电子排布的规律,将所有元素按照一定的顺序排列成周期表。
2.元素周期表的结构:周期表由周期和组成两个维度组成。
周期是指原子核中质子数的递增顺序,组是指元素化学性质相似的元素在竖列方向上排列。
3.周期表分区:周期表分为s区(1-2组),p区(3-8组),d区(3-12组)和f区(内过渡金属区)。
4.元素周期表中的元素符号:元素周期表中的元素符号是代表元素的化学符号,比如氧元素的符号是O,碳元素的符号是C。
5.元素的周期和原子序数:元素周期表中的周期数表示元素的电子层数,原子序数表示元素的质子数或核电荷数。
6.主、副、次副周期:周期表中的s区是用户主周期,p区作为副周期,d区和f区则是次副周期。
7.元素周期表的横向周期规律:周期表横向周期数增加,元素的原子半径、电负性、电子亲和能等性质呈周期性变化。
8.元素周期表的纵向周期规律:周期表纵向组数增加元素以周期性地重复出现,一个新的主能级开始填入电子。
9.原子半径的周期性变化:原子半径在周期表中从左到右递减,从上到下递增。
10.电离能的周期性变化:第一电离能在周期表中从左到右增加,从上到下减小。
11.电子亲和能的周期性变化:电子亲和能在周期表中从左到右增加,从上到下减小。
12.电负性的周期性变化:电负性在周期表中从左到右增加,从上到下减小。
13.元素周期表的强氧化剂和强还原剂:在周期表中,元素越往上和越往右,越容易成为氧化剂;而越往下和越往左,越容易成为还原剂。
14.元素周期表的金属性和非金属性:在周期表中,金属性元素主要位于周期表左下角,非金属性元素主要位于周期表右上角。
15.主族元素和过渡元素:周期表中的s区和p区的元素称为主族元素,d区的元素称为过渡元素。
16.键合:通过元素周期表,我们可以预测元素之间的化学键合方式,如金属与非金属之间通常是离子键,非金属与非金属之间通常是共价键。
化学元素周期律
化学元素周期律,又称为元素周期表,是化学的重要理论之一。
它是1869年由威尔士化学家古斯塔夫·霍普曼伯格提出的,是经过大
量实验实践所总结出的一门关于化学元素性质的理论。
元素周期律认为,元素的原子的性质随着原子序数的增加而周期性变化。
这一理论
表明,要想正确分析元素的性质,需要研究各元素在不同周期中的性质,以及它们之间的关系。
元素周期律把按照原子序数分类的化学元素排列在一个表中,称
为周期律表。
元素周期表把所有元素按照相似性质划分为18条周期,
从1到18,以及7组,从A到G。
根据周期表所示,元素性质从第一
周期的氢(H)开始,一步步进入到第18周期的氩(Ar),随着周期的变
化而发生变化,周期变化的规律被称为元素周期律。
周期律表规定了元素连续变化的规律,即一个周期内,元素按照
原子序数逐渐增加,原子质量也逐渐增加,元素的性质从左边轱辘式
变化到右边,例如,从第一周期的H、Li、Na、K、Rb到第二周期的Ca、Sr、Ba等。
从而形成各种元素的性质发生周期性变化的规律。
元素周期律表明,元素的原子性质是“周期性”的,即元素的性
质随着原子序数的增加而发生相似的变化。
举例来说,第一周期的H、Li、Na、K、Rb,都是无色易溶质液,第三周期的Al、Si、P、S、Cl,
都是无色固体,可以把它们都一起分为一组。
每一组之间,虽然元素
的性质有所不同,但整体上也可以看到周期性变化。
从元素周期律可以看出,元素的性质与原子序数之间存在着一定
的联系,可以通过这种联系来分析物质的组成和性质,进而推测出一
种物质的化学反应等。
元素周期律也是元素周期表的基础,它提供了
一个全新的、系统的概念以及有助于我们了解物质的重要理论基础。