黄昆版固体物理课件第一章
- 格式:ppt
- 大小:5.00 MB
- 文档页数:57
固体物理(黄昆)第一章总结.doc固体物理(黄昆)第一章总结固体物理学是一门研究固体物质微观结构和宏观性质的学科。
黄昆教授的《固体物理》一书为我们提供了深入理解固体物理的基础。
本总结旨在概述第一章的核心内容,包括固体的分类、晶体结构、晶格振动和固体的电子理论。
一、固体的分类固体可以根据其结构特征分为晶体和非晶体两大类。
晶体具有规则的几何外形和有序的内部结构,而非晶体则没有长程有序性。
晶体又可以根据其内部原子排列的周期性分为单晶体和多晶体。
二、晶体结构晶体结构是固体物理学的基础。
黄昆教授详细讨论了晶格、晶胞、晶向和晶面等概念。
晶格是描述晶体内部原子排列的数学模型,而晶胞是晶格的最小重复单元。
晶向和晶面则分别描述了晶体中原子排列的方向和平面。
三、晶格振动晶格振动是固体物理中的一个重要概念,它涉及到晶体中原子的振动行为。
黄昆教授介绍了晶格振动的量子化描述,包括声子的概念。
声子是晶格振动的量子,它们与晶体的热传导和电导等性质密切相关。
四、固体的电子理论固体的电子理论是固体物理学的核心内容之一。
黄昆教授从自由电子气模型出发,介绍了固体中电子的行为和性质。
自由电子气模型假设电子在固体中自由移动,不受原子核的束缚。
这一模型可以解释金属的导电性和热传导性。
五、能带理论能带理论是固体电子理论的一个重要组成部分。
黄昆教授详细讨论了能带的形成、能隙的概念以及电子在能带中的分布。
能带理论可以解释不同固体材料的导电性差异,是现代半导体技术和电子器件设计的基础。
六、固体的磁性固体的磁性是固体物理中的另一个重要主题。
黄昆教授讨论了磁性的来源,包括原子磁矩和电子自旋。
磁性固体可以分为顺磁性、抗磁性和铁磁性等类型,它们的磁性行为与电子结构密切相关。
七、固体的光学性质固体的光学性质涉及到固体对光的吸收、反射和透射等行为。
黄昆教授介绍了固体的光学性质与电子结构之间的关系,包括光的吸收和发射过程。
八、固体的热性质固体的热性质包括热容、热传导和热膨胀等。
第一章晶体结构§1-1 绪论固体物理与力学、电动力学、量子力学等学科不同,这些学科学习的是一种运动形式,而固体物理学习的则是一类物质,固体物理学习晶体的几何结构,学习形成晶体结构的原子的最普遍的运动形式,即晶格振动,学习晶体中的能量特征和运动,然后学习半导体物理超导电性等一些专题问题。
引入:固体是指在承受切应力时具有一定程度刚性的物质。
在相当长的时间里,人们研究的固体主要是晶体,晶体知识作为一门科学的出现,科学界公认是在17世纪中叶,距今已有300多年。
固体是由什么原子组成?它们是怎样排列和结合的?这种结构是如何形成的?一、固体物理的研究对象固体物理是研究固体的微观结构,组成固体的粒子(原子、离子、电子)之间相互作用与运动规律,并在此基础之上阐明固体的宏观性质和应用的学科。
它分为:晶体、非晶体和准晶体三类。
1、晶体:原子按一定的周期排列成规则的固体(即,长程有序) 例如:天然的岩盐、水晶以及人工的半导体锗、硅单晶都是晶体。
——图XCH001_055 和图XCH001_0001_03 是CaCO3和雪花结晶的结构——图XCH001_055 是高温超导体YBaCuO晶体的结构2、非晶体:原子的排列没有明确的周期性(短程有序),如:玻璃、橡胶、塑料。
——图XCH001_036_01 和图XCH001_036_02 分别是Be2O3单晶和非晶结构。
3、准晶体:介于晶体和非晶体之间的新的状态——称为准晶态。
理想晶体:内在结构完全规则的固体,又叫做完整晶体;实际晶体:固体中或多或少地存在有不规则性,在规则(排列)的背景中尚存在微量不规则性的晶体——近乎完整的晶体。
二固体物理的研究方法固体物理主要是一门实验性学科。
为了阐明所揭示出来的现象之间内在的本质联系,需要建立和发展关于固体的微观理论。
固体(晶体)是一个很复杂的客体,每一立方米中包含10个原子、电子,而且它们之间的相互作用相当强.固体的宏观性质就是如此大量有约23的粒子之间的相互作用和集体运动的总表现。
第一章晶体结构1.晶格实例面心立方(fcc)配位数12 格点等价格点数4 致密度原胞基矢:()()()123222aa j kaa k iaa i j=+=+=+vvvv vvv vv原胞体积3123()/4Ωa a a a=⋅⨯=v v vNaCl: 两组面心立方格子平行穿套而成的复式格子基元= Na+ + Cl-具有面心立方:简单格子(Al、Cu、Ag; Ar Kr Xe Ne)、复式格子(Cao MgS 碱卤族等)简单立方(SC)配位数6 格点等价格点数1 致密度CsCl两组简单立方格子穿套而成的复式结构基元= Cs+ + Cl-钙钛矿结构:CaTiO3五个简单立方穿套而成基元:Ca、Ti、OI、OII、OIII (OI、OII、OIII 的化学环境各不相同,氧八面体) 典型晶体:BaTiO3、PbZrO3、LiNbO3、LiTaO3氯化铯型结构: CsCl, CsBr, CsI, TlCl, TlBr, TlI 等体心立方(bcc)配位数8 格点等价格点数2 致密度原胞基矢:123()2()2()2aa i j kaa i j kaa i j k=-++=-+=+-vv vvvv vvvv vv原胞体积:3123()/2Ωa a a a=⋅⨯=v v v体心立方晶体: 碱金属、W、Mo、Nb、V、Fe等六角密堆(hcp)配位数12 两种格点原子数6 基元数3 致密度典型晶体举例:He, Be, Mg, Ti, Zn, Cd, Co, Y, Lu 等金刚石结构最近邻原子数4 次近邻原子数12 致密度晶体结构=布拉维格子(面心立方)+ 基元(A+B)*将金刚石结构中的基元置换成一对硫离子和锌离子,则为两个面心立方复合而成的复式结构,典型晶体:SiC, ZnSe, AlAs, GaP, GaAs 等2.晶体的周期性结构基本概念晶体:1. 化学性质相同 2. 几何环境相同基元:晶体结构中最小的重复单元布拉维点阵(布拉维格子): 112233R n a n a n a =++v v v v晶体结构 = 布拉维格子+基元原胞:由基矢1a v 、2a v 、3a v确定的平行六面体,是体积最小的周期性结构单元,原胞只包含一个格点晶胞:同时计及周期性及对称性的尽可能小的重复单元,原胞实际上是体积最小的晶胞 维格纳-赛茨原胞(WS 原胞)1. 作某个格点与其它格点的连接矢量2. 作所有这些连接矢量的垂直平分面3. 这些垂直平分面围起的凸多面体就是维格纳-赛茨原胞3. 晶向、晶面及其标志晶列(向)指数:[l m n] 晶面指数(米勒指数):( h k l )米勒指数是以晶胞基矢为基准,而面指数则以原胞基矢为基准标定4. 布里渊区倒格子空间中的维格纳-赛茨(WS )原胞,即所谓的第一布里渊区,布里渊区包含了所有能在晶体上发生布拉格反射的波的波矢22h h k G G ⋅=v v简单立方的倒格矢(简单立方——简单立方)基矢123a aia aj a ak ⎧=⎪=⎨⎪=⎩v v v vv v倒格矢123(2π/a)(2π/a)(2π/a)b i b j b k⎧=⎪=⎨⎪=⎩v v v v v v体心立方晶格的倒格子(体心立方——面心立方)基矢1231()21()21()2a a i j k a a i j k a a i j k ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩v v v v v v v v v v v v 倒格矢1232π()2π()2π()b j k a b k i a b i j a ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩v v v v v v v v v倒格矢可以表示为:1122332331122π[()()()]h G h b h b h b h h i h h j h h k a=++=+++++v v v vv v v 其中(h1 h2 h3)是米勒指数,h G v垂直于米勒指数,其第一布里渊区是一个正十二面体面心立方晶格的倒格子(面心立方——体心立方)基矢1231()21()21()2a a j k a a k i a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩vv v v v v v v v 倒格矢1232π()2π()2π()b i j k a b i j k a b i j k a ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩v v v v v v v v v v v v 第一布里渊区为截角八面体即5. 晶体的宏观对称性xx xy xz x x y yx yy yz y z zx zy zz z D E D E D E εεεεεεεεε⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭对于所有立方对称的晶体中,介电常数是一个对角张量:0 (,,,)x y z αβαβεεδαβ==该结论适用于一切具有二阶张量形式的宏观性质 (如电导率、热导率)六角对称的晶体中,若坐标轴选取在六角轴的方向和与它垂直的平面内,则介电常数有如下形式// 0 00 00 0 εεε⊥⊥⎛⎫ ⎪ ⎪ ⎪⎝⎭ ,//////D E ε=, D E ε⊥⊥⊥=,六角对称的晶体有双折射现象对称操作(正交变换:旋转、中心反演、镜面反映) 1. 旋转绕 z 轴旋转 q 角的正交矩阵cos sin 0sin cos 0 0 0 1θθθθ-⎛⎫ ⎪ ⎪ ⎪⎝⎭,中心反演的正交矩阵 1 0 0 0 1 0 0 0 1-⎛⎫ ⎪- ⎪ ⎪-⎝⎭由于cost = (1 - m)/2 所以 m = -1 0 1 2 3,所以t = 0 2π/6 2π/4 2π/3 2π/2,没有所谓的5度轴和7度轴。
§1.5 晶体的宏观对称性晶体在几何外形上表现出明显的对称性,同时这些对称性性质也在物理性质上得以体现。
—— 介电常数可以表示为一个二阶张量:),,,(z y x =βαεαβ—— 电位移分量∑=ββαβαεE D可以证明对于立方对称的晶体:αβαβδεε0=——对角张量所以:E D KK 0ε=—— 介电常数可以看作一个简单的标量。
在六角对称的晶体中,如果将坐标轴选取在六角轴和垂直于六角轴的平面内,介电常数具有如下形式: ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⊥⊥εεε000000//对于平行轴(六角轴)的分量://E //////E D ε=对于垂直于轴(垂直于六角轴的平面)的分量:⊥E ⊥⊥⊥=E D ε正是由于六角晶体的各向异性,而具有光的折射现象。
而立方晶体的光学性质则是各向同性的。
原子的周期性排列形成晶格,不同的晶格表现出不同的宏观对称性,怎样描述晶体的宏观对称性? 概括晶体宏观对称性的系统方法就是考察晶体在正交变换的不变性。
在三维情况下,正交变换表示为:⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛→⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛z y x a a a a a a a a a z y x z y x 331313232212131211'''—— 矩阵是正交矩阵。
3,2,1,},{=j i a ij —— 如图XCH001_062所示,绕z 轴转θ角的正交矩阵: ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−1000cos sin 0sin cos θθθθ—— 中心反演的正交矩阵:⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−100010001—— 一个变换为空间转动,矩阵行列式等于+1; —— 变换为空间转动加中心反演,矩阵行列式等于-1。
一个物体在某一个正交变换下保持不变,称之为物体的一个对称操作,物体的对称操作越多,其对称性越高。
1 立方体的对称操作1) 绕三个立方轴转动:23,,2πππ,共有9个对称操作;如图XCH001_026_01所示。
̯ ҂➘⤵⮳ⵃ⾥ 䆐
҂➘⤵ ⵃ⾥ ҂⮳㐂 ㏳ ㇁ 喈 Ƞ⻪ Ƞ⩤ ͺ䬣Ⱗρҋ⩗̽䓿 㻳 Д䬿 㘬̽⩗䕃⮳ ⼀ȡ
҂ ㆪ
҂喈 喉喚 ̯ ⮳ 㻳 ⮳ ҂喈䪮⼺ 喉喌Һ 喚 ♥⮳ ⯿ȠⅣ Д ϩ ⮳ ҂䩆Ƞ 䘬 ҂喛
XCH001_055 XCH001_0001_03 CaCO3 䰙㟠㐂 ⮳㐂 喌 XCH001_055 倇⍘䊴 ҂YBaCuO ҂⮳㐂 ȡ
䲍 ҂喈䲍 喉喚 ⮳ ⇐ ⮳ 喈ⴜ⼺ 喉喌 喚⣪⦲Ƞᾐ㘥Ƞ ȡ
XCH001_036_01 XCH001_036_02 Be2O3 䲍 㐂 ȡ
҂喚1984 Shechtmanへϩ ε⩗ 䕎 ∄ ⮳AlMn 䜀͜⮳⩤ 㵼 ͜喌 ⣟ε σ䛼 ⼟⮳ ◨ 喌 ◨⮳ 䨿⼺ ̼ων ҂⮳ 喌 Ϻν ҂ 䲍 ҂ͺ䬣⮳ ⮳⟥ 喌⼟ͩ ȡ
⤵ ҂喚 㐂 㻳 ⮳ ҂喌 ҂喛
䭴 ҂喚 ҂͜ ̼㻳 喌 㻳 喈 喉⮳㗻 ͜ 䛾̼㻳 ⮳ ҂ 䔀ͽ ⮳ ҂ȡ
λ ҂➘⤵⮳ 䓶⼺
҂ 㻳 ⮳ ҄ ⟥ ҂ ⮳ ⼟ ̽ Ѕ➘⤵ 䉗ͺ䬣 ̯ 㖃㈪喛 ҂ ⮳㻳 䘗㻳 ⮳ ȡ
̲ͅ㏙ 喈䄄 ДṜ⤲ ⼞⮳ὐ 㼒䛹 㼒ⴢ⮳ 䉗 㼒⤵䲑喛
ͅ㏙喌䭮㓬ӌ䃓ͩ 㼒ⴢ ҂ ⩠̯ϊ ⮳ȠⰧ ⮳Ƞ 㵻 䲑 ⮳ Ć ⴢć 㻳 䛼 䯵㔻 ⮳ 䔈͙ ⵯ̹喛
Όͅ㏙͜ 喌 㤡 ε⾩䬣◨䭤 䄣喌ằ ε ⮳➨ ȡ
Όͅ㏙ 喛䉨 ≊ 喌⚹ Ƞ 㒆へ⠛⿺ ε ν ҂ 㻱 ҄㐂 ⮳⤵䃩҂㈪喌ͩ䔊̯ₔⵃ⾥ ҂㐂 ⮳㻳 ӊε⤵䃩ӌ 喌 ⼞㉞⮳ 䛾 侻κ Όͅ㏙ϩЛ䔇 㐂ε㠔 䛼㺰⮳㏾侻㻳 Һ ν ҂℃☜⮳ 䮵⣯ 喌 ν䜀 ☜ ⩤ 䉗⮳偾 喍Ҋ 喌ͩε䔊̯ₔε㼒䔈ϊ㏾侻㻳 ⮳ 䉗喌 ⣟ε̯ϊ 䄣ȡ
ͅ㏙ ➨冰 ≊ѕ ⿺ε㏾ ⮳䜀 㜙⩠⩤ 䃩へ喌 ͅ㏙ 喌䔀В➘⤵ ⮳ 喌ҮϩЛ ҂⮳䃓䃵䔊 ε̯͙ ⮳䭥⃤Ƞ 喌X ㏮ ӊεϩㆪⰣ ⿔ ҂ 䘗㐂 ⮳ ȡ
第一章晶体结构1.晶格实例1.1面心立方(fcc)配位数12 格点等价格点数4 致密度0.74原胞基矢:()()()123222aa j kaa k iaa i j=+=+=+原胞体积3123()/4Ωa a a a=⋅⨯=NaCl: 两组面心立方格子平行穿套而成的复式格子基元= Na+ + Cl-具有面心立方:简单格子(Al、Cu、Ag;Ar Kr Xe Ne)、复式格子(Cao MgS 碱卤族等)1.2简单立方(SC)配位数6 格点等价格点数1 致密度0.52CsCl两组简单立方格子穿套而成的复式结构基元= Cs+ + Cl-钙钛矿结构:CaTiO3五个简单立方穿套而成基元:Ca、Ti、OI、OII、OIII (OI、OII、OIII 的化学环境各不相同,氧八面体) 典型晶体:BaTiO3、PbZrO3、LiNbO3、LiTaO3氯化铯型结构:CsCl, CsBr, CsI, TlCl, TlBr, TlI 等1.3体心立方(bcc)配位数8 格点等价格点数2 致密度0.68原胞基矢:123()2()2()2aa i j kaa i j kaa i j k=-++=-+=+-原胞体积:3123()/2Ωa a a a=⋅⨯=体心立方晶体: 碱金属、W、Mo、Nb、V、Fe等1.4六角密堆(hcp)配位数12 两种格点原子数6 基元数3 致密度0.74典型晶体举例:He, Be, Mg, Ti, Zn, Cd, Co, Y, Lu 等1.5金刚石结构 最近邻原子数4 次近邻原子数12 致密度0.34 晶体结构=布拉维格子(面心立方)+ 基元(A+B)*将金刚石结构中的基元置换成一对硫离子和锌离子,则为两个面心立方复合而成的复式结构,典型晶体:SiC, ZnSe, AlAs, GaP , GaAs 等2. 晶体的周期性结构2.1基本概念晶体:1. 化学性质相同 2. 几何环境相同 基元:晶体结构中最小的重复单元布拉维点阵(布拉维格子): 112233R n a n a n a =++ 晶体结构 = 布拉维格子+基元原胞:由基矢1a 、2a 、3a 确定的平行六面体,是体积最小的周期性结构单元,原胞只包含一个格点晶胞:同时计及周期性及对称性的尽可能小的重复单元,原胞实际上是体积最小的晶胞2.2维格纳-赛茨原胞(WS 原胞)1. 作某个格点与其它格点的连接矢量2. 作所有这些连接矢量的垂直平分面3. 这些垂直平分面围起的凸多面体就是维格纳-赛茨原胞3. 晶向、晶面及其标志晶列(向)指数:[l m n] 晶面指数(米勒指数):( h k l )米勒指数是以晶胞基矢为基准,而面指数则以原胞基矢为基准标定4. 布里渊区倒格子空间中的维格纳-赛茨(WS )原胞,即所谓的第一布里渊区,布里渊区包含了所有能在晶体上发生布拉格反射的波的波矢22h h k G G ⋅= 4.1简单立方的倒格矢(简单立方——简单立方)基矢123a aia aj a ak ⎧=⎪=⎨⎪=⎩ 倒格矢123(2π/a)(2π/a)(2π/a)b i b j b k⎧=⎪=⎨⎪=⎩4.2体心立方晶格的倒格子(体心立方——面心立方)基矢1231()21()21()2a a i j k a a i j k a a i j k ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩ 倒格矢1232π()2π()2π()b j k a b k i a b i j a ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩倒格矢可以表示为:1122332331122π[()()()]h G h b h b h b h h i h h j h h k a=++=+++++ 其中(h1 h2 h3)是米勒指数,h G 垂直于米勒指数,其第一布里渊区是一个正十二面体 4.3面心立方晶格的倒格子(面心立方——体心立方)基矢1231()21()21()2a a j k a a k i a a i j ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩ 倒格矢1232π()2π()2π()b i j k a b i j k a b i j k a ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩第一布里渊区为截角八面体即5. 晶体的宏观对称性xx xy xz x x y yx yy yz y z zx zy zz z D E D E D E εεεεεεεεε⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭5.1对于所有立方对称的晶体中,介电常数是一个对角张量:0 (,,,)x y z αβαβεεδαβ==该结论适用于一切具有二阶张量形式的宏观性质 (如电导率、热导率)5.2六角对称的晶体中,若坐标轴选取在六角轴的方向和与它垂直的平面内,则介电常数有如下形式// 0 00 00 0 εεε⊥⊥⎛⎫ ⎪ ⎪ ⎪⎝⎭ ,//////D E ε=, D E ε⊥⊥⊥=,六角对称的晶体有双折射现象5.3对称操作(正交变换:旋转、中心反演、镜面反映) 1. 旋转绕 z 轴旋转 q 角的正交矩阵cos sin 0sin cos 0 0 0 1θθθθ-⎛⎫ ⎪ ⎪ ⎪⎝⎭,中心反演的正交矩阵 1 0 0 0 1 0 0 0 1-⎛⎫⎪- ⎪ ⎪-⎝⎭由于cost = (1 - m)/2 所以 m = -1 0 1 2 3,所以t = 0 2π/6 2π/4 2π/3 2π/2,没有所谓的5度轴和7度轴。