张永伟--丙烯酸及酯废水处理综述
- 格式:doc
- 大小:60.00 KB
- 文档页数:9
丙烯酸及丙烯酸丁酯的生产废水处理分析摘要:丙烯酸与丙烯酸丁酯都属于运用非常广泛的精细化工原料,随着这些年来两种化工原料产量与需求的增大,生产废水量也逐渐增多,废水基质较为复杂,且水质变化比较大,对环境与人体都存在威胁,如何处理丙烯酸与丙烯酸丁酯生产的废水,是当前面临的严峻问题。
关键词:丙烯酸;丙烯酸丁酯;废水处理前言:随着国内丙烯酸及酯产能逐渐增加,市场竞争日趋白热化,为了提高市场竞争力,只有从降低原、辅材料、公用工程消耗及废物的排放量入手从而降低生产成本,提高产品的市场竞争力。
1、废水焚烧处理过去传统的丙烯酸和丙烯酸丁酯废水处理通常经过以下的环节与步骤:燃料油—一次焚烧炉—盐灰外运—高效除尘器—二次焚烧炉—废热锅炉—空气预热器—废水预热蒸发器—排风机—烟囱,即在生产装置中进行废水预热以后,将燃料与热空气一起排进一次焚烧炉,经过一定时间的焚烧以后将其中含有的盐灰去掉,剩下的物料进行除尘以后与热空气和燃料油混合再次进入焚烧炉,排出的废气进入废热锅炉中采用余热的效应形成蒸汽,同时进入预热器将空气预热,再次进入废水预热蒸发器,从排风机中将大气排出。
这种传统的废水处理方法需要很多燃料油才能进行,因此具有很高的处理成本,且对于装置节能理念的实施也有很大的阻碍,要实现精简节能式的改造,必须以催化焚烧和热力焚烧系统重新设置为更科学的处理形式,才能加以使用废水焚烧处理工艺流程图如下:流程叙述:生产装置来的废水预热后和燃料油经喷嘴和热空气一起进入一次焚烧炉,焚烧后除去盐灰,其余物料经除尘后和燃料油、热空气一起进入二次焚烧炉,焚烧后废气进入废热锅炉利用余热产生蒸汽后,再进入空气预热器预热空气,然后进入废水预热蒸发器,最后由排风机排入大气。
该方法处理废水需要大量燃料油来参与,处理成本较高,不利于装置的节能挖潜,降低消耗,某公司在运行了很短时间后即进行了改造,将催化焚烧及热力焚烧系统推倒重来。
1.2、改造后废水处理方式流程叙述:生产装置来的废水经预热后进入汽提塔(汽提塔与废水加热器都采用低压蒸汽做热源,汽提塔可以对汽提物料数量进行控制)进行汽提,汽提后废水进入污水处理系统,汽提所得物料依次进入尾气换热器和电加热器进行加热,达到反应温度后进入催化反应器,与反应器内的催化剂进行反应,反应过程释放大量热能,形成了高温尾气,然后高温尾气进入蒸汽过热器(将高压蒸汽变成过热高压汽)后温度下降,再进入蒸汽发生器产生部分中压蒸汽,最后进入尾气换热器将余热进一步利用后排入大气。
东方化工厂丙烯酸酯类难降解污水改造方案环保能源部2003年5日26日丙烯酸酯类难降解污水改造方案一、前言丙烯酸酯类在生产过程中产生的生产废水原设计由废水焚烧系统处理,由于含有与污水共沸物质,造成提浓系统操作不稳定。
又由于CODcr浓度比较高,杂质多,生化性能差,一直没有解决的方法,排入工厂二级污水场(90单元)后造成出水不合格。
自1999年开始该废水一直储存于环乙分厂事故池内,送入工厂二级污水厂(3AA污水场)间歇处理,但处理周期长、效果很差,使环乙分厂事故池长期保持高液位,成为安全、环保隐患。
在2001年8月前,丙烯酸酯类生产界区清水和污水排放管道互相串通,高浓度污水排入清洁水管道,直接排入合流泵房,造成厂总排口超标。
为了保证工厂总排放口达标,当时将雨排水管线全部堵死,清洁水、雨水、污水全部进入污水管道,造成污水量有时比较大。
二、改造目的将丙烯酸酯类难降解污水进行预处理,提高生化性能,排入二级污水场,保证污水场稳定运行,使工厂总排口稳定达标。
三、实验室研究结果自2002年9月我们对丙烯酸酯类难降解废水进行了实验室研究。
根据生产过程,丙烯酸酯类难降解废水分为触媒生产废水和工艺生产废水。
触媒生产废水产生量约 1.5吨/日,工艺生产废水产生量约15~20吨/日。
对两种废水和两种废水混合后的试验结果如下:1、丙烯酸酯类难降解废水的COD/BOD≈0.17,属于难生化降解污水;通过厌氧水解酸化后,比值可达0.4,基本可以生化降解。
2、丙烯酸酯类难降解废水的高浓度是由于触媒生产废水造成,该废水浓度高达70000mg/l。
而酯类难降解工艺生产废水浓度约2000~3000 mg/l。
3、对丙烯酸酯类难降解废水进行混合絮凝,效果比较差,有机物去除率低,约20%。
4、丙烯酸酯类难降解废水可以进行厌氧消化处理,但厌氧水解酸化时间比较长达48小时。
丙烯酸酯类难降解废水厌氧水解酸化后,用90单元处理可以达标排放。
5、丙烯酸酯类难降解工艺生产废水直接由二级污水厂直接好氧处理,停留时间48小时,有机物去除率约40%。
丙烯酸系光固化剂废水清洁生产综合分析丙烯酸是重要的有机合成原料及合成树脂单体,是聚合速度非常快的乙烯类单体。
是最简单的不饱和羧酸,由一个乙烯基和一个羧基组成。
纯的丙烯酸是无色澄清液体,带有特征的刺激性气味。
它可与水、醇、醚和氯仿互溶,是由从炼油厂得到的丙烯制备的。
大多数用以制造丙烯酸甲酯、乙酯、丁酯、羟乙酯等丙烯酸酯类。
丙烯酸及丙烯酸酯可以均聚及共聚,其聚合物用于合成树脂、合成纤维、高吸水性树脂、建材、涂料等工业部门。
丙烯酸的职业标准是TLV-TWA 6 毫克/立方米; TWA 30 毫克/立方米。
丙烯酸的毒害物质数据是79-10-7(Hazardous Substances Data)。
1、易燃,其蒸气与空气可形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。
与氧化剂能发生强烈反应。
若遇高热,可发生聚合反应,放出大量热量而引起容器破裂和爆炸事故。
遇热、光、水分、过氧化物及铁质易自聚而引起爆炸。
2、具有双键及羧基官能团的联合反应、可以发生加成反应、官能团反应以及酯交换反应、长制备多环和杂环化合物、易被氢还原为丙酸、遇碱能分解成甲酸和乙酸。
3、酸性较强。
有腐蚀性。
化学性质活泼。
易聚合而成透明白色粉末。
还原时生成丙酸。
与盐酸加成时生成2-氯丙酸。
丙烯酸可发生羧酸的特征反应,与醇反应也可得到相应的酯类。
丙烯酸及其酯类自身或与其他单体混合后,会发生聚合反应生成均聚物或共聚物。
通常可与丙烯酸共聚的单体包括酰胺类、丙烯腈、含乙烯基类、苯乙烯和丁二烯等。
这类聚合物可用于生产各式塑料、涂层、粘合剂、弹性体、地板擦光剂及涂料。
[3]4、本品有较强的腐蚀性,中等毒性。
其水溶液或高浓度蒸气会刺激皮肤和黏膜。
大鼠口服LD50为590mg/kg。
注意不得与丙烯酸溶液或蒸汽接触,操作时要佩戴好工作服和工作帽、防护眼镜和胶皮手套。
生产设备应密闭。
工作和贮存场所要具有良好的通风条件。
应用领域1、重要的有机合成原料及合成树脂单体,是聚合速度非常快的乙烯类单体。
东方化工厂丙烯酸酯类难降解污水改造方案环保能源部2003年5日26日丙烯酸酯类难降解污水改造方案一、前言丙烯酸酯类在生产过程中产生的生产废水原设计由废水焚烧系统处理,由于含有与污水共沸物质,造成提浓系统操作不稳定。
又由于CODcr浓度比较高,杂质多,生化性能差,一直没有解决的方法,排入工厂二级污水场(90单元)后造成出水不合格。
自1999年开始该废水一直储存于环乙分厂事故池内,送入工厂二级污水厂(3AA污水场)间歇处理,但处理周期长、效果很差,使环乙分厂事故池长期保持高液位,成为安全、环保隐患。
在2001年8月前,丙烯酸酯类生产界区清水和污水排放管道互相串通,高浓度污水排入清洁水管道,直接排入合流泵房,造成厂总排口超标。
为了保证工厂总排放口达标,当时将雨排水管线全部堵死,清洁水、雨水、污水全部进入污水管道,造成污水量有时比较大。
二、改造目的将丙烯酸酯类难降解污水进行预处理,提高生化性能,排入二级污水场,保证污水场稳定运行,使工厂总排口稳定达标。
三、实验室研究结果自2002年9月我们对丙烯酸酯类难降解废水进行了实验室研究。
根据生产过程,丙烯酸酯类难降解废水分为触媒生产废水和工艺生产废水。
触媒生产废水产生量约1.5吨/日,工艺生产废水产生量约15~20吨/日。
对两种废水和两种废水混合后的试验结果如下:1、丙烯酸酯类难降解废水的COD/BOD≈0.17,属于难生化降解污水;通过厌氧水解酸化后,比值可达0.4,基本可以生化降解。
2、丙烯酸酯类难降解废水的高浓度是由于触媒生产废水造成,该废水浓度高达70000mg/l。
而酯类难降解工艺生产废水浓度约2000~3000 mg/l。
3、对丙烯酸酯类难降解废水进行混合絮凝,效果比较差,有机物去除率低,约20%。
4、丙烯酸酯类难降解废水可以进行厌氧消化处理,但厌氧水解酸化时间比较长达48小时。
丙烯酸酯类难降解废水厌氧水解酸化后,用90单元处理可以达标排放。
5、丙烯酸酯类难降解工艺生产废水直接由二级污水厂直接好氧处理,停留时间48小时,有机物去除率约40%。
电催化氧化工艺处理丙烯酸及酯污水的可行性分析作者:宋玉梅刘娜娜赵嫱陈凯华来源:《中国化工贸易·下旬刊》2018年第04期摘要:惠州石化五厂丙烯酸废水、丁酯酸/碱废水、异辛酯酸/碱废水、甲酯废水、乙酯废水、过滤器清洗水等含有高浓度有机物,水质复杂,处理难度大,并有刺激性气味,目前采用焚烧法处理,成本较高为降低处理成本,拟探求经过预处理+生化处理达标排放的预处理方案,经过交流,采用电催化氧化法对此股废水进行预处理小试,分析具有可行性。
关键词:丙烯酸;废水;电催化氧化1 电催化氧化技术作为丙烯酸及酯污水预处理装置的考虑基础1.1 ECO电催化氧化技术简介ECO电催化氧化床在传统三维电催化氧化反应器的基础上进行改进,在反应床内充填一定的催化剂及其它辅助剂。
当废水流经床体时,在常温常压操作及催化诱导下,装置内的填充催化剂便会与废水中的有机污染物发生一系列的物理化学作用,此时会生成活性中间体(H2O2、·OH等初生态的氧化剂)及一种或多种新生态的混凝剂,产生催化氧化分解、混凝、吸附、络合、置换等多种物理化学作用,从而达到降解目标污染物的作用。
1.2 丙烯酸及酯污水水质、水量由于序号1、3项污水的cod、TDS太高,且毒性很高,不适合采用生化处理,继续采用现有焚烧处理方式处理;其余几类污水具有高含盐、高COD、水量较小的特点,经预处理降低毒性及COD的值后,可能进入生化系统处理实现达标排放。
将这几股污水按水量比例取样混合,进行催化氧化小试实验,分析采用电催化氧化技术作为预处理的可行性。
1.3 丙烯酸及酯污水预处理的目标利用电催化氧化对丙烯酸己酯污水进行预处理,处理后COD≤4000mg/L,(或COD去除效率≥60%),B/C≥0.45,TDS 去除效率≥25%。
可以并入生化系统处理。
2 催化氧化小试工艺流程2.1 丙烯酸及酯污水质按水流量比例取序号2、4、5、6水样混合后,水质见下表。
水样除油预处理后TOC 值为 4400mg/L,COD 值为 11767mg/L。
丙烯酸及酯废水处理方法研究进展张永伟1,滕厚开1,2,顾锡慧2(1.河北工业大学化工学院,天津 300130;2.中海油天津化工研究设计院,天津 300131)[摘要] 丙烯酸及酯废水是一种高浓度,高毒性,成分复杂的难处理有机废水,目前处理丙烯酸及酯废水的方法主要有焚烧法,湿式催化氧化法,生物法等等,本文简要介了这些处理方法以及其在丙烯酸及酯废水方面的研究进展,分析了各种方法的优缺点,展望了丙烯酸及酯废水处理的前景。
[关键词] 丙烯酸及酯废水;焚烧法;催化湿化氧化;生物法[中图分类号] X705 [文献标识码] [文章编号]The development of handing acrylic acid and acrylic ester waste waterZhangyongwei1, tenghoukai1,2, Gu Xihui2(1.Hebei University of Technology, Tianjin 300130, China;2.CNOOC Tianjin Chemical Research & Design Institute , Tianjin 300131, China) Abstract: Acrylic acid and acrylic ester waste water is an awkward organic wastewater which is high concentration,highlytoxic and has complicated chemical composition. at present the method of handing acrylic acid and acrylic ester waste water include burning method, catalytic wet air oxidation, Biological Processes, ect. This article give a brief introduction of the development that these method used in handing acrylic acid and acrylic ester waste water. Then analyse the merit and demerit of each method. Look into the distance of handing acrylic acid and acrylic ester waste waterKey words: Acrylic acid and acrylic acid ester waste water;burning method;catalytic wet air oxidation;B iological Processes近年来,随着我国丙烯酸及其酯类工业的迅猛发展,丙烯酸及酯废水的处理成为日益严重的问题。
丙烯酸及酯废水的COD为10000-100000mg/L,废水浓度高;其中甲醛含量为1%到4%,毒性很大;另外其中含有丙烯酸,乙酸,甲醛、丙烯醛、丙烯酸甲酯,丙烯酸乙酯等多种有机物,成分复杂,使得丙烯酸及酯废水的处理十分困难[1-2]。
目前处理丙烯酸及酯废水的主流方法是焚烧法,但是由于焚烧法的费用较高、具有二次污染,因此人们正在寻找丙烯酸及酯废水的处理新方法,例如生物法、催化湿式氧化法等等,目前已经取得了一定的进展,本文将对丙烯酸及酯废水处理方法作简要综述。
1 焚烧法焚烧法治理废水始20世纪50年代,该法是将废水雾化后喷入高温燃烧炉中使水雾完全汽化,让废水中的有机物在炉内氧化分解成为完全燃烧产物二氧化碳和水及少许无机物灰分[3],一般认为COD Cr >100000 mg/L ,热值>10467 kJ/kg 的有机废采用焚烧法处理较其他方法更加经济合理,否则则需要补充辅助燃料。
上海高桥石化丙烯酸厂的丙烯酸酯废水[4]先经过汽提塔加热、浓缩,然后在用作助燃的压缩空气帮助下以雾状直接打到废水焚烧炉,在950℃下进行燃烧,去除其中的有机物。
北京东方化工厂丙烯酸及酯废水[5]采用焚烧法处理,废水先经过预处理进行中和并使其中的酯类水解,然后在双效蒸发器中进行浓缩,之后与燃料油一起送入焚烧炉,有机物被氧化成二氧化碳和水。
焚烧法对于丙烯酸废水,采用焚烧法处理存在一些缺点:A、其COD浓度以及燃烧值并没有达到直接燃烧的要求,需要额外的燃料油,增加其处理费用;B、由于丙烯酸废水中含有高盐分,在燃烧过程中形成熔融盐会损坏燃烧设备,增加了处理难度以及费用;C、由于丙烯酸废水中含有硫以及氮元素,燃烧过程中会产生SO2以及SO3或者NO2,带来二次污染。
但是由于丙烯酸及酯类废水缺乏其他经济有效的处理手段,多年来焚烧法一直是丙烯酸及酯废水处理的主流方法,人们根据实践经验对这种方法进行改进和完善:A、采用先进的设备装置使其能够避免高浓度盐水的损坏。
B、对燃烧工艺进行改进,使燃烧尽量完全,改进气体吸收和手机装置,减少或者避免二次污染;C、利用燃烧产生的热,避免热污染,回收的能源也能产生很好的经济效益。
尽管人们做了大量工作改进焚烧法处理丙烯酸废水方面的不足,使其尽量满足环境以及经济需求,但是由于焚烧过程必须加入燃料油,其处理费用高达200-300元/吨,而且二次污染也无法完全避免,因此开发和研究更加经济环保的处理方法势在必行。
2 催化湿化氧化法催化湿式氧化技术[6]是在传统湿式氧化(以氧为氧化剂,在高温高压下,将有机污染物氧化分解为二氧化碳和水等无机物或有机小分子的化学过程)基础上加入催化剂的一种处理废水的方法,相对于传统湿式氧化技术,它的反应温度以及反应压力较低,反应分解能力更高,对设备腐蚀性小、运行成本低。
催化湿式氧化技术适合处理一些高浓度、高毒性、难降解的有机废水,得到了人们的广泛研究,目前在焦化废水,造纸废水已经进行了工业应用,而对于处理丙烯酸及酯废水,也已经取得了一定的研究进展。
袁霞光[7]等研制了Ti2-ZrO2复合载体并用其制备了复合载体,考察其对丙烯酸废水的湿式氧化反应的效果:在270℃,7.0MPa,液态空速1.0h-1,处理COD为32000mg/L的丙烯酸废水可以直接达到排放标准。
李万海[8]等采用复合催化剂MnO2-CuO-CeO2-Fe2O3,用H2O2为氧化剂,反应时间10h,处理COD为80000mg/L的丙烯酸废水,去除率为68%。
催化湿式氧化法无需考虑丙烯酸及酯废水的毒性,而丙烯酸及酯废水COD 浓度在其适宜处理浓度范围内,因此比较有应用前景。
缺点是由于湿式催化氧化法处理废水的关键在于催化剂,专一性强,对进水条件限制较高,目前只有少数丙烯酸生产厂家采用这种方法。
此外催化湿式氧化法处理废水需要高温高压条件,也存在着安全隐患。
3 生物法处理丙烯酸及酯废水生物法是通过微生物自身的新陈代谢处理有机废水的一种方法,包括好氧生物处理以及厌氧生物处理,对于一些易于生物利用的废水如生物法处理造纸废水、发酵废水效果显著,已经进行了工业应用;而对处理其他一些难生物利用废水效果较差,丙烯酸废水尽管浓度高毒性大,但是属于可生物利用废水,目前已经有很多关于生物法处理丙烯酸及酯废水的研究。
主要有好氧法,厌氧法以及厌氧-好氧联合的处理方法。
3.1、好氧法好氧法处理丙烯酸及酯废水一般是在COD≤2000mg/L,污泥负荷≤0.1kg/(kg·d)下进行的,COD去除率高,出水COD大多可以直接满足出水排放要求[9]。
周平[10]等采用内循环生物流化床处理丙烯酸废水,当进水COD为710~992mg/L时,有机物平均去除率为69%;进水COD为1277-2276mg/L时,有机物平均去除率为72.4%。
由于丙烯酸及酯废水浓度比较高(COD值在20000mg/L—80000mg/L),如果直接采用好氧处理,必须对原水进行较大比例的稀释,这样处理设备的占地面积比较大,增加投资费用以及后期运行费用,经济可行性较差,因此很少直接应用好氧法处理丙烯酸及酯废水。
3.2、厌氧法厌氧法可以处理的废水COD浓度较高(达到10000mg/L甚至更高),不需要曝气,能源消耗少,占地面积小,处理时间短,环保经济,适合处理高浓度易生物利用废水,因此厌氧法处理丙烯酸及酯废水被认为是比较有前景和实际应用价值的方法[11]。
厌氧法处理废水主要有水解酸化,产氢产乙酸,产甲烷三个阶段水解酸化主要是使大分子及不溶性有机物转化为小分子及可溶性有机物,而产氢产乙酸阶段主要是把其中的有机物转化为氢气以及乙酸以有利于下一步的利用,第三步利用产甲烷菌将乙酸等转化为甲烷,所产气体可以利用,无二次污染[12]。
虽然是三个阶段,但是这三个阶段却是同时进行的,如何协调这三个阶段,是提高厌氧处理效果的一个重要因素。
厌氧处理工艺中的反应器类型很多[13],比较典型的有厌氧滤池(AF),厌氧折流板反应器(ABR),升流式厌氧污泥床反应器(UASB),膨胀颗粒污泥床反应器(EGSB),内循环反应器(IC)。
目前对于厌氧法处理丙烯酸及酯废水典型的工艺为采用UASB反应器,UASB反应器是目前应用最广泛的厌氧处理反应器之一[14]。
其底部有大量高浓度活性污泥,顶部有三相分离器,其中进水以及回流流速以还有产气的因素可以使进水与活性污泥混合均匀,不需要额外搅拌设备,操作方便,能量消耗低。
汤晓艳[15]等人采用内循环UASB处理高浓度丙烯酸废水,当实际进水COD为5000mg/L左右,其能承受的最大容积负荷为13.1~3.5kgCOD/m3•d时,去除率可达达87.9%。
李海燕[1]等人采用UASB处理含高浓度甲醛丙烯酸及酯废水,当进水COD为1869mg/L时,去除率可达95.1%。
丙烯酸废水由于含有高浓度甲醛以及其他一些有毒物质,其实际进水浓度不能过高,否则会超过生物耐受极限而使整个系统崩溃。
针对这一问题,人们开始研究利用在UASB基础上进行改进的第三代反应器EGSB,其核心在于三相分离器设计,大大进水流速提高,避免了反应器局部浓度过高,被认为是最有应用前景的反应器。
苏本生[16]等采用EGSB进行丙烯酸废水处理,当进水COD在5000mg/L左右,去除率达85%,COD容积负荷10kg/m3·d。
厌氧法处理丙烯酸及酯废水能耗较低,对营养物质需求少,污泥产量小,所产气体可以加以利用,最重要的是可以处理高浓度丙烯酸及酯废水,这样可以减小稀释比例,在工业上有重要的价值,是处理丙烯酸及酯废水最有应用前景的方法,但是还有一些问题需要解决,主要包括:出水不能达到排放要求,必须采用后续处理方法;对有毒物质比较敏感,需要降低甲醛及其他有毒物质的影响;有可能造成二次污染,如产生硫化氢等气体以及多余污泥。