20191西城期末试卷讲评PPT
- 格式:pptx
- 大小:2.61 MB
- 文档页数:24
2019北京市西城区高一(上)期末数学 2019.1 试卷满分:150分考试时间:120分钟A卷 [三角函数与平面向量] 本卷满分:100分(A)向右平移6个单位(B)向右平移3个单位(C)向左平移π6个单位(D)向左平移π3个单位11.若1cos2θ=−,且θ为第三象限的角,则tanθ=______.12.已知向量(1,2)=a.与向量a共线的一个非零向量的坐标可以是______.13.如果πtan()0(0)3x x +=>,那么x 的最小值是______.14.如图,已知正方形ABCD .若AD AB AC λμ⎯⎯→⎯⎯→⎯⎯→=+,其中λ,μ∈R ,则λμ=______. 15.在直角坐标系xOy 中,已知点(3,3)A ,(5,1)B ,(2,1)P ,M 是坐标平面内的一点.① 若四边形APBM 是平行四边形,则点M 的坐标为______; ② 若2PA PB PM ⎯⎯→⎯⎯→⎯⎯→+=,则点M 的坐标为______.16.设函数π()sin()3f x x ω=+.若()f x 的图象关于直线6x π=对称,则ω的取值集合是_____.三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知(0,)2απ∈,且3sin 5α=.(Ⅰ)求πsin()4α−的值;(Ⅱ)求2πcos tan()24αα++的值.18.(本小题满分12分)函数()sin()f x A x ωϕ=+的部分图象如图所示,其中0,0,||πA ωϕ>><. (Ⅰ)求()f x 的解析式;(Ⅱ)求()f x 在区间[,]2ππ上的最大值和最小值;(Ⅲ)写出()f x 的单调递增区间.在直角坐标系xOy 中,已知点(1,0)A −,B ,(cos ,sin )C θθ,其中[0,]2θπ∈.(Ⅰ)求AC BC ⋅的最大值;(Ⅱ)是否存在[0,]2θπ∈,使得△ABC 为钝角三角形?若存在,求出θ的取值范围;若不存在,说明理由.B 卷 [学期综合]本卷满分:50分1.若集合{|03}A x x =<<,{|12}B x x =−<<,则A B =_____. 2.函数21()log f x x=的定义域为_____. 3.已知三个实数123a =,b =,3log 2c =.将,,a b c 按从小到大排列为_____.4.里氏震级M 的计算公式为:0lg lg M A A =−,其中00.005A =是标准地震的振幅,A 是测震仪记录的地震曲线的最大振幅.在一次地震中,测震仪记录的地震曲线的最大振幅是500,则此次地震的里氏震级为_____级;8级地震的最大振幅是5级地震最大振幅的_____倍.5.已知函数21,2,(),3.x x x c f x x c x −⎧+−⎪=⎨<⎪⎩≤≤≤若0c =,则()f x 的值域是____;若()f x 的值 域是1[,2]4−,则实数c 的取值范围是_____.二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 6.(本小题满分10分)已知函数2()1xf x x =−. (Ⅰ)证明:()f x 是奇函数;(Ⅱ)判断函数()f x 在区间(1,1)−上的单调性,并用函数单调性的定义加以证明.已知函数2()f x ax x =+定义在区间[0,2]上,其中[2,0]a ∈−. (Ⅰ)若1a =−,求()f x 的最小值; (Ⅱ)求()f x 的最大值.8.(本小题满分10分)已知函数()f x 的定义域为D .若对于任意12,x x D ∈,且12x x ≠,都有1212()()2()2x x f x f x f ++<,则称函数()f x 为“凸函数”.(Ⅰ)判断函数1()2f x x =与2()f x =(Ⅱ)若函数()2x f x a b =⋅+(,a b 为常数)是“凸函数”, 求a 的取值范围;(Ⅲ)写出一个定义在1(,)2+∞上的“凸函数”()f x ,满足0()f x x <<.(只需写出结论)数学试题答案一、选择题:本大题共10小题,每小题4分,共40分.1. D2. C3. B4. C5. B6. D7. D8. B9.A 10.A二、填空题:本大题共6小题,每小题4分,共24分.(2,4)(答案不唯一) 13.2π314.1− 15.(6,3);(4,2) 16.{|61,}k kωω=+∈Z 注:第15题每空2分.三、解答题:本大题共3小题,共36分.17.(本小题满分12分)(Ⅰ)解:因为π0,2α∈(),3sin5α=,所以cosα=……………………2分45=.……………………3分所以πsin()cos)42ααα−=−……………………5分=.……………………6分(Ⅱ)解:因为3sin5α=,4cos5α=,所以sintancosααα=……………………8分34=.……………………9分所以2π1cos1tancos tan()2421tanααααα++++=+−……………………11分7910=.……………………12分18. (本小题满分12分)(Ⅰ)解:由图象可知 3A =. ……………………1分因为 ()f x 的最小正周期为 66T 7ππ=−=π, 所以 2Tω2π==. ……………………3分 令 262ϕππ⨯+=, 解得 6ϕπ=,适合||ϕ<π. 所以 π()3sin(2)6f x x =+. ……………………5分(Ⅱ)解:因为[,]2x π∈π,所以π2[,]666x 7π13π+∈. ……………………6分 所以,当π13π266x +=,即πx =时,()f x 取得最大值32; ……………………8分 当π3π262x +=,即2π3x =时,()f x 取得最小值3−. ……………………10分 (Ⅲ)解:()f x 的单调递增区间为[,]36k k πππ−π+(k ∈Z ). ……………………12分19.(本小题满分12分)(Ⅰ)解:(cos 1,sin )AC θθ=+,(cos ,sin BC θθ=−. ……………………2分所以 (cos 1)cos sin (sin AC BC θθθθ⋅=+⋅+⋅ ……………………3分cos 1θθ=−+π2cos()13θ=++. ……………………4分因为 [0,]2θπ∈,所以 π[,]336θπ5π+∈. ……………………5分所以 当ππ33θ+=,即0θ=时,AC BC ⋅取得最大值2. ……………………6分(Ⅱ)解:因为||2AB =,||AC =,||BC =又 [0,]2θπ∈,所以 sin [0,1]θ∈,cos [0,1]θ∈,所以 ||2AC ≤,||2BC ≤.所以 若△ABC 为钝角三角形,则角C 是钝角,从而0CA CB ⋅<.………………8分由(Ⅰ)得π2cos()103θ++<,解得π1cos()32θ+<−. ……………………9分所以 π(,]336θ2π5π+∈, 即(,]32θππ∈. ……………………11分 反之,当(,]32θππ∈时,0CA CB ⋅<,又 ,,A B C 三点不共线,所以 △ABC 为钝角三角形.综上,当且仅当(,]32θππ∈时,△ABC 为钝角三角形. ……………………12分B 卷 [学期综合] 满分50分一、填空题:本大题共5小题,每小题4分,共20分.1.{|13}x x −<<2.{|01x x <<,或1}x >3.c b a <<4.5;10005.1[,)4−+∞;1[,1]2注:第4题、第5题每空2分. 二、解答题:本大题共3小题,共30分. 6.(本小题满分10分)(Ⅰ)解:函数()f x 的定义域为{|1}D x x =≠±. ……………………1分对于任意x D ∈,因为 2()()()1xf x f x x −−==−−−, ……………………3分所以 ()f x 是奇函数. ……………………4分 (Ⅱ)解:函数2()1xf x x =−在区间(1,1)−上是减函数. ……………………5分 证明:在(1,1)−上任取1x ,2x ,且 12x x <, ……………………6分则 1212211222221212(1)()()()11(1)(1)x x x x x x f x f x x x x x +−−=−=−−−−. ……………………8分 由 1211x x −<<<,得 1210x x +>,210x x −>,2110x −<,2210x −<,所以 12()()0f x f x −>,即 12()()f x f x >. 所以 函数2()1xf x x =−在区间(1,1)−上是减函数. ……………………10分 7.(本小题满分10分)(Ⅰ)解:当1a =−时, 2211()()24f x x x x =−+=−−+. ……………………2分所以 ()f x 在区间1(0,)2上单调递增,在1(,2)2上()f x 单调递减.因为 (0)0f =,(2)2f =−,所以 ()f x 的最小值为2−. ……………………4分 (Ⅱ)解:① 当0a =时,()f x x =. 所以 ()f x 在区间[0,2]上单调递增,所以 ()f x 的最大值为(2)2f =. ……………………5分当20a −<≤时,函数2()f x ax x =+图像的对称轴方程是12x a=−. ………6分 ② 当1022a <−≤,即124a −−≤≤时,()f x 的最大值为11()24f a a−=−. ………8分 ③ 当104a −<<时,()f x 在区间[0,2]上单调递增,所以 ()f x 的最大值为(2)42f a =+. ……………………9分综上,当124a −−≤≤时,()f x 的最大值为11()24f a a−=−;当104a −<≤时,()f x 的最大值为42a +. ……………………10分8.(本小题满分10分)(Ⅰ)解:对于函数1()2f x x =,其定义域为R .取120,1x x ==,有12()()(0)(1)2f x f x f f +=+=,1212()2()222x x f f +==,所以 1212()()2()2x x f x f x f ++=, 所以 1()2f x x =不是“凸函数”.…………2分对于函数 2()f x =[0,)+∞. 对于任意12,[0,)x x ∈+∞,且12x x ≠,由222221212[()()][2()]02x x f x f x f ++−=−=−<, 所以 221212[()()][2()]2x x f x f x f ++<. 因为 12()()0f x f x +>,122()02x x f +>,所以 1212()()2()2x x f x f x f ++<, 所以 2()f x =4分 (Ⅱ)解:函数()2x f x a b =⋅+的定义域为R . 对于任意12,x x ∈R ,且12x x ≠, 1212()()2()2x x f x f x f ++− 12122(2)(2)2(2)x x x x a b a b a b +=⋅++⋅+−⋅+ ……………………5分12122(2222)x x x x a +=+−⨯12222(22)x x a =−. (7)分依题意,有12222(22)0x x a −<.因为 12222(22)0x x −>,所以 0a <. ……………………8分(Ⅲ)1()()2f x x >.(注:答案不唯一)……………………10分word 下载地址。
北京市西城区2019—2020学年度第二学期期末试卷高一数学 2020.7本试卷共5页,共150分。
考试时长120分钟。
考生务必将答案写在答题卡上,在试卷上作答无效。
第一部分(选择题 共50分)一、选择题共10小题,每小题5分,共50分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)下列各角中,与27︒角终边相同的是 (A )63︒ (B )153︒ (C )207︒(D )387︒(2)圆柱的母线长为5cm ,底面半径为2cm ,则圆柱的侧面积为 (A )220cm π (B )210cm π (C )228cm π (D )214cm π(3)sin()2απ+= (A )sin α (B )cos α (C )sin α-(D )cos α-(4)设(,)α∈-ππ,且1cos 2α=-,则α=(A )2π3-或2π3 (B )π3-或π3(C )π3-或2π3(D )2π3-或π3(5)设a ,b 均为单位向量,且14⋅=a b ,则2+=|a b |(A )3 (B (C )6(D )9(6)下列四个函数中,以π为最小正周期,且在区间(0,)2π上为增函数的是(A )sin 2y x = (B )cos2y x = (C )tan y x =(D )sin 2xy =(7)向量a ,b 在正方形网格中的位置如图所示,则,〈〉=a b(A )45︒ (B )60︒ (C )120︒ (D )135︒(8)设(0,)αβ,∈π,且αβ>,则下列不等关系中一定成立的是 (A )sin sin αβ< (B )sin sin αβ> (C )cos cos αβ<(D )cos cos αβ>(9) 将函数()sin 2f x x =的图像向右平移π(0)2ϕϕ<≤个单位,得到函数()g x 的图像.在同一坐标系中,这两个函数的部分图像如图所示,则ϕ=(A )π6 (B )π4(C )π3(D )π2(10)棱锥被平行于底面的平面所截,得到一个小棱锥和一个棱台.小棱锥的体积记为y , 棱台的体积记为x ,则y 与x 的函数图像为(A ) (B ) (C ) (D )第二部分(非选择题 共100分)二、填空题共6小题,每小题4分,共24分。
北京市西城区2019—2020学年度第一学期期末试卷 高一数学 第1页(共11页)北京市西城区2019—2020学年度第一学期期末试卷高一数学 2020.1本试卷共5页,共150分。
考试时长120分钟。
考生务必将答案写在答题卡上,在试卷上作答无效。
第一部分(选择题 共50分)一、选择题共10小题,每小题5分,共50分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{|2,}A x x k k ==∈Z ,{|33}B x x =-<<,那么A B =I ( ) (A ){1,1}- (B ){2,0}- (C ){2,0,2}-(D ){2,1,0,1}--(2)方程组220,2x y x y +=⎧⎨+=⎩的解集是( )(A ){(1,1),(1,1)}-- (B ){(1,1),(1,1)}-- (C ){(2,2),(2,2)}-- (D ){(2,2),(2,2)}-- (3)函数11y x =+-的定义域是( ) (A )[0,1) (B )(1,)+∞ (C )(0,1)(1,)+∞U(D )[0,1)(1,)+∞U(4)下列四个函数中,在(0,)+∞上单调递减的是( ) (A )1y x =+(B )21y x =-(C )2x y =(D )12log y x =(5)设2log 0.4a =,20.4b =,0.42c =,则,,a b c 的大小关系为( ) (A )a b c << (B )a c b <<(C )b a c <<(D )b c a <<(6)若0a b >>,0c d <<,则一定有( ) (A )ac bd < (B )ac bd >(C )ad bc <(D )ad bc >北京市西城区2019—2020学年度第一学期期末试卷 高一数学 第2页(共11页)(7)设,a b ∈∈R R .则“a b >”是“||||a b >”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(8)某种药物的含量在病人血液中以每小时20%的比例递减.现医生为某病人注射了 2000mg 该药物,那么x 小时后病人血液中这种药物的含量为( ) (A )2000(10.2)mg x - (B )2000(10.2)mg x - (C )2000(10.2)mg x - (D )20000.2mg x ⋅(9)如图,向量a b -等于( )(A )123e e - (B )123e e - (C )123e e -+ (D )123e e -+(10)某部影片的盈利额(即影片的票房收入与固定成本之差)记为y ,观影人数记为 x ,其函数图像如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后y 与x 的函数图像.给出下列四种说法:① 图(2)对应的方案是:提高票价,并提高成本; ② 图(2)对应的方案是:保持票价不变,并降低成本; ③ 图(3)对应的方案是:提高票价,并保持成本不变; ④ 图(3)对应的方案是:提高票价,并降低成本. 其中,正确的说法是( ) (A )①③ (B )①④(C )②③(D )②④北京市西城区2019—2020学年度第一学期期末试卷 高一数学 第3页(共11页)第二部分(非选择题 共100分)二、填空题共6小题,每小题4分,共24分。
北京市西城区2019-2020学年度第一学期期末检测试卷九年级数学一、选择题(本题共16分,每小题2分)1. 如图,在Rt △ABC 中,∠ACB =90°,如果AC =3,AB =5,那么sin B 等于( ).A .35 B . 45 C . 34 D . 432.点1(1,)A y ,2(3,)B y 是反比例函数6y x =-图象上的两点,那么1y ,2y 的大小关系是().A .12y y >B .12y y =C .12y y <D .不能确定3.抛物线2(4)5y x =--的顶点坐标和开口方向分别是( ).A .(4,5)-,开口向上B .(4,5)-,开口向下C .(4,5)--,开口向上D .(4,5)--,开口向下4.圆心角为60︒,且半径为12的扇形的面积等于( ).A .48πB .24πC .4πD .2π5.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,如果∠ACD =34°,那么∠BAD等于( ).A .34°B .46°C .56°D .66°6.如果函数24y x x m =+-的图象与x 轴有公共点,那么m 的取值范围是( ).A .m ≤4B .<4mC . m ≥4-D .>4m -7.如图,点P 在△ABC 的边AC 上,如果添加一个条件后可以得到△ABP ∽△ACB ,那么以下添加的条件中,不.正确的是( ).A .∠ABP =∠CB .∠APB =∠ABCC .2AB AP AC =⋅D .AB ACBP CB =8.如图,抛物线32++=bx ax y (a ≠0)的对称轴为直线1x =,如果关于x 的方程082=-+bx ax (a ≠0)的一个根为4,那么该方程的另一个根为( ).A .4-B .2-C .1D . 3二、填空题(本题共16分,每小题2分)9. 抛物线23y x =+与y 轴的交点坐标为 .10. 如图,在△ABC 中,D ,E 两点分别在AB ,AC 边上,DE ∥BC ,如果23=DB AD ,AC =10,那么EC = .11. 如图,在平面直角坐标系xOy 中,第一象限内的点(,)P x y与点(2,2)A 在同一个反比例函数的图象上,PC ⊥y 轴于点C ,PD ⊥x 轴于点D ,那么矩形ODPC 的面积等于 .12.如图,直线1y kx n =+(k ≠0)与抛物22y ax bx c =++(a ≠0)分别交于(1,0)A -,(2,3)B -两点,那么当12y y >时,x 的取值范围是 .13. 如图,⊙O 的半径等于4,如果弦AB 所对的圆心角等于120︒,那么圆心O 到弦AB 的距离等于 .14.2017年9月热播的专题片《辉煌中国——圆梦工程》展示的中国桥、中国路等超级工程展现了中国现代化进程中的伟大成就,大家纷纷点赞“厉害了,我的国!”片中提到我国已成为拥有斜拉桥最多的国家,世界前十座斜拉桥中,中国占七座,其中苏通长江大桥(如图1所示)主桥的主跨长度在世界斜拉桥中排在前列.在图2的主桥示意图中,两座索塔及索塔两侧的斜拉索对称分布,大桥主跨BD 的中点为E ,最长的斜拉索CE 长577 m ,记CE 与大桥主梁所夹的锐角CED ∠为α,那么用CE 的长和α的三角函数表示主跨BD 长的表达式应为BD = (m) .15.如图,抛物线2 (0)y ax bx c a =++≠与y 轴交于点C ,与x 轴交于A ,B 两点,其中点B 的坐标为(4,0)B ,抛物线的对称轴交x 轴于点D ,CE ∥AB ,并与抛物线的对称轴交于点E .现有下列结论:①0a >;②0b >;③420a b c ++<;④4AD CE +=.其中所有正确结论的序号是 .16. 如图,⊙O 的半径为3,A ,P 两点在⊙O 上,点B 在⊙O 内,4tan 3APB ∠=,AB AP ⊥.如果OB ⊥OP ,那么OB 的长为 .三、解答题(本题共68分,第17-20题每小题5分,第21、22题每小题6分,第23、24题每小题5分,第25、26题每小题6分,第27、28题每小题7分)17.计算:22sin30cos 45tan60︒+︒-︒.18.如图,AB ∥CD ,AC 与BD 的交点为E ,∠ABE=∠ACB .(1)求证:△ABE ∽△ACB ;(2)如果AB=6,AE=4,求AC ,CD 的长.19.在平面直角坐标系xOy 中,抛物线1C :22y x x =-+.(1)补全表格:抛物线 顶点坐标 与x 轴交点坐标 与y 轴交点坐标 22y x x =-+ (1,1) (0,0)(2)将抛物线1C 向上平移3个单位得到抛物线2C ,请画出抛物线1C ,2C ,并直接回答:抛物线2C 与x 轴的两交点之间的距离是抛物线1C 与x 轴的两交点之间距离的多少倍.20.在△ABC 中,AB=AC=2,45BAC ∠=︒.将△ABC 绕点A 逆时针旋转α度(0<α<180)得到△ADE ,B ,C 两点的对应点分别为点D ,E ,BD ,CE 所在直线交于点F .(1)当△ABC 旋转到图1位置时,∠CAD = (用α的代数式表示),BFC ∠的 度数为 ︒;(2)当α=45时,在图2中画出△ADE ,并求此时点A 到直线BE的距离.21.运动员将小球沿与地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高图1 图2度h (m )与它的飞行时间t (s )满足二次函数关系,t 与h 的几组对应值如下表所示.t (s )0 0.5 1 1.5 2 … h (m )0 8.75 15 18.75 20 … (1)求h 与t 之间的函数关系式(不要求写t 的取值范围);(2)求小球飞行3 s 时的高度;(3)问:小球的飞行高度能否达到22 m ?请说明理由.22.如图,在平面直角坐标系xOy 中,双曲线k y x=(k ≠0)与直线12y x =的交点为(,1)A a -,(2,)B b 两点,双曲线上一点P 的横坐标为1,直线P A ,PB 与x 轴的交点分别为点M ,N ,连接AN .(1)直接写出a ,k 的值;(2)求证:PM=PN ,PM PN ⊥.23.如图,线段BC 长为13,以C 为顶点,CB 为一边的α∠满足5cos 13α=.锐角△ABC 的顶点A 落在α∠的另一边l 上,且 满足4sin 5A =.求△ABC 的高BD 及AB 边的长,并结合你的 计算过程画出高BD 及AB 边.(图中提供的单位长度供补全图形使用)24.如图,AB 是半圆的直径,过圆心O 作AB 的垂线,与弦AC 的延长线交于点D ,点E 在OD 上,=DCE B ∠∠.(1)求证:CE 是半圆的切线;(2)若CD=10,2tan 3B =,求半圆的半径. 25.已知抛物线G :221y x ax a =-+-(a 为常数).(1)当3a =时,用配方法求抛物线G 的顶点坐标;(2)若记抛物线G 的顶点坐标为(,)P p q .①分别用含a 的代数式表示p ,q ;②请在①的基础上继续用含p 的代数式表示q ;③由①②可得,顶点P 的位置会随着a 的取值变化而变化,但点P 总落在 的图象上.A .一次函数B .反比例函数C .二次函数(3)小明想进一步对(2)中的问题进行如下改编:将(2)中的抛物线G 改为抛物线H :22y x ax N =-+(a 为常数),其中N 为含a 的代数式,从而使这个新抛物线H 满足:无论a 取何值,它的顶点总落在某个一次函数的图象上.请按照小明的改编思路,写出一个符合以上要求的新抛物线H 的函数表达式:(用含a 的代数式表示),它的顶点所在的一次函数图象的表达式y kx b=+(k ,b 为常数,k ≠0)中,k= ,b= .26.在平面直角坐标系xOy 中,抛物线M :2(0)y ax bx c a =++≠经过(1,0)A -,且顶点坐标为(0,1)B .(1)求抛物线M 的函数表达式;(2)设(,0)F t 为x 轴正半轴...上一点,将抛物线M 绕点F 旋转180°得到抛物线1M . ①抛物线1M 的顶点1B 的坐标为 ;②当抛物线1M 与线段AB 有公共点时,结合函数的图象,求t 的取值范围.27.如图1,在Rt △AOB 中,∠AOB =90°,∠OAB =30°,点C 在线段OB 上,OC =2BC ,AO 边上的一点D 满足∠OCD =30°.将△OCD 绕点O 逆时针旋转α度(90°<α<180°)得到△OC D '',C ,D 两点的对应点分别为点C ',D ',连接AC ',BD ',取AC '的中点M ,连接OM .(1)如图2,当C D ''∥AB 时,α= °,此时OM 和BD '之间的位置关系为 ;(2)画图探究线段OM 和BD '之间的位置关系和数量关系,并加以证明.28.在平面直角坐标系xOy 中,A ,B 两点的坐标分别为(2,2)A ,(2,2)B -.对于给定的线段AB 及点P ,Q ,给出如下定义:若点Q 关于AB 所在直线的对称点Q '落在△ABP 的内部(不含边界),则称点Q 是点P 关于线段AB 的内称点.(1)已知点(4,1)P -.①在1(1,1)Q -,2(1,1)Q 两点中,是点P 关于线段AB 的内称点的是____________;②若点M 在直线1y x =-上,且点M 是点P 关于线段AB 的内称点,求点M 的横坐标M x 的取值范围;(2)已知点(3,3)C ,⊙C 的半径为r ,点(4,0)D ,若点E 是点D 关于线段AB 的内称点,且满足直线DE 与⊙C 相切,求半径r 的取值范围.。
2019 年北京市西城区初三期末数学试卷 2019.1一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.抛物线的顶点坐标是 ( ).23(1)5y x =-+ A .(3,5)B .(1,5)C .(3,1) D .(,5)1-2.如果4x =3y ,那么下列结论正确的是 ( ).A .B .C .D .,34x y =43x y=43x y =4x =3y =3.如图,圆的两条弦AB ,CD 相交于点E ,且,∠A =40°,则∠CEB 的度数为( ).»»AD CB =A .50°B .80°C .70°D .90°3题 5题 6题4.下列关于二次函数的说法正确的是 ( ).22y x =A .它的图象经过点(,)1-2-B .它的图象的对称轴是直线2x =C .当x <0时,y 随x 的增大而减小D .当x =0时,y 有最大值为05.如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D .若BC =24, ,则AD 的长为 12cos 13=B ( ).A .12B .10C .6D .5 6.如图,△ABC 的内切圆⊙O 与AB ,BC ,CA 分别相切于点D ,E ,F ,且AD =2,BC =5,则△ABC 的周长为 ( ).A .16B .14C .12D .107.下表是小红填写的实践活动报告的部分内容:设铁塔顶端到地面的高度FE 为xm ,根据以上条件,可以列出的方程为 ( ).A .tan 50°B .cos 50° (10)x x =-(10)x x =-C .tan 50°D .sin 50°10x x -=(10)x x =+8.抛物线经过点(,0),且对称轴为直线1x =,其2y ax bx c =++2-部分图象如图所示.对于此抛物线有如下四个结论:①0ac >;②1640a b c ++=;③若0m n >>,则1x m =+时的函数值大于1x n =-时的函数值;④点(,0)2c a-一定在此抛物线上.其中正确结论的序号是 ( ).A .①②B .②③C .②④D .③④二、填空题(本题共16分,每小题2分)9.如图所示的网格是正方形网格,点A ,O ,B 都在格点上,tan ∠AOB 的值为 .9题 11题 13题10.请写出一个开口向下,且与y 轴的交点坐标为(0,2)的抛物线的表达式: .11.如图,在△ABC 中,点D ,E 分别在AB ,AC 上,且DE ∥BC .若AD =2,AB =3,DE =4,则BC 的长为 .12.草坪上的自动喷水装置的旋转角为200°,且它的喷灌区域是一个扇形.若它能喷灌的扇形草坪面积为5π平方米,则这个扇形的半径是 米.13.如图,抛物线与直线相交于 点A (,),B (1,) ,则2y ax bx =+y mx n =+3-6-2-关于x 的方程的解为 .2ax bx mx n +=+14.如图,舞台地面上有一段以点O 为圆心的 ,某同学要站在的中点C 的位置»AB »AB 上.于是他想:只要从点O 出发,沿着与弦AB 垂直的方向走到上,就能找到»AB 的中点C . 老师肯定了他的想法.»AB (1)请按照这位同学的想法,在图中画出点C ;(2)这位同学确定点C 所用方法的依据是___________.14题 15题 16题15.如图,矩形纸片ABCD 中,AB >AD ,E ,F 分别是AB ,DC 的中点,将矩形ABCD 沿EF 所在直线对折,若得到的两个小矩形都和矩形ABCD 相似,则用等式表示AB 与AD 的数量关系为 .16.如图,⊙O 的半径是5,点A 在⊙O 上.P 是⊙O 所在平面内一点,且AP =2,过点P 作直线l ,使l ⊥PA .(1)点O 到直线l 距离的最大值为 ;(2)若M ,N 是直线l 与⊙O 的公共点,则当线段MN 的长度最大时,OP 的长为 .三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:.24sin 3045tan 60-+o o o 18.如图,在四边形ABCD 中,AD ∥BC ,∠B =∠ACB .点E ,F 分别在AB ,BC 上,且∠EFB =∠D .(1)求证:△EFB ∽△CDA ;(2)若AB =20,AD =5,BF =4,求EB 的长.19.已知一个二次函数图象上部分点的横坐标x 与纵坐标y 的对应值如下表所示:(1)求这个二次函数的表达式;(2)在给定的平面直角坐标系中画出这个二次函数的图象;(3)当时,直接写出y 的取值范围.42x -<<-20.如图,四边形ABCD 内接于⊙O ,OC =4,AC =(1)求点O 到AC 的距离;(2)求∠ADC 的度数.21.一名同学推铅球,铅球出手后行进过程中离地面的高度y (单位:m )与水平距离x (单位:m )近似满足函数关系,其图象如图所示.已知铅球落地时的水212123y x x c =-++平距离为10m .(1)求铅球出手时离地面的高度;x ...3-2-1-01...y (03)-4-3-0…(2)在铅球行进过程中,当它离地面的高度为m 时,求此时铅球的水平距离.111222.如图,矩形ABCD 的对角线AC ,BD 交于点O ,以OC ,OD 为邻边作平行四边形OCED ,连接OE .(1)求证:四边形OBCE 是平行四边形;(2)连接BE 交AC 于点F .若AB =2,∠AOB =60°,求BF 的长.23.如图,直线l :与x 轴交于点A (,0),抛物线1C :243y x x =++与2y x m =-+2-x 轴的一个交点为B (点B 在点A 的左侧).过点B 作BD 垂直x 轴交直线l 于点D .(1)求m 的值和点B 的坐标;(2)将△ABD 绕点A 顺时针旋转90°,点B ,D 的对应点分别为点E ,F .①点F 的坐标为____________;②将抛物线1C 沿x 轴向右平移使它经过点F ,此时得到的抛物线记为2C ,直接写出抛物线2C 的表达式.24.如图,AB 是⊙O 的直径,△ABC 内接于⊙O .点D 在⊙O 上,BD 平分∠ABC 交AC 于点E ,DF ⊥BC 交BC 的延长线于点F .(1)求证:FD 是⊙O 的切线;(2)若BD =8,sin ∠DBF =,求DE 的长.3525.小明利用函数与不等式的关系,对形如(n 为正整数)的不12()()()0--->n x x x x x x L 等式的解法进行了探究.(1)下面是小明的探究过程,请补充完整: ①对于不等式,观察函数的图象可以得到如下表格:30x ->3y x =-x 的范围3x >3x <由表格可知不等式的解集为.30x ->3x > ②对于不等式,观察函数的图象可以得到如下表格:(3)(1)0x x -->(3)(1)y x x =--由表格可知不等式的解集为___________________.(3)(1)0x x --> ③对于不等式,请根据已描出的点画出函数的(3)(1)(1)0x x x --+>图象;(3)(1)(1)y x x x =--+观察函数的图象补全下面的表格:(3)(1)(1)y x x x =--+y 的符号+-x 的范围3x >13x <<1x <y 的符号+-+x 的范围3x >13x <<11x -<<1x <-y 的符号+-由表格可知不等式的解集为___________________.(3)(1)(1)0x x x --+>…小明将上述探究过程总结如下:对于解形如(n 为12()()()0--->n x x x x x x L 正整数)的不等式,先将,,…,按从大到小的顺序排列,再划分x 的范1x 2x n x 围,然后通过列表格的办法,可以发现表格中y 的符号呈现一定的规律,利用这个规律可以求这样的不等式的解集.(2)请你参考小明的方法,解决下列问题:①不等式的解集为_________________;(6)(4)(2)(2)0x x x x ---+>②不等式的解集为__________________.2(9)(8)(7)0x x x --->26.在平面直角坐标系xOy 中,已知抛物线243y ax ax a =-+.(1)求抛物线的对称轴;(2)当a >0时,设抛物线与x 轴交于A ,B 两点(点A 在点B 的左侧),顶点为C ,若△ABC 为等边三角形,求a 的值;(3)过点T (0,t )(其中1-≤t ≤2)且垂直y 轴的直线l 与抛物线交于M ,N 两点,若对于满足条件的任意t 值,线段MN 的长都不小于1,结合函数图象,直接写出a 的取值范围.27.如图,在△ABC中,AB=AC.△ADE∽△ABC,连接BD,CE.(1)判断BD与CE的数量关系,并证明你的结论;(2)若AB=2,AD=,∠BAC=105°,∠CAD=30°.①BD的长为____________;②点P,Q分别为BC,DE的中点,连接PQ,写出求PQ长的思路.28.在平面直角坐标系xOy 中,对于点P 和图形W ,如果以P 为端点的任意一条射线与图形W 最多只有一个公共点,那么称点P 独立于图形W .(1)如图1,已知点A (2-,0),以原点O 为圆心,OA 长为半径画弧交x 轴正半轴于点B .在1(0,4)P ,2(0,1)P ,3(0,3)P -,4(4,0)P 这四个点中,独立于的点是»AB ________;(2)如图2,已知点C (3-,0),D (0,3),E (3,0),点P 是直线l :28y x =+上的一个动点.若点P 独立于折线CD -DE ,求点P 的横坐标的取值范围; P x (3)如图3,⊙H 是以点H (0,4)为圆心,半径为1的圆.点T (0,t )在y 轴上且,以点T 为中心的正方形KLMN 的顶点K 的坐标为(0,),将正方形3t >-3t +KLMN 在x 轴及x 轴上方的部分记为图形W .若⊙H 上的所有点都独立于图形W ,直接写出t 的取值范围.一、选择题(本题共16分,每小题2分)三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)17.解:原式= …………………………………………………3分2142⨯-+=213-+=4. …………………………………………………………………………5分18.(1)证明:∵AD ∥BC ,∴∠DAC =∠ACB . …………………1分 ∵∠B =∠ACB ,∴∠B =∠DAC . ………………………2分 ∵∠EFB =∠D ,∴△EFB ∽△CDA . …………………3分(2)解:∵△EFB ∽△CDA , ∴. …………………………………………………………………4分EB BFCA AD=∵∠B =∠ACB , ∴AB =AC .∵AB =20,AD =5,BF =4, ∴.4205EB =∴EB =16. ……………………………………………………………………5分19.解:(1)设二次函数的表达式为, …………………………………1分2(1)4y a x =+-将点(1,0)代入,得,20(11)4a =+-解得.1a = 所以二次函数的表达式为.2(1)4y x =+-………………………………………………………2分 (2)图象如图所示; …………………………………3分(3). ………………………………………5分35y -<<20.解:(1)过点O 作OE ⊥AC 于点E ,如图1, …………1分则∵AC =∴CE = ……………………………………2分 在Rt △OCE 中,OC =4,∴OE =.==∴点O 到AC 的距离为.………………………3分 (2)连接OA ,如图2.∵由(1)知,在Rt △OCE 中,CE =OE , ∴∠OCE =∠EOC =45°.∵OA =OC ,∴∠OAC =∠OCA =45°. ∴∠AOC =90°.∴∠B =45°. ……………………………………4分∴∠ADC =180°-∠B =180°-45°=135°. ………………5分21.解:(1)∵铅球落地时的水平距离为10米,∴当x =10时,y =0. ∴. ………………………………………………1分21201010123c =-⨯+⨯+解得 . …………………………………………………………………2分53c =∴.21251233y x x =-++∵当x =0时,y =,53∴铅球出手时离地面的高度为m . ………………………………………3分53(2)∵,212511123312x x -++= 即,2890x x --=解得或. …………………………………………………………4分9x =1x =-∵不符合题意,舍去,1x =- ∴此时铅球的水平距离为9m . ………………………………………………5分22.(1)证明:∵四边形OCED 是平行四边形,∴CE ∥OD ,即CE ∥BO , …………………………………………………1分CE =OD .∵矩形ABCD 的对角线AC ,BD 交于点O ,∴BO =OD . ………………………………………………………………2分∴CE =BO .∴四边形OBCE 是平行四边形. …………………………………………3分(2)解:过点B 作BH ⊥AC 于点H ,如图.∵矩形ABCD 的对角线AC ,BD 交于点O ,∴OA =OB =OC .∵∠AOB =60°,AB =2,∴AB =OA =OB =OC =2.∴OH =OA =1,BH =2sin 分12∵四边形OBCE 是平行四边形,∴OF =OC =1.12在Rt △BHF 中,HF =HO +OF =1+1=2,∴BF …………………………………5分==23.解:(1)∵直线l :与x 轴交于点A (,0),2y x m =-+2-∴,解得. ………………………………………1分02(2)m =-⨯-+4m =- 令y =0,即,2430x x ++= 解得 或. ……………………………………………………2分3x =-1x =- ∵点B 在点A 的左侧,∴点B 的坐标为(,0). …………………………………………………3分3-(2)①(0,1); (4)分②或. …………………………………6分2(1y x =-2(1y x =-24.(1)证明:连接OD ,如图1.∵OB =OD ,∴∠1=∠2.…………………………………1分∵BD 平分∠ABC ,∴∠1=∠3.∴∠2=∠3. …………………………………2分∵DF ⊥BF ,∴∠F =90°.∴∠3+∠BDF =90°.∴∠2+∠BDF =90°,即∠ODF =90°.∴OD ⊥DF .∴FD 是⊙O 的切线. ………………………………………………………3分(2)解:连接AD ,如图2.∵AB 是⊙O 的直径,∴∠ADB =90°. …………………………4分∵∠1=∠3,sin ∠3=sin ∠DBF =,35∴sin ∠1=.35∴在Rt △ABD 中,.35=设AD =3x ,则AB =5x ,BD .4x ==∴.34=∵BD =8,∴AD ==6. ………………………………………………………………5分384⨯∵∠3=∠4,∴∠4=∠1.∵在Rt △AED 中,∴DE ==. ………………………………6分tan 4tan 1AD AD ⋅∠=⋅∠39642⨯=25.解:(1)②或; ……………………………………………………………1分3x >1x <③图象如图所示;………………………………………………2分补全表格如下:………………………………………………………………………………3分 解集为:或;……………………………………………4分3x >11x -<< (2)①或或; ……………………………………………5分6x >24x <<2x <-②或或. ………………………………………………6分9x >78x <<7x <26.解:(1)∵,422ax a-=-=∴抛物线的对称轴为直线x =2. ……………………………………………1分(2)令y =0,即,2430ax ax a -+= 解得 或. …………………………………………………………2分1x =3x =∴点A ,B 的坐标分别为(1,0),(3,0). ∴AB =2.当a >0时,过点C 作CD ⊥x 轴于点D ,如图. ∵△ABC 为等边三角形,∴AC =2,∠CAD =60°.∴CD =2sin60°=.…………………………3分∴顶点C的坐标为(2,.∴.22423a a a ⨯-⨯+=x 的范围3x >13x <<11x -<<1x <-y 的符号+-∴………………………………………………………………………4分a =(3)或. ……………………………………………………………6分83a ≤-43a ≥27.解:(1)BD =CE ; …………………………1分证明:如图1,∵△ADE ∽△ABC ,.AEAC = ∵AB =AC ,∴AD =AE . ………………………2分 ∵∠1+∠3=∠2+∠3,∴∠CAE =∠BAD .在△BAD 和△CAE 中,AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△BAD ≌△CAE .∴BD =CE . ………………………3分(2)① …………………………………5分 ②求PQ 长的思路如下:a .连接AP ,AQ ,如图2;b .由AB =AC ,AD =AE ,点P ,Q 分别为BC ,DE 的中点,可得AP ⊥BC ,AQ ⊥DE ,BAC DAE ;c .由△ADE ∽△ABC ,可知,即;AP AB AQ AD =AP AQ AB AD =再由(1)知∠BAC =∠DAE ,则∠1=∠2,可得∠PAQ =∠BAD ,从而得到△APQ ∽△ABD ;d Rt △AQD 中,,则由BD 的长和∠2的度数,=cos 2AQ AD∠=可求PQ 的长. ………………………………………………7分28.解:(1),; ………………………………………………………………………2分2P 3P(2)如图,∵C (3-,0),D (0,3),∴设直线CD 的表达式为, 3y kx =+将点C 代入,得,解得.033k =-+1k =∴直线CD 的表达式为.3y x =+ 设直线CD 与直线l 相交于点F ,则 解得 3,28,y x y x =+⎧⎨=+⎩5,2.x y =-⎧⎨=-⎩∴点F 的坐标为(,).…………3分5-2-∵点E 的坐标为(3,0),同理可求直线DE 的表达式为,3y x =-+ 直线DE 与直线l 的交点G 的坐标为(,).………………………4分53-143∵点P 独立于折线CD -DE , ∴点P 的横坐标的取值范围是或.……………………5分P x 5P x <-53P x >-(3)或.…………………………………………7分31t -<<17t <<31t -<<-17t +<<-。
北京市西城区2019—2020学年度第一学期期末试卷九年级物理 2020.1考生须知1. 本试卷共8页,共五道大题,34道小题。
满分100分。
考试时间90分钟。
2. 在试卷和答题卡上准确填写学校、班级、姓名和学号。
3. 试题答案一律填写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题、作图题须用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束时,将本试卷、答题卡一并交回。
一、单项选择题(下列各小题均有四个选项,其中只有一个选项符合题意。
共30分,每小题2分)1.在国际单位制中,电功的单位是A .伏特(V )B .欧姆(Ω)C .焦耳(J )D .瓦特(W )2.下列四种用电器中,主要利用电流热效应工作的是A .电风扇B .计算器C .节能灯D .电饭锅3.关于如图1所示的验电器,下列说法正确的是 A .验电器的金属箔是绝缘体B .验电器可以用来检验物体是否带电C .验电器的原理是异种电荷相互排斥D .用橡胶棒接触金属球,金属箔一定带正电4.关于电流、电压和电阻,下列说法正确的是 A .电荷的定向移动形成电流B .自由电子定向移动的方向为电流方向C .电路两端有电压,电路中一定有电流通过D .由IUR =可知,导体的电阻由电压和电流决定5.下列四个生活实例中,通过热传递的方式使(加“•”)物体内能减少的是 A .春天,人.在院子里晒太阳 B .夏天,给杯中的饮料..加冰块 C .秋天,给妈妈用热水泡脚. D .冬天,操场上的同学搓搓手.6.下列说法正确的是A .家庭电路中火线与零线之间电压为36VB .家庭电路中的洗衣机和电视机是串联的C .家庭电路中必须安装保险丝或空气开关D .家庭电路中总电流过大说明电路发生短路7.有甲、乙两根完全相同的铜导线,把甲导线剪去一半,再把甲剩下的一半拉成原长,此时它的电阻为R 甲,若乙导线的电阻为R 乙,则下列判断正确的是A .R 甲>R 乙B .R 甲=R 乙C .R 甲<R 乙D .无法确定金属箔 绝缘垫 橡胶棒金属球 金属杆图3C M S 3 S 2 S 1B M S 3S 1 S 2 A M S 1 S 2 S 3 D M S 1 S 2 S 3 图4L 1L 2 ABS8.在下列四个实例中,与“水的比热容较大”这一特性无关..的是 A .用循环水冷却汽车的发动机 B .夏天在马路上洒水可以降温 C .沿海地区比沙漠昼夜温差小 D .暖气管道中用热水散热供暖9.在图2所示的电路中,若在闭合开关S 后,两只灯泡都能发光,应在图2甲、乙两处连入的元件是A .甲是电压表,乙是电池B .甲是电池,乙是电流表C .甲是电流表,乙是电池D .甲是电压表,乙是电流表10.智能指纹锁是利用计算机信息技术、电子技术、机械技术等多项技术于一体的高科技产品。
北京市西城区高一(上)期末数学试卷A卷[必修模块4]本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)如果θ是第三象限的角,那么()A.sinθ>0 B.cosθ>0 C.tanθ>0 D.以上都不对2.(4分)若向量=(1,﹣2),=(,4)满足⊥,则实数等于()A.8 B.﹣8 C.2 D.﹣23.(4分)若角α的终边经过点(﹣4,3),则tanα=()A.B.C.D.4.(4分)函数是()A.奇函数,且在区间上单调递增B.奇函数,且在区间上单调递减C.偶函数,且在区间上单调递增D.偶函数,且在区间上单调递减5.(4分)函数f()=sin﹣cos的图象()A.关于直线对称B.关于直线对称C.关于直线对称D.关于直线对称6.(4分)如图,在△ABC中,点D在线段BC上,且BD=2DC,若,则=()A.B.C.2 D.7.(4分)定义在R上,且最小正周期为π的函数是()A.y=sin||B.y=cos||C.y=|sin|D.y=|cos2|8.(4分)设向量,的模分别为2和3,且夹角为60°,则|+|等于()A. B.13 C. D.199.(4分)函数(其中ω>0,0<φ<π)的图象的一部分如图所示,则()A.B.C.D.10.(4分)如图,半径为1的圆M,切直线AB于点O,射线OC从OA出发,绕O点顺时针方向旋转到OB,旋转过程中OC交⊙M于P,记∠PMO为,弓形PNO的面积S=f(),那么f ()的图象是()A.B.C.D.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.(4分)若向量=(﹣1,2)与向量=(,4)平行,则实数=.12.(4分)若θ为第四象限的角,且,则cosθ=;sin2θ=.13.(4分)将函数y=cos2的图象向左平移个单位,所得图象对应的函数表达式为.14.(4分)若,均为单位向量,且与的夹角为120°,则﹣与的夹角等于.15.(4分)已知,则cos(﹣y)=.16.(4分)已知函数f()=sin(ω+φ)(ω>0,φ∈(0,π))满足,给出以下四个结论:①ω=3;②ω≠6,∈N*;③φ可能等于;④符合条件的ω有无数个,且均为整数.其中所有正确的结论序号是.三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤. 17.(12分)已知φ∈(0,π),且.(Ⅰ)求tan2φ的值;(Ⅱ)求的值.18.(12分)已知函数.(1)求函数f()的单调增区间;(2)若直线y=a与函数f()的图象无公共点,求实数a的取值范围.19.(12分)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P 为线段AD(含端点)上一个动点,设,,则得到函数y=f().(Ⅰ)求f(1)的值;(Ⅱ)对于任意a∈(0,+∞),求函数f()的最大值.B卷[学期综合]本卷满分:50分.一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上.20.(4分)设全集U=R,集合A={|<0},B={|||>1},则A∩(∁U B)=.21.(4分)已知函数若f(a)=2,则实数a=.22.(4分)定义在R上的函数f ()是奇函数,且f()在(0,+∞)是增函数,f(3)=0,则不等式f()>0的解集为.23.(4分)函数的值域为.(其中表示不大于的最大整数,例如[3.15]=3,[0.7]=0.)24.(4分)在如图所示的三角形空地中,欲建一个面积不小于200m2的内接矩形花园(阴影部分),则其边长(单位:m)的取值范围是.二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 25.(10分)已知函数.(Ⅰ)若,求a的值;(Ⅱ)判断函数f()的奇偶性,并证明你的结论.26.(10分)已知函数f()=3,g()=|+a|﹣3,其中a∈R.(Ⅰ)若函数h()=f[g()]的图象关于直线=2对称,求a的值;(Ⅱ)给出函数y=g[f()]的零点个数,并说明理由.27.(10分)设函数f()的定义域为R,如果存在函数g(),使得f()≥g()对于一切实数都成立,那么称g()为函数f()的一个承托函数.已知函数f()=a2+b+c的图象经过点(﹣1,0).(1)若a=1,b=2.写出函数f()的一个承托函数(结论不要求证明);(2)判断是否存在常数a,b,c,使得y=为函数f()的一个承托函数,且f()为函数的一个承托函数?若存在,求出a,b,c的值;若不存在,说明理由.北京市西城区高一(上)期末数学试卷参考答案与试题解析A卷[必修模块4]本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)如果θ是第三象限的角,那么()A.sinθ>0 B.cosθ>0 C.ta nθ>0 D.以上都不对【解答】解:如果θ是第三象限的角,则sinθ<0,cosθ<0,tanθ>0,故选:C.2.(4分)若向量=(1,﹣2),=(,4)满足⊥,则实数等于()A.8 B.﹣8 C.2 D.﹣2【解答】解:根据题意,若向量、满足⊥,必有•=0,又由=(1,﹣2),=(,4),则有•=1×+(﹣2)×4=0,解可得=8;故选:A.3.(4分)若角α的终边经过点(﹣4,3),则tanα=()A.B.C.D.【解答】解:由定义若角α的终边经过点(﹣4,3),∴tanα=﹣,故选:D.4.(4分)函数是()A.奇函数,且在区间上单调递增B.奇函数,且在区间上单调递减C.偶函数,且在区间上单调递增D.偶函数,且在区间上单调递减【解答】解:函数=cos,是偶函数,且在区间上单调递减,故选D.5.(4分)函数f()=sin﹣cos的图象()A.关于直线对称B.关于直线对称C.关于直线对称D.关于直线对称【解答】解:函数y=sin﹣cos=sin(﹣),∴﹣=π+,∈,得到=π+,∈,则函数的图象关于直线=﹣对称.故选:B.6.(4分)如图,在△ABC中,点D在线段BC上,且BD=2DC,若,则=()A.B.C.2 D.【解答】解:∵BD=2DC,∴=+=+=+(﹣)=+,∵,∴λ=,μ=,∴=,故选:A7.(4分)定义在R上,且最小正周期为π的函数是()A.y=sin||B.y=cos||C.y=|sin|D.y=|cos2|【解答】解:对于A:y=sin||不是周期函数,对于B,y=cos||的最小正周期为2π,对于C,y=|sin|最小正周期为π,对于D,y=|cos2|最小正周期为,故选:C8.(4分)设向量,的模分别为2和3,且夹角为60°,则|+|等于()A. B.13 C. D.19【解答】解:∵向量,的模分别为2和3,且夹角为60°,∴=||•||cos60°=2×3×=3,∴|+|2=||2+||2+2=4+9+2×3=19,∴|+|=,故选:C.9.(4分)函数(其中ω>0,0<φ<π)的图象的一部分如图所示,则()A.B.C.D.【解答】解:如图根据函数的图象可得:函数的周期为(6﹣2)×4=16,又∵ω>0,∴ω==,当=2时取最大值,即2sin(2×+φ)=2,可得:2×+φ=2π+,∈,∴φ=2π+,∈,∵0<φ<π,∴φ=,故选:B.10.(4分)如图,半径为1的圆M,切直线AB于点O,射线OC从OA出发,绕O点顺时针方向旋转到OB,旋转过程中OC交⊙M于P,记∠PMO为,弓形PNO的面积S=f(),那么f ()的图象是()A.B.C.D.【解答】解:由题意得S=f ()=﹣f′()=≥0当=0和=2π时,f′()=0,取得极值.则函数S=f ()在[0,2π]上为增函数,当=0和=2π时,取得极值.结合选项,A正确.故选A.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.(4分)若向量=(﹣1,2)与向量=(,4)平行,则实数=﹣2.【解答】解:因为向量=(﹣1,2)与向量=(,4)平行,所以,所以﹣1=λ,2=λ4,解得:λ=,=﹣2.故答案为﹣2.12.(4分)若θ为第四象限的角,且,则cosθ=;sin2θ=﹣.【解答】解:∵θ为第四象限的角,且,∴cosθ==,sin2θ=2sinθcosθ=2×(﹣)×=﹣.故答案为:,﹣.13.(4分)将函数y=cos2的图象向左平移个单位,所得图象对应的函数表达式为y=﹣sin2.【解答】解:将函数y=cos2的图象向左平移个单位,所得图象对应的解析式为y=cos2(+)=cos(2+)=﹣sin2.故答案为:y=﹣sin2.14.(4分)若,均为单位向量,且与的夹角为120°,则﹣与的夹角等于150°.【解答】解:∵,均为单位向量,且与的夹角为120°,∴(﹣)•=﹣||2=1×1×(﹣)﹣1=﹣,|﹣|2=||2﹣2+||2=1﹣2×1×1×(﹣)+1=3,∴|﹣|=,设﹣与的夹角为θ,则cosθ===﹣,∵0°≤θ≤180°,∴θ=150°,故答案为:150°15.(4分)已知,则cos(﹣y)=﹣.【解答】解:∵sin+siny=,①cos+cosy=,②①2+②2得:2+2sinsiny+2coscosy=,∴cos(﹣y)=sinsiny+coscosy=﹣,故答案为:﹣.16.(4分)已知函数f()=sin(ω+φ)(ω>0,φ∈(0,π))满足,给出以下四个结论:①ω=3;②ω≠6,∈N*;③φ可能等于;④符合条件的ω有无数个,且均为整数.其中所有正确的结论序号是①③.【解答】解:函数f()=sin(ω+φ)(ω>0,φ∈(0,π))满足,∴ω()=nπ,∴ω=n(n∈),∴①ω=3正确;②ω≠6,∈N*,不正确;③φ可能等于,正确;④符合条件的ω有无数个,且均为整数,不正确.故答案为①③.三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤. 17.(12分)已知φ∈(0,π),且.(Ⅰ)求tan2φ的值;(Ⅱ)求的值.【解答】解:(Ⅰ)∵φ∈(0,π),且=,可得:tanφ=﹣2,∴tan2φ==.(Ⅱ)===﹣.18.(12分)已知函数.(1)求函数f()的单调增区间;(2)若直线y=a与函数f()的图象无公共点,求实数a的取值范围.【解答】解:(1)函数=cos(cos+sin)=+sin2=cos(2﹣)+,由2π﹣π≤2﹣≤2π,∈,解得π﹣≤≤π+,∈,即f()的增区间为[π﹣,π+],∈;(2)由(1)可得当2﹣=2π,即=π+,∈时,f()取得最大值;当2﹣=2π+π,即=π+,∈时,f()取得最小值﹣.由直线y=a与函数f()的图象无公共点,可得a的范围是a>或a<﹣.19.(12分)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P 为线段AD(含端点)上一个动点,设,,则得到函数y=f().(Ⅰ)求f(1)的值;(Ⅱ)对于任意a∈(0,+∞),求函数f()的最大值.【解答】解:(1)如图所示,建立直角坐标系.∵在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),∴B(0,0),A(﹣2,0),D(﹣1,a),C(0,a).∵=,(0≤≤1).∴=+=(﹣2,0)+(1,a)=(﹣2,a),∴=﹣=(0,a)﹣(﹣2,a)=(2﹣,a﹣a)∴y=f()=•=(2﹣,﹣a)•(2﹣,a﹣a)=(2﹣)2﹣a(a﹣a)=(a2+1)2﹣(4+a2)+4.∴f(1)=a2+1﹣(4+a2)+4=1(Ⅱ)由y=f()=(a2+1)2﹣(4+a2)+4.可知:对称轴0=.当0<a≤时,1<0,∴函数f()在[0,1]单调递减,因此当=0时,函数f()取得最大值4.当a>时,0<0<1,函数f()在[0,0)单调递减,在(0,1]上单调递增.又f(0)=4,f(1)=1,∴f()ma=f(0)=4.综上所述函数f()的最大值为4B卷[学期综合]本卷满分:50分.一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上.20.(4分)设全集U=R,集合A={|<0},B={|||>1},则A∩(∁U B)={|﹣1≤<0} .【解答】解:全集U=R,集合A={|<0},B={|||>1}={|<﹣1或>1},则∁U B={|﹣1≤≤1},A∩(∁U B)={|﹣1≤<0}.故答案为:{|﹣1≤<0}.21.(4分)已知函数若f(a)=2,则实数a=e2.【解答】解:∵函数,f(a)=2,∴当a<0时,f(a)=a﹣2=2,解得a=,不成立;当a>0时,f(a)=lna=2,解得a=e2.∴实数a=e2.故答案为:e2.22.(4分)定义在R上的函数f ()是奇函数,且f()在(0,+∞)是增函数,f(3)=0,则不等式f()>0的解集为(﹣3,0)∪(3,+∞).【解答】解:∵f()在R上是奇函数,且f()在(0,+∞)上是增函数,∴f()在(﹣∞,0)上也是增函数,由f(﹣3)=0,得﹣f(3)=0,即f(3)=0,由f(﹣0)=﹣f(0),得f(0)=0,作出f()的草图,如图所示:∴f()>0的解集为:(﹣3,0)∪(3,+∞),故答案为:(﹣3,0)∪(3,+∞).23.(4分)函数的值域为{0,1} .(其中表示不大于的最大整数,例如[3.15]=3,[0.7]=0.)【解答】解:设m表示整数.①当=2m时,[]=[m+0.5]=m,[]=[m]=m.∴此时恒有y=0.②当=2m+1时,[]=[m+1]=m+1,[]=[m+0.5]=m.∴此时恒有y=1.③当2m<<2m+1时,2m+1<+1<2m+2∴m<<m+0.5m+0.5<<m+1∴[]=m,[]=m∴此时恒有y=0④当2m+1<<2m+2时,2m+2<+1<2m+3∴m+0.5<<m+1m+1<<m+1.5∴此时[]=m,[]=m+1∴此时恒有y=1.综上可知,y∈{0,1}.故答案为{0,1}.24.(4分)在如图所示的三角形空地中,欲建一个面积不小于200m2的内接矩形花园(阴影部分),则其边长(单位:m)的取值范围是[10,20] .【解答】解:设矩形的另一边长为ym,由相似三角形的性质可得:=,解得y=30﹣,(0<<30)∴矩形的面积S=(30﹣),∵矩形花园的面积不小于200m2,∴(30﹣)≥200,化为(﹣10)(﹣20)≤0,解得10≤≤20.满足0<<30.故其边长(单位m)的取值范围是[10,20].故答案为:[10,20].二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 25.(10分)已知函数.(Ⅰ)若,求a的值;(Ⅱ)判断函数f()的奇偶性,并证明你的结论.【解答】解:(Ⅰ)∵函数.,∴=,∴=2,解得:a=﹣3;(Ⅱ)函数f()为奇函数,理由如下:函数f()的定义域(﹣∞,﹣1)∪(1,+∞)关于原点对称,且f(﹣)+f()=+=0,即f(﹣)=﹣f(),故函数f()为奇函数.26.(10分)已知函数f()=3,g()=|+a|﹣3,其中a∈R.(Ⅰ)若函数h()=f[g()]的图象关于直线=2对称,求a的值;(Ⅱ)给出函数y=g[f()]的零点个数,并说明理由.【解答】解:(Ⅰ)函数h()=f[g()]=3|+a|﹣3的图象关于直线=2对称,则h(4﹣)=h()⇒|+a|=|4﹣+a|恒成立⇒a=﹣2;(Ⅱ)函数y=g[f()]=|3+a|﹣3的零点个数,就是函数G()=|3+a|与y=3的交点,①当0≤a<3时,G()=|3+a|=3+a与y=3的交点只有一个,即函数y=g[f()]的零点个数为1个(如图1);②当a≥3时,G()=|3+a|=3+a与y=3没有交点,即函数y=g[f()]的零点个数为0个(如图1);③﹣3≤a<0时,G()=|3+a|与y=3的交点只有1个(如图2);④当a<﹣3时,G()=|3+a|与y=3的交点有2个(如图2);27.(10分)设函数f()的定义域为R,如果存在函数g(),使得f()≥g()对于一切实数都成立,那么称g()为函数f()的一个承托函数.已知函数f()=a2+b+c的图象经过点(﹣1,0).(1)若a=1,b=2.写出函数f()的一个承托函数(结论不要求证明);(2)判断是否存在常数a,b,c,使得y=为函数f()的一个承托函数,且f()为函数的一个承托函数?若存在,求出a,b,c的值;若不存在,说明理由.【解答】解:(1)函数f()=a2+b+c的图象经过点(﹣1,0),可得a﹣b+c=0,又a=1,b=2,则f()=2+2+1,由新定义可得g()=为函数f()的一个承托函数;(2)假设存在常数a,b,c,使得y=为函数f()的一个承托函数,且f()为函数的一个承托函数.即有≤a2+b+c≤2+恒成立,令=1可得1≤a+b+c≤1,即为a+b+c=1,即1﹣b=a+c,又a2+(b﹣1)+c≥0恒成立,可得a>0,且(b﹣1)2﹣4ac≤0,即为(a+c)2﹣4ac≤0,即有a=c;又(a﹣)2+b+c﹣≤0恒成立,可得a<,且b2﹣4(a﹣)(c﹣)≤0,即有(1﹣2a)2﹣4(a﹣)2≤0恒成立.故存在常数a,b,c,且0<a=c<,b=1﹣2a,可取a=c=,b=.满足题意.。
北京市西城区2019 — 2019学年度第一学期期末试卷高三数学(文科) 2019.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分. 在每小题列出的四个选项中,选出符合题目要求的一项. 1. 已知集合{1}A x x =≥-,{3}B x x =<,那么集合A B =(A ){13}x x -≤< (B ){13}x x -<< (C ){1}x x <-(D ){3}x x >2. 下列函数中,图象关于坐标原点对称的是 (A )lg y x =(B )cos y x =(C )||y x =(D )sin y x =3. 若a b >,则下列不等式正确的是 (A )11a b< (B )33a b >(C )22a b >(D )a b >4. 命题“若a b >,则1a b +>”的逆否命题是 (A )若1a b +≤,则a b > (B )若1a b +<,则a b > (C )若1a b +≤,则a b ≤(D )若1a b +<,则a b <5. 设{}n a 是等差数列,若24a =,57a =,则数列{}n a 的前10项和为 (A )12(B )60(C )75(D )1206. 阅读右面程序框图,如果输出的函数值在区间11[,]42内,那么输入实数x 的取值范围是 (A )(,2]-∞- (B )[2,1]-- (C )[1,2]- (D )[2,)+∞7. 如图,四边形ABCD 中,1AB AD CD ===,BD =BD CD ⊥,将四边形ABCD沿对角线BD 折成四面体A BCD '-,使平 面A BD '⊥平面BCD ,则下列结论正确的是(A )A C BD '⊥ (B )90BA C '∠=(C )A DC '∆是正三角形(D )四面体A BCD '-的体积为138. 设函数121()log ()2xf x x =-,2121()log ()2xf x x =-的零点分别为12,x x ,则(A )1201x x << (B )121x x = (C )1212x x << (D )122x x ≥第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9. i 为虚数单位,则22(1i)=+______. 10. 已知1==a b ,12⋅=a b ,则平面向量a 与b 夹角的大小为______. 11.若实数,x y 满足条件10,2,1,x y x y x -+≥⎧⎪+≥⎨⎪≤⎩则2x y +的最大值为______.12.在ABC ∆中,若3a b ==,3B 2π∠=,则c =____. 13. 已知双曲线22221x y a b-=的离心率为2,它的一个焦点与抛物线28y x =的焦点相同,那么双曲线的焦点坐标为______;渐近线方程为_______.14.在平面直角坐标系中,定义1212(,)d P Q x x y y =-+-为两点11(,)P x y ,22(,)Q x y 之间的“折线距离”.在这个定义下,给出下列命题:①到原点的“折线距离”等于1的点的集合是一个正方形; ②到原点的“折线距离”等于1的点的集合是一个圆;③到(1,0),(1,0)M N -两点的“折线距离”之和为4的点的集合是面积为6的六边形; ④到(1,0),(1,0)M N -两点的“折线距离”差的绝对值为1的点的集合是两条平行线. 其中正确的命题是____________.(写出所有正确命题的序号)三、解答题:本大题共6小题,共80分. 解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)已知函数2()22sin f x x x =-.(Ⅰ)求()6f π的值;(Ⅱ)若[,]63x ππ∈-,求()f x 的最大值和最小值. 16.(本小题满分13分)如图,在三棱柱111ABC A B C -中,侧面11ABB A ,11ACC A 均为正方形,90BAC ∠=,D 为BC 中点.(Ⅰ)求证:1//A B 平面1ADC ; (Ⅱ)求证:11C A B C ⊥. 17.(本小题满分13分)对某校高三年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:(Ⅰ)求出表中,M p及图中a 的值;(Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30)内的概率. 18.(本小题满分13分)已知椭圆2222:1x y C a b+= (0>>b a )的一个焦点坐标为(1,0),且长轴长是短轴长倍.(Ⅰ)求椭圆C 的方程;(Ⅱ)设O 为坐标原点,椭圆C 与直线1y kx =+相交于两个不同的点,A B ,线段AB 的中点为P ,若直线OP 的斜率为1-,求△OAB 的面积. 19.(本小题满分14分)ABCDC 1 A 1B 1已知函数()ln f x ax x =+()a ∈R .(Ⅰ)若2a =,求曲线()y f x =在1x =处切线的斜率; (Ⅱ)求()f x 的单调区间;(Ⅲ)设2()22g x x x =-+,若对任意1(0,)x ∈+∞,均存在[]20,1x ∈,使得12()()f x g x <,求a 的取值范围.20.(本小题满分14分)已知数列}{n a 的首项为1,对任意的n ∈*N ,定义n n n a a b -=+1.(Ⅰ) 若1n b n =+,求4a ;(Ⅱ) 若11(2)n n n b b b n +-=≥,且12,(0)b a b b ab ==≠. (ⅰ)当1,2a b ==时,求数列{}n b 的前3n 项和;(ⅱ)当1a =时,求证:数列}{n a 中任意一项的值均不会在该数列中出现无数次.北京市西城区2019 — 2019学年度第一学期期末高三数学参考答案及评分标准(文科) 2019.1二、填空题:本大题共6小题,每小题5分,共30分.9.i - 10. 60 11. 412.13. (2,0)±0y ±= 14. ①③④注:13题第一问2分,第二问3分;14题①③④选对其中两个命题得2分,选出错误的命题即得0分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分.15.(本小题满分13分)解:(Ⅰ)()6f π22sin 36ππ- ………………2分 321241=-⨯=. ………………4分(Ⅱ)()f x cos 21x x =+- ………………6分2sin(2)16x π=+-. ………………8分因为[,]62x ππ∈-,所以65626πππ≤+≤-x , ………………10分所以 1sin(2)126x π-≤+≤, ………………11分 所以()f x 的最大值为1 ,最小值为2-. ………………13分 16.(本小题满分13分)解:(Ⅰ)连结1A C ,设1A C 交1AC 于点O ,连结OD . ………………2分因为11ACC A 为正方形,所以O 为1A C 中点, 又D 为BC 中点,所以OD 为1A BC ∆的中位线,所以1//A B OD . ………………4分 因为OD ⊂平面1ADC ,1A B ⊄平面1ADC , 所以1//A B 平面1ADC . ………………6分 (Ⅱ)由(Ⅰ)可知,11C A CA ⊥ ………………7分因为侧面11ABB A 是正方形,1AB AA ⊥, 且90BAC ∠=, 所以AB ⊥平面11ACC A . 又11//AB A B ,所以11A B ⊥平面11ACC A . ………………9分 又因为1C A ⊂平面11ACC A ,所以111A B C A ⊥. ………………10分 所以111C A A B C ⊥平面. ………………12分 又1B C ⊂平面11A B C ,所以11C A B C ⊥. ………………13分 17.(本小题满分13分)解:(Ⅰ)由分组[10,15)内的频数是10,频率是0.25知,100.25M=, 所以40M =. ………………2分 因为频数之和为40,所以1024240m +++=,4m =. ………………3分40.1040m p M ===. ………………4分 因为a 是对应分组[15,20)的频率与组距的商,所以240.12405a ==⨯.……………6分 (Ⅱ)因为该校高三学生有240人,分组[10,15)内的频率是0.25,所以估计该校高三学生参加社区服务的次数在此区间内的人数为60人. ………8分AB CDC 1A 1B 1O(Ⅲ)这个样本参加社区服务的次数不少于20次的学生共有26m +=人,设在区间[20,25)内的人为{}1234,,,a a a a ,在区间[25,30)内的人为{}12,b b . 则任选2人共有1213141112232421(,),(,),(,),(,),(,),(,),(,),(,),a a a a a a a b a b a a a a a b2234(,),(,)a b a a ,3132414212(,),(,),(,),(,),(,)a b a b a b a b b b 15种情况, ………………10分而两人都在[25,30)内只能是()12,b b 一种, ………………12分 所以所求概率为11411515P =-=.(约为0.93) ………………13分 18.(本小题满分13分)解:(Ⅰ)由题意得1,c a ==, ………………2分又221a b -=,所以21b =,22a =. ………………3分所以椭圆的方程为2212x y +=. ………………4分 (Ⅱ)设(0,1)A ,11(,)B x y ,00(,)P x y ,联立2222,1x y y kx ⎧+=⎨=+⎩ 消去y 得22(12)40k x kx ++=……(*), ………………6分解得0x =或2412k x k =-+,所以12412kx k =-+, 所以222412(,)1212k k B k k --++,2221(,)1212k P k k -++, ………………8分因为直线OP 的斜率为1-,所以112k-=-, 解得12k =(满足(*)式判别式大于零). ………………10分 O 到直线1:12l y x =+ ………………11分AB ==………………12分所以△OAB 的面积为1223=. ………………13分 19.(本小题满分14分) 解:(Ⅰ)由已知1()2(0)f x x x'=+>, ………………2分 故曲线()y f x =在1x =处切线的斜率为3. ………………4分 (Ⅱ)11'()(0)ax f x a x x x+=+=>. ………………5分①当0a ≥时,由于0x >,故10ax +>,'()0f x >所以,()f x 的单调递增区间为(0,)+∞. ………………6分②当0a <时,由'()0f x =,得1x a=-.在区间1(0,)a -上,()0f x '>,在区间1(,)a -+∞上()0f x '<,所以,函数()f x 的单调递增区间为1(0,)a -,单调递减区间为1(,)a-+∞.………………8分(Ⅲ)由已知,转化为max max ()()f x g x <. ………………9分max ()2g x = ………………10分由(Ⅱ)知,当0a ≥时,()f x 在(0,)+∞上单调递增,值域为R ,故不符合题意. (或者举出反例:存在33(e )e 32f a =+>,故不符合题意.) ………………11分当0a <时,()f x 在1(0,)a -上单调递增,在1(,)a -+∞上单调递减,故()f x 的极大值即为最大值,11()1ln()1ln()f a a a-=-+=----, ………13分 所以21ln()a >---, 解得31ea <-. ………………14分 20.(本小题满分14分)(Ⅰ) 解:11a =,211123a a b =+=+=,322336a a b =+=+=4336410a a b =+=+=. ………………3分(Ⅱ)(ⅰ)解:因为11n n n b b b +-=(2n ≥),所以,对任意的n ∈*N 有5164321n n n n n n n b b b b b b b ++++++====, 即数列{}n b 各项的值重复出现,周期为6. ………………5分 又数列}{n b 的前6项分别为21,21,1,2,2,1,且这六个数的和为7. 设数列{}n b 的前n 项和为n S ,则,当2()n k k =∈*N 时, 当21()n k k =+∈*N 时,123775k b b b k =+++=+ , ………………7分 所以,当n 为偶数时,372n S n =;当n 为奇数时,3732n n S +=. ………………8分 (ⅱ)证明:由(ⅰ)知:对任意的n ∈*N 有6n n b b +=,又数列}{n b 的前6项分别为111,,,1,,b b b b ,且这六个数的和为222b b++. 设)0(6≥=+n a c i n n ,(其中i 为常数且}6,5,4,3,2,1{∈i ),所以1n n c c +-=66666162636465n i n i n i n i n i n i n i n i a a b b b b b b ++++++++++++++-=+++++所以,数列}{6i n a +均为以222b b++为公差的等差数列. ………………10分 因为0b >时,2220b b ++>,0b <时,22220b b++≤-<, ………………12分所以{6n i a +}为公差不为零的等差数列,其中任何一项的值最多在该数列中出现一次.所以数列}{n a 中任意一项的值最多在此数列中出现6次,即任意一项的值不会在此数列中重复出现无数次. ………………14分。
1拿到试卷:熟悉试卷刚拿到试卷一般心情比较紧张,建议拿到卷子以后看看考卷一共几页,有多少道题,了解试卷结构,通览全卷是克服“前面难题做不出,后面易题没时间做”的有效措施,也从根本上防止了“漏做题”。
2答题顺序:从卷首依次开始一般来讲,全卷大致是先易后难的排列。
所以,正确的做法是从卷首开始依次做题,先易后难,最后攻坚。
但也不是坚决地“依次”做题,虽然考卷大致是先易后难,但试卷前部特别是中间出现难题也是常见的,执着程度适当,才能绕过难题,先做好有保证的题,才能尽量多得分。
3答题策略答题策略一共有三点: 1. 先易后难、先熟后生。
先做简单的、熟悉的题,再做综合题、难题。
2. 先小后大。
先做容易拿分的小题,再做耗时又复杂的大题。
3. 先局部后整体。
把疑难问题划分成一系列的步骤,一步一步的解决,每解决一步就能得到一步的分数。
4学会分段得分。
不会做的会做的题目要特别注意表达准确、书写规范、语言科学,防止被“分段扣点分”题目我们可以先承认中间结论,往后推,看能否得到结论。
如果不能,说明这个途径不。
如对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”果题目有多个问题,也可以跳步作答,先回答自己会的问题。
5立足中下题目,力争高水平考试时,因为时间和个别题目的难度,多数学生很难做完、做对全部题目,所以在答卷中要立足中下题目。
中下题目通常占全卷的80%以上,是试题的主要构成,学生能拿下这些题目,实际上就是有了胜利在握的心理,对攻克高档题会更放得开。
6确保运算正确,立足一次性成功在答卷时,要在以快为上的前提下,稳扎稳打,步步准确,尽量一次性成功。
不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤。
试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,格式是否规范。
7要学会“挤”分考试试题大多分步给分,所以理科要把主要方程式和计算结果写在显要位置,文科尽量把要点写清晰,作文尤其要注意开头和结尾。