《固体光学与光谱学》
- 格式:ppt
- 大小:681.50 KB
- 文档页数:18
光谱学光谱学是光学的一个分支学科,它主要研究各种物质的光谱的产生及其同物质之间的相互作用。
光谱是电磁辐射按照波长的有序排列,根据实验条件的不同,各个辐射波长都具有各自的特征强度。
通过光谱的研究,人们可以得到原子、分子等的能级结构、能级寿命、电子的组态、分子的几何形状、化学键的性质、反应动力学等多方面物质结构的知识。
但是,光谱学技术并不仅是一种科学工具,在化学分析中它也提供了重要的定性与定量的分析方法。
光谱学的发展简史光谱学的研究已有一百多年的历史了。
1666年,牛顿把通过玻璃棱镜的太阳光分解成了从红光到紫光的各种颜色的光谱,他发现白光是由各种颜色的光组成的。
这是可算是最早对光谱的研究。
其后一直到1802年,渥拉斯顿观察到了光谱线,其后在1814年夫琅和费也独立地发现它。
牛顿之所以没有能观察到光谱线,是因为他使太阳光通过了圆孔而不是通过狭缝。
在1814~1815年之间,夫琅和费公布了太阳光谱中的许多条暗线,并以字母来命名,其中有些命名沿用至今。
此后便把这些线称为夫琅和费暗线。
实用光谱学是由基尔霍夫与本生在19世纪60年代发展起来的;他们证明光谱学可以用作定性化学分析的新方法,并利用这种方法发现了几种当时还未知的元素,并且证明了太阳里也存在着多种已知的元素。
从19世纪中叶起,氢原子光谱一直是光谱学研究的重要课题之一。
在试图说明氢原子光谱的过程中,所得到的各项成就对量子力学法则的建立起了很大促进作用。
这些法则不仅能够应用于氢原子,也能应用于其他原子、分子和凝聚态物质。
氢原子光谱中最强的一条谱线是1853年由瑞典物理学家埃斯特朗探测出来的。
此后的20年,在星体的光谱中观测到了更多的氢原子谱线。
1885年,从事天文测量的瑞士科学家巴耳末找到一个经验公式来说明已知的氢原子诺线的位置,此后便把这一组线称为巴耳末系。
继巴耳末的成就之后,1889年,瑞典光谱学家里德伯发现了许多元素的线状光谱系,其中最为明显的为碱金属原子的光谱系,它们也都能满足一个简单的公式。
福州大学学位与研究生教育学术期刊及论文认定实施细则校研 [2014] 2号为规范我校研究生导师及研究生发表论文要求,引导和促进他们更好地开展科研工作,鼓励撰写和发表高水平学术论文,进一步提高研究生导师的指导水平,提高研究生培养质量,结合我校学位与研究生教育工作的实际和各项规定,特制定本细则。
1.我校学位与研究生教育学术期刊及相关论文认定按《福州大学核心学术期刊目录及相关规定(2 013年版)》(附件一)文件执行。
2.我校学位与研究生教育各项规定中所涉及到的“顶级期刊”、“一类期刊”、“二类期刊”分别对应《福州大学核心学术期刊目录及相关规定(2013年版)》中的“顶级期刊”、“一类核心期刊”、“核心期刊”。
现列出主要“二类期刊”(“核心期刊”)目录,详见附件二,供参考。
3.本细则从2013级研究生开始执行,原规定与本细则不一致的,按本细则执行,由研究生院负责解释。
附件一:《福州大学核心学术期刊目录及相关规定(2013年版)》附件二:福州大学学位与研究生教育主要“二类期刊”(核心期刊)目录福州大学研究生院2014年1月18日附件一福州大学核心学术期刊目录及相关规定(2013年版)一、“顶级期刊”的认定(一)国际顶级期刊Science、Nature(含子刊)、美国科学院院刊(PNAS)等国际著名学术期刊以及下列51种期刊为“国际顶级期刊”:(二)国内顶级期刊以下20种期刊为人文社科学部“国内顶级期刊”:二、理工科核心学术期刊的认定(一)理工科“一类核心期刊”1. 被SCI/SCIE(科学引文索引/科学引文索引扩展版)、EI(工程索引)收录的学术期刊论文(不含会议论文集、增刊论文),均为“一类核心期刊”论文(SCI/SCIE、EI以中国科学技术信息研究所统计的数据为准)。
2. 除上述期刊外,以下110种期刊为理工科“一类核心期刊”:(二)理工科“核心期刊”1. 未列入“一类核心期刊”的EI以及CPCI-S(科学技术会议录索引,原ISTP)、CSCD(中国科学引文数据库)收录的学术论文均为“核心期刊”论文。
椭偏光谱技术的原理和应用在固体光谱学中,采用光学方法可以对许多固体材料的宏观和微观物理性质进行深入研究,其中最直接的方法就是测量材料的光学常数随光子能量或波长的变化关系,从而与微观机理相联系,来认识和理解光与物质相互作用的本质。
椭偏光谱不直接测算光强,而是从相位空间寻找材料的光学信息。
椭圆偏振测量法由于其测量精度高、非破坏性而被广泛应用于薄膜的各种特性的测量。
一、 原理偏振光波通过介质时与介质发生相互作用,这种相互作用将改变光波的偏振态,测出这种偏振态的变化,进而进行分析拟合,得出我们想要的信息。
用薄膜的椭圆函数ρ表示薄膜反射线形成椭圆偏振光的特性,即式中: tan ψ表示反射光的两个偏振分量的振幅系数之比,ψ称偏振角; r p 表示反射光在P 平面的偏振分量;r s 表示反射光在S 平面的偏振分量。
椭偏仪的测量原理图如下图所示椭偏仪数据处理模型的建立是至关重要的一步,如果不能建立一个与参数匹配良好的模型,前面的测试就毫无意义,甚至如果建立一个错误的模型,其结果将与真实值南辕北辙,误导我们的实验。
下面列出几种材料的物理模型。
1 NK 模型 它用于已知组分的同类多层膜。
2 柯西模型 它适用于透明材料,如Al2O3、SiO2、MgF2、SiN4、TiO2、ITO 、KCl 等。
我们用Cauchy 公式表达材料在透明波段的光学常数具有较高的精确度:02()jj A n A λλ=+∑,其中Aj 为经验参数。
光度法椭偏光谱仪光路图3 柯西指数模型 它与柯西模型不同的是吸收系数随频率指数变化,它适用于碱卤化物,碱土金属的氟化物、氧化物和半导体(可见光和红外波段的Si , GaAs)等。
4 Sellmeier 模型 非常适用于透明材料和吸收材料,如Al2O3、SiO2、MgF2、SiN4、TiO2、ITO 、KCl 等,处于红外波段的Ge 、Si 、GaAs;材料在透明波段的光学常数具有较高的精确度。
研究固体中过渡金属离子光学性质的实验光谱技术谷至华(中国科学院长春物理研究所,1980年)由于过渡金属离子的非满壳层结构,从基态到第一激发态能级的能隙相当于光学光子的能量,故过渡金属离子被广泛地用作发光材料的激活剂。
为了得到高效发光材料,人们以各种手段研究它们在固体中的光学行为。
其中光学光谱实验是最重要的手段之一.在光学光谱实验中我们可以得到许多有关过渡金属离子形成的发光中心的信息如发光中心的种类,对称性,电子能级结构以及这些中心的跃迁强度和偶极子性质等。
本文讨论了研究固体中过渡金属离子光学性质的光学光谱实验技术。
一、能级的确定对于过渡金属离子掺杂的(激活的)固体材料,可以通过测量它的吸收光谱(对于单晶)和漫反射光谱(粉末材料)确定材料的激发能级。
然而由于掺杂离子可以进入不同的晶格位置,也可能还有一些无意识混进去的其它杂质的作用,实际上材料的吸收光谱往往是比较复杂的。
同样,不同的发光中心都会有辐射发射,这些中心的发射带也可能相互重叠.实际的发射光谱也往往是很复杂的。
通过对发光衰减时间的研究可以区别不同的发光中心.因为一种给定的过渡金属离子的发光通常来自单一的激发态,而该激发态的寿命又是确定的,因此不同的衰减时间就标志着不同的激发态,也标志着不同性质的发光中心。
如果不同中心的发射光谱不重叠,可以通过测量某一发光中心的发射强度随激发波长的变化来确定该中心的吸收。
用连续可调的单色光激发样品,当激发光的波长和某一中心(譬如说A中心)的吸收重叠时,就被该中心吸收了,从而产生A中心的特征发光。
这个发光强度就是该中心吸收强度的一个度量。
监控所有发光带进行扫描激发就得到了整个材料的各种中心的吸收特征。
当然也可能存在另一个中心,B中心,吸收能量后把能量传给中心的情况(这种重叠发光的情况在后面详细讨论).因此研究激发光谱也是研究不同中心能量输运的有效手段。
直接的吸收和激发技术虽然可以鉴别出不同的发光中心,但是前提是研究对象必须要发光.如果材料是粉末的,且不发光,这时可用光子计数的方法来确定吸收跃迁2.二、发光中心的对称性与跃迁性质确定了过渡金属离子的吸收和发射特征,就可以从这些跃迁的精细结构中得到有关离子位置对称性的信息。
光谱『spectrum』光谱是复色光经过色散系统(如棱镜、光栅)分光后,被色散开的单色光按波长(或频率)大小而依次排列的图案,全称为光学频谱。
光谱中最大的一部分可见光谱是电磁波谱中人眼可见的一部分,在这个波长范围内的电磁辐射被称作可见光。
光谱并没有包含人类大脑视觉所能区别的所有颜色,譬如褐色和粉红色。
光波是由原子内部运动的电子产生的.各种物质的原子内部电子的运动情况不同,所以它们发射的光波也不同.研究不同物质的发光和吸收光的情况,有重要的理论和实际意义,已成为一门专门的学科——光谱学.下面简单介绍一些关于光谱的知识.分光镜观察光谱要用分光镜,这里我们先讲一下分光镜的构造原理.图6-18是分光镜的构造原理示意图.它是由平行光管A、三棱镜P和望远镜筒B组成的.平行光管A 的前方有一个宽度可以调节的狭缝S,它位于透镜L1的焦平面①处.从狭缝射入的光线经透镜L1折射后,变成平行光线射到三棱镜P上.不同颜色的光经过三棱镜沿不同的折射方向射出,并在透镜L2后方的焦平面MN上分别会聚成不同颜色的像(谱线).通过望远镜筒B的目镜L3,就看到了放大的光谱像.如果在MN那里放上照相底片,就可以摄下光谱的像.具有这种装置的光谱仪器叫做摄谱仪.种类发射光谱物体发光直接产生的光谱叫做发射光谱.发射光谱有两种类型:连续光谱[1]和明线光谱.连续分布的包含有从红光到紫光各种色光的光谱叫做连续光谱(彩图6).炽热的固体、液体和高压气体的发射光谱是连续光谱.例如电灯丝发出的光、炽热的钢水发出的光都形成连续光谱.只含有一些不连续的亮线的光谱叫做明线光谱(彩图7).明线光谱中的亮线叫做谱线,各条谱线对应于不同波长的光.稀薄气体或金属的蒸气的发射光谱是明线光谱.明线光谱是由游离状态的原子发射的,所以也叫原子光谱.观察气体的原子光谱,可以使用光谱管(图6-19),它是一支中间比较细的封闭的玻璃管,里面装有低压气体,管的两端有两个电极.把两个电极接到高压电源上,管里稀薄气体发生辉光放电,产生一定颜色的光.观察固态或液态物质的原子光谱,可以把它们放到煤气灯的火焰或电弧中去烧,使它们气化后发光,就可以从分光镜中看到它们的明线光谱.实验证明,原子不同,发射的明线光谱也不同,每种元素的原子都有一定的明线光谱.彩图7就是几种元素的明线光谱.每种原子只能发出具有本身特征的某些波长的光,因此,明线光谱的谱线叫做原子的特征谱线.利用原子的特征谱线可以鉴别物质和研究原子的结构.吸收光谱高温物体发出的白光(其中包含连续分布的一切波长的光)通过物质时,某些波长的光被物质吸收后产生的光谱,叫做吸收光谱。
应用物理学专业一、专业培养目标培养学生具有坚实的数学基础、广博的物理学基本知识、系统扎实的物理学基础理论、基本实验方法和技能,了解物理学发展的前沿和科学发展的总体趋势,掌握必要的电子技术和计算机应用基础知识,熟练掌握英语,受到基础研究或应用基础研究的初步训练,具有一定的基础科学研究能力和应用开发能力。
培养基础扎实、后劲足、适应能力和知识更新能力较强的高级人才。
毕业后适宜继续攻读物理学及相关的高新技术学科、交叉学科等学科领域的研究生,也可到科研、高等学校、产业部门等从事科研、教学、管理和高新技术研发工作。
二、学制、授予学位及毕业基本要求学制: 四年授予学位: 理学学士课程设置的分类及学分比例如下表:类 别 学 分 比 例(%)通 修 课 70 41.92-42.68学科群基础课 63-66 38.41-39.52专 业 课 ≥15 8.98-9.15任意选修课 8 4.79-4.88毕 业 论 文 8 4.79-4.88合 计 164-1671、通修课:(70学分)参照学校关于通修课的课程要求。
其中物理类理论课程以本专业要求为准,以下课程也作为本专业的通修要求:电子线路基础实验(1学分)、大学物理―现代技术实验(1.5学分)、大学物理-研究性实验(1.5学分);2、学科群基础课:(63-66学分)MA02*(数学类课程):(11学分)复变函数(A)(3学分)、数理方程(A)(3学分)、计算方法(B)(2学分)、概率论与数理统计(3学分);ES72*(电子类课程):(7学分)电子技术基础(1)(2学分)、电子技术基础(2)(2学分)、电子技术基础(3)(3学分);PH02*(物理类课程):(45-48学分)物理讲坛(2学分)、力学(甲型)(4学分)、热学(3学分)、电磁学(4学分)、理论力学(4学分)、光学(4学分)、原子物理(4学分)、电动力学(4学分)、量子力学A(6学分)和量子力学B(4学分)(二选一)、计算物理A(核科学类)(3学分)和计算物理B(非核科学类)(3学分)(二选一)、热力学与统计物理(4学分)、固体物理学A(4学分)和固体物理学B(3学分)(二选一)、物理学专业基础实验(2学分);3、专业课:(选≥15学分)凝聚态物理方向:(选≥15学分)PH03*(物理类课程):结构物性与固化(必)(4学分)、凝聚态物理实验(必)(2学分)、凝聚态物理实验方法(4学分)、低温物理导论(3学分)、固体光学与光谱学(3学分)、磁性物理(3学分)、发光学(3学分)、薄膜物理(3学分)、晶体学(3学分)、现代凝聚态理论(3学分)、纳米材料物理与化学(3学分)、固体表面分析原理(3学分)、信息功能材料(3学分);CH0*(化学类课程):普通化学实验(1学分);CS0*(计算机类课程):数据结构与数据库(3.5学分)、微机原理与接口(3.5学分);等离子体物理方向:(选≥15学分)PH03*(物理类课程):等离子体物理理论(必修)(4学分)、等离子体物理实验(必修)(2学分)、等离子体物理导论(2学分)、气体放电原理(3学分)、实验物理中的信号采集处理(4学分)、等离子体诊断导论(3学分)、等离子体实验装置概论(3学分)、等离子体应用(3学分);PI0*(机械类课程)机械制图(非机类)(3学分);CS0*(计算机类课程):数据结构与数据库(3.5学分)、微机原理与接口(3.5学分);物理电子学方向:(选≥15学分)PH03*(物理类课程):物理电子学信号采集处理实验(必修)(1.5学分)、粒子探测技术(4学分)、电子系统设计(3学分)、核电子学方法(4学分)、实验物理中的信号采集处理(4学分)、快电子学(3学分)、接口与总线(4学分)、核电子学实验(1.5学分)、计算机在核物理中的应用(3学分);CS0*(计算机类课程):微机原理与接口(必修)(3.5学分)、数据结构与数据库(3.5学分);微电子与固体电子学方向:(选≥15学分)PH03*(物理类课程)半导体物理(必修)(3学分)、微电子系列实验(必修)(2学分)、半导体器件原理(3学分)、半导体模拟集成电路(4学分)、半导体数字集成电路(3学分)、集成电路CAD (3学分);CS0*(计算机类课程):微机原理与接口(3.5学分)、数据结构与数据库(3.5学分);跨学科选修课程:暂不作硬性要求。