常州市2014年新课结束考试九年级数学试卷
- 格式:doc
- 大小:446.50 KB
- 文档页数:11
2013~2014学年度第一学期期末抽测九年级数学试题本试卷分卷Ⅰ( 1至2页)和卷Ⅱ( 3至8页)两部分.全卷满分 120分,考试时间 90分钟. 卷Ⅰ一、选择题(本大题共有 8小题,每题 3分,共24分.请将正确选项前的字母代号填 写在第3页相应的答题栏内,在卷Ⅰ上答题无效)1.两圆的半径分别为 3和4,圆心距为 7,则这两圆的地点关系为A .订交B .内含C .内切D .外切2.如图,OA 、OB 是⊙O 的两条半径,且 OA⊥OB,点C 在⊙O 上,则∠ACB 的度数为A .45°B .35°C .25°D .20°ABBOO EDCCA (第2题) (第3 题)3.如图,AB 是⊙O 的直径,弦CD⊥AB,垂足为E ,假如AB =20,CD =16.那么线段OE 的长为A .4B .5C .6D .8 4.假如将抛物线yx 2 向上平移1个单位,那么所得抛物线对应的函数关系式是 22 A .yx1B .yx1C .y(x1)2D .y(x1)25.菱形拥有而矩形不必定拥有的性质是A .对角线相等B .对角线相互垂直C .对角线相互均分D .对角互补 6.若圆锥的轴截面为等边三角形,则称此圆锥为正圆锥.正圆锥侧面睁开图的圆心角是A .90°B .120°C .150°D .180°7.依据以下表格的对应值:xx 2 5x 3可得方程x 2 5x 3 0一个解x 的范围是A .0<x <B .<x <C .<x <D .<x <18.若对于x 的一元二次方程(a 1)x22x10有两个不相等的实数根,则A .a2B .a2且a1C .a2D .a2且a1二、填空题(本大题共有 8小题,每题3分,共24分.请将答案填写在第 3页相应的答题处,在卷Ⅰ上答题无效)29.化简: 2014▲.=10.使a2存心义的a 的取值范围为▲.211.化去根号内的分母:5▲.12.假如2是一元二次方程x 2 bx2 0 的一个根,那么常数b=▲.13.方程x 24x 0 的解是 ▲.14.某公司五月份的收益是 25万元,估计七月份的收益将达到36万元.设均匀月增加率为x ,依据题意,可列方程:▲ .15.如图,正六边形ABCDEF 中,若四边形ACDF 的面积是20cm2,则正六边形ABCDEF的面积为▲ cm 2.AFDFCBEECDAB(第15 题)(第16 题)16.如图,四边形ABCD 是菱形,∠A60°,AB 2,扇形BEF 的半径为 2,圆心角为60°,则图中暗影部分的面积是▲ .2013~2014学年度第一学期期末抽测九年级数学试题卷Ⅱ题号一二三总分合分人20~2122~232417~1925得分一、选择题答题栏(每题3分,共24分)题号12345678选项二、填空题答题处(每题3分,共24分)9.10.11.12.13.14.15.16.三、解答题(本大题共有9小题,共72分)17.(此题8分)(1)计算:12323;(2)解方程:x4x20.218.(此题7分)甲、乙两人进行射击训练,在同样条件下各射靶5次,成绩统计以下:命中环数/环78910甲命中的频数/次2201乙命中的频数/次1310(1)甲、乙两人射击成绩的极差、方差分别是多少?2)谁的射击成绩更加稳固?19.(此题7分)在一幅长8分米,宽6分米的矩形景色画(如图①)的周围镶宽度同样的金色纸边,制成一幅矩形挂图(如图②).若要使整个挂图的面积是80平方分米,则金色纸边的宽应为多少?图②①(第AD BC M N AD BC E20.(此题8分)已知:如图,在等腰梯形ABCD中∥、分别为、的中点,、,,F分别是BM、CM的中点.AM D求证:(1)△ABM≌△DCM;(2)四边形MENF是菱形.E FB N C(第20题)21.(此题8分)为了说明各样三角形之间的关系,小明画了以下构造图:三角形等腰三角形直角三角形等边三角形(第21题)请你采纳近似的方式说明下述几个观点之间的关系:正方形、四边形、梯形、菱形、平行四边形、矩形.22.(此题8分)实践操作:如图,△ABC是直角三角形,ABC 90,利用直尺和圆规按以下要求作图,并在图中注明相应的字母(保存印迹,不写作法).A(1)作∠BCA的均分线,交AB于点O;(2)以O为圆心,OB为半径作圆.综合运用:在你所作的图中,(1)AC与⊙O的地点关系是(直接写出答案);(2)若BC=6,AB=8,求⊙O的半径.B C(第22题)24与直线y 2x1的一个交点的横坐标为2.23.(此题8分)已知抛物线y 1a(x1)(1)求a 的值;(2)请在所给坐标系中,画出函数y 1a(x 1)2 4与y 2x 1的图象,并依据图象,直接写出y1≥y2时x 的取值范围.24.(此题8分)某商场购进一批单价为 100元的商品,在商场试销发现:每日销售量 y(件)与销售单价 x(元/件)之间知足以下图的函数关系:1)求y 与x 之间的函数关系式;2)写出每日的收益w 与销售单价x 之间的函数关系式;售价定为多少时,才能使每日的收益 w 最大?每日的最大收益是多少?(第23题)y(件)30O130 150(元/件)x(第24题)25.(此题10分)我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD 即为“准等腰梯形”,此中BC .(1)在图1所示的“准等腰梯形”ABCD 中,选择一个适合的极点引一条直线将四边形ABCD 切割成一个等腰梯形和一个三角形或切割成一个等腰三角形和一个梯形 (画出一种表示图即可);(2)如图2,在“准等腰梯形”ABCD 中,B C ,E 为边BC 上一点,若AB ∥DE ,ABBEAE ∥DC ,求证:DCEC ;(3)如图3,在由不平行于BC 的直线截△PBC 所得的四边形ABCD 中,∠BAD 与∠ ADC 的均分线交于点E ,若EBEC ,则四边形ABCD 能否为“准等腰梯形”?请说明原因.图1 图2 图3(第25题)。
2013—2014学年度第一学期期末考试 初三数学一、选择题:(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填在答题纸上.)1▲ ) A .4 B .-4 C .±4 D2.函数y =2—1-x 中自变量x 的取值范围是( ▲ ) A .x >1B .x ≥1C .x ≤1D .1≠x3.下列图案既是轴对称图形,又是中心对称图形的是( ▲ )A .B .C .D .4.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法错误..的是( ▲ ) A .极差是20B .中位数是91C .众数是98D .平均数是915.在平面几何中,下列命题为真命题的是( ▲ ) A .四边相等的四边形是正方形 B .四个角相等的四边形是矩形C .对角线相等的四边形是菱形 D .对角线互相垂直的四边形是平行四边形6.已知圆锥的底面半径为2,母线长为4,则它的侧面积为( ▲ )A .4πB .16πC .43πD .8π7.已知⊙O 的半径是5,直线l 是⊙O 的切线,P 是l 上的任一点,那么( ▲ )A . 0<OP <5 B . OP =5 C . OP >5D . OP ≥58.如图,已知:在边长为12的正方形ABCD 中,有一个小正方形EFGH ,其中E 、F 、G 分别在AB 、BC 、FD 上.若BF =3,则BE 长为( ▲ )A .1B .2.5C .2.25D .1.59.如图,已知:在梯形ABCD 中,CD ∥AB ,AD 、BC 的延长线相交于点E ,AC 、BD 相交于点O ,连接EO 并延长交AB 于点M ,交CD 于点N .则S △AOE :S △BOE 等于( ▲ )A .1∶1B .4∶3C .3∶4D .3∶210.如图,在平面直角坐标系x O y 中,我们把横、纵坐标都是整数的点叫做整点.已知点A (0,4),点B (4n ,0)(n 为正整数),记△AOB 内部(不包括边界)的整点个数为m .则m 等于( ▲ ) A .3n B .3n -2C .6n+2D .6n -3二、填空题:(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把最后结果填在答题纸对应的位置上.)11.分解因式:x 2-2x = ▲ .12.3月20日,无锡市中级人民法院依法裁定,对无锡尚德太阳能电力有限公司实施破产重组.据调查,截至2月底,包括工行、农行、中行等在内的9家债权银行对无锡尚德的本外币授信余额折合人民币已达到7 100 000 000元,则7 100 000 000可用科学记数法表示为 ▲ .13.若双曲线xky =与直线13+=x y 的一个交点的横坐标为1-,则k 的值为 ▲ .14.六边形的内角和等于 ▲ .15.已知:菱形ABCD 中,对角线AC 与BD 相交于点O ,OE ∥DC 交BC 于点E , OE =3cm ,则AD 的长为 ▲ . 16.如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若CD =2EF =4,BC =4 2 ,则∠C 等于 ▲ .17.如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为 ▲ cm 2.(结果可保留根号) 18.在平面直角坐标系中,点A 、B 、C 的坐标分别为(2,0),(3,3),(1,3),点D 、E 的坐标分别为(m ,3m ),(n ,33n )(m 、n 为非负数),则CE +DE +DB 的最小值是 ▲ .三、解答题:(本大题共10小题,共84分.解答时将文字说明、证明过程或演算步骤写在答题纸相应的位置上.)第8题图第9题图F E DBA19.(本题满分8分)计算或化简:(1)计算:()01213332-+⨯---. (2)先化简,再求值:()()()x x x x +-+-333,其中x =-2.20.(本题满分8分)⑴ 解方程: . ⑵ 解不等式组:12512x x x +⎧⎪⎨->⎪⎩≤,,.21.(本题满分8分)在数学课上,陈老师在黑板上画出如图所示的图形,在△AEC 和△DFB 中,已知∠E =∠F ,点A ,B ,C ,D 在同一直线上,并写下三个关系式:①AE ∥DF ,②AB =CD ,③CE =BF .请同学们从中再任意选取两个作为补充条件,剩下的那个关系式作为结论构造命题.小明选取了关系式①,②作为条件,关系式③作为结论。
江苏省常州市2014年中考数学试卷一、选择题(本大题共8小题, 每小题2分, 满分16分, 在每小题给出的四个选项中, 只有一项是符合题目要求的. )1. (2分)(2014•常州)﹣的相反数是( )A. B. ﹣ C. ﹣2 D. 2考点: 相反数.分析: 根据只有符号不同的两个数互为相反数, 可得一个数的相反数.解答: 解: ﹣ 的相反数是 ,故选:A.故选: A .故选:A .点评: 本题考查了相反数, 在一个数的前面加上负号就是这个数的相反数.2. (2分)(2014•常州)下列运算正确的是( )A. a •a 3=a 3B. (ab )3=a 3bC. (a 3)2=a 6D. a 8÷a 4=a 2考点: 同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析: 根据同底数幂的乘法与除法以及幂的乘方与积的乘方的知识求解即可求得答案.解答: 解: A.a •a3=a4, 故A 选项错误;B.(ab )3=a3b3, 故B 选项错误;C.(a3)2=a6, 故C 选项正确;D 、a8÷a4=a4, 故D 选项错误.故选:C.故选: C .故选:C .点评: 此题考查了同底数幂的乘法与除法以及幂的乘方与积的乘方等知识, 熟记法则是解题的关键.A. B. C. D.3. (2分)(2014•常州)下列立体图形中, 侧面展开图是扇形的是()考点: 几何体的展开图.分析: 圆锥的侧面展开图是扇形.解答: 解: 根据圆锥的特征可知, 侧面展开图是扇形的是圆锥.故选B.故选B.点评: 解题时勿忘记圆锥的特征及圆锥展开图的情形.A. 甲B. 乙C. 丙D. 丁4. (2分)(2014•常州)甲、乙、丙、丁四人进行射击测试, 每人10次射击成绩平均数均是9.2环,方差分别为S甲2=0.56, S乙2=0.60, S丙2=0.50, S丁2=0.45,则成绩最稳定的是()考点: 方差.分析: 根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量, 方差越小, 表明这组数据分布比较集中, 各数据偏离平均数越小, 即波动越小, 数据越稳定.解答: 解;∵S甲2=0.56, S乙2=0.60, S丙2=0.50, S丁2=0.45,∴S丁2=<S丙2<S甲2<S乙2,∴成绩最稳定的是丁;故选D.故选D.点评: 本题考查方差的意义.方差是用来衡量一组数据波动大小的量, 方差越大, 表明这组数据偏离平均数越大, 即波动越大, 数据越不稳定;反之, 方差越小, 表明这组数据分布比较集中, 各数据偏离平均数越小, 即波动越小, 数据越稳定.5. (2分)A. 相交B. 外切C. 内切D. 外离(2014•常州)已知两圆半径分别为3cm,5cm, 圆心距为7cm, 则这两圆的位置关系为()考点: 圆与圆的位置关系.分析: 根据数量关系来判断两圆的位置关系.设两圆的半径分别为R和r, 且R≥r, 圆心距为d:外离, 则d>R+r;外切, 则d=R+r;相交, 则R﹣r<d<R+r;内切, 则d=R﹣r;内含, 则d<R﹣r.解答: 解: ∵两圆的半径分别是3cm和5cm, 圆心距为7cm,5﹣3=2, 3+5=8,∴2<7<8,∴两圆相交.故选A.故选A.点评: 此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d, 两圆半径R, r的数量关系间的联系是解此题的关键.6. (2分)A. 第二, 三象限B. 第一, 三象限C. 第三, 四象限D. 第二, 四象限(2014•常州)已知反比例函数y=的图象经过点P(﹣1,2), 则这个函数的图象位于()考点: 反比例函数的性质;待定系数法求反比例函数解析式. 21世纪教育网专题: 压轴题;待定系数法.分析: 先把点代入函数解析式, 求出k值, 再根据反比例函数的性质求解即可.解答: 解: 由题意得, k=﹣1×2=﹣2<0,∴函数的图象位于第二, 四象限.故选:D.故选: D.故选:D.点评: 本题考查了反比例函数的图象的性质:k>0时, 图象在第一、三象限, k<0时, 图象在第二、四象限.7. (2分)(2014•常州)甲、乙两人以相同路线前往距离单位10km的培训中心参加学习. 图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象. 以下说法: ①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km 后遇到甲;④乙出发6分钟后追上甲. 其中正确的有()A. 4个B. 3个C. 2个D. 1个考点: 函数的图象.分析: 观察函数图象可知, 函数的横坐标表示时间, 纵坐标表示路程, 然后根据图象上特殊点的意义进行解答.解答: 解: ①乙在28分时到达, 甲在40分时到达, 所以乙比甲提前了12分钟到达;故①正确;②根据甲到达目的地时的路程和时间知: 甲的平均速度=10÷=15千米/时;故②正确;④设乙出发x分钟后追上甲, 则有: ×x= ×(18+x), 解得x=6, 故④正确;③由④知: 乙第一次遇到甲时, 所走的距离为: 6×=6km, 故③错误;所以正确的结论有三个:①②④,故选B.故选B.点评: 读函数的图象时首先要理解横纵坐标表示的含义, 理解问题叙述的过程, 能够通过图象得到函数是随自变量的增大, 知道函数值是增大还是减小.A. 1个B. 2个C. 3个D. 4个8. (2分)(2014•常州)在平面直角坐标系xOy中,直线l经过点A(﹣3,0), 点B(0, ),点P的坐标为(1,0), ⊙P与y轴相切于点O. 若将⊙P沿x轴向左平移, 平移后得到⊙P′(点P的对应点为点P′), 当⊙P′与直线l相交时, 横坐标为整数的点P′共有()考点: 直线与圆的位置关系;一次函数的性质.分析: 在解答本题时要先求出⊙P的半径, 继而求得相切时P′点的坐标, 根据A(﹣3, 0), 可以确定对应的横坐标为整数时对应的数值.解答: 解: 如图所示, ∵点P的坐标为(1, 0), ⊙P与y轴相切于点O,∴⊙P的半径是1,若⊙P与AB相切时, 设切点为D, 由点A(﹣3, 0), 点B(0, ),∴OA=3, OB= , 由勾股定理得: AB=2 , ∠DAM=30°,设平移后的圆心为M(即对应的P′),∴MD⊥AB, MD=1, 又因为∠DAM=30°,所以M点的坐标为(﹣1, 0), 即对应的P′点的坐标为(﹣1, 0),所以当⊙P′与直线l相交时, 横坐标为整数的点的横坐标可以是﹣2, ﹣3, ﹣4共三个.故选:C.点评: 本题考查了圆的切线的性质的综合应用, 解答本题的关键在于找到圆与直线相切时对应的圆心的坐标, 然后结合A点的坐标求出对应的圆心的横坐标的整数解.二、填空题(本大题共9小题, 每小题4分, 满分20分.)9.(4分)(2014•常州)计算:|﹣1|=1, 2﹣2=, (﹣3)2=9, =﹣2.考点: 立方根;绝对值;有理数的乘方;负整数指数幂.分析: 运用立方根, 绝对值, 有理数的乘方和负整数指数幂的法则计算.解答: 解: : |﹣1|=1,2﹣2=,(﹣3)2=9,=﹣2.故答案为:1, , 9, ﹣2.故答案为:1,,9,﹣2.故答案为: 1,,9,﹣2.故答案为:1,,9,﹣2.点评: 本题主要考查了立方根, 绝对值, 有理数的乘方和负整数指数幂的知识, 解题的关键是熟记法则.10. (2分)(2014•常州)已知P(1, ﹣2), 则点P关于x轴的对称点的坐标是(1, 2). 考点: 关于x轴、y轴对称的点的坐标.分析: 根据关于x轴对称点的坐标特点:横坐标不变, 纵坐标互为相反数.即点P(x, y)关于x轴的对称点P′的坐标是(x, ﹣y), 进而得出答案.解答: 解: ∵P(1, ﹣2),∴点P关于x轴的对称点的坐标是:(1, 2).故答案为:(1, 2).故答案为:(1,2).故答案为: (1,2).故答案为:(1,2).点评: 此题主要考查了关于x轴对称点的性质, 正确记忆关于坐标轴对称点的性质是解题关键.11. (2分)(2014•常州)若∠α=30°, 则∠α的余角等于60度, sinα的值为.考点: 特殊角的三角函数值;余角和补角分析: 根据互为余角的两个角的和为90度求得∠α的余角的度数;根据特殊角的三角函数值求得sinα的值.解答: 6解: ∵∠A=30°,∴∠A的余角是: 90°﹣30°=60°;sinα=sin30°=,故答案为:60, .故答案为:60,.故答案为: 60,.故答案为:60,.点评: 本题主要考查了特殊角的三角函数值以及余角的定义:如果两个角的和是一个直角, 那么称这两个角互为余角, 简称互余;也可以说其中一个角是另一个角的余角,12. (2分)(2014•常州)已知扇形的半径为3cm, 此扇形的弧长是2πcm, 则此扇形的圆心角等于120度, 扇形的面积是3πcm2. (结果保留π)考点: 扇形面积的计算;弧长的计算.分析: 设扇形的圆心角的度数是n°, 根据弧长公式即可列方程求得n的值, 然后利用扇形的面积公式即可求得扇形的面积.解答: 解: 设扇形的圆心角的度数是n°, 则=2π,解得: n=120,扇形的面积是:=3π(cm2).故答案是:120, 3πcm2.故答案是:120,3πcm2.故答案是: 120,3πcm2.故答案是:120,3πcm2.点评: 本题考查弧长公式和扇形的面积公式, 正确记忆公式是关键.13. (2分)(2014•常州)已知反比例函数y=, 则自变量x的取值范围是x≠0;若式子的值为0, 则x=﹣3.考点: 函数自变量的取值范围;二次根式的定义;反比例函数的定义. 21世纪教育网分析: 根据分母不等于0列式计算即可得解;根据二次根式的定义列出方程求解即可.根据二次根式的定义列出方程求解即可.解答: 解: 反比例函数y=的自变量x的取值范围是x≠0,=0,解得x=﹣3.故答案为:x≠0, ﹣3.故答案为:x≠0,﹣3.故答案为: x≠0,﹣3.故答案为:x≠0,﹣3.点评: 本题考查了函数自变量的范围, 一般从三个方面考虑:(1)当函数表达式是整式时, 自变量可取全体实数;(2)当函数表达式是分式时, 考虑分式的分母不能为0;(3)当函数表达式是二次根式时, 被开方数非负.(3)当函数表达式是二次根式时,被开方数非负.(3)当函数表达式是二次根式时,被开方数非负.14. (2分)(2014•常州)已知关于x的方程x2﹣3x+m=0的一个根是1, 则m=2, 另一个根为2.考点: 一元二次方程的解;根与系数的关系.分析: 根据方程有一根为1, 将x=1代入方程求出m的值, 确定出方程, 即可求出另一根.解答: 解: 将x=1代入方程得: 1﹣3+m=0,解得: m=2,方程为x2﹣3x+2=0, 即(x﹣1)(x﹣2)=0,解得: x=1或x=2,则另一根为2.故答案为:2, 2.故答案为:2,2.故答案为: 2,2.故答案为:2,2.点评: 此题考查了一元二次方程的解, 方程的解即为能使方程左右两边相等的未知数的值.15. (2分)(2014•常州)因式分解: x3﹣9xy2=x(x+3y)(x﹣3y).考点: 提公因式法与公式法的综合运用.分析: 先提取公因式x, 再对余下的多项式利用平方差公式继续分解.解答: 解: x3﹣9xy2,=x(x2﹣9y2),=x(x+3y)(x﹣3y).=x(x+3y)(x﹣3y).点评: 本题考查了提公因式法与公式法进行因式分解, 一个多项式有公因式首先提取公因式, 然后再用其他方法进行因式分解, 同时因式分解要彻底, 直到不能分解为止.16. (2分)(2014•常州)在平面直角坐标系xOy中, 一次函数y=10﹣x的图象与函数y=(x >0)的图象相交于点A, B. 设点A的坐标为(x1, y1), 那么长为x1, 宽为y1的矩形的面积为6, 周长为20.考点: 反比例函数与一次函数的交点问题.分析: 解由两函数组成的方程组, 求出A的坐标, 再根据矩形的性质求出面积和周长即可.解答: 解: 解方程组得: , ,根据图象知: x1=5﹣, y1=5﹣,即长为x1, 宽为y1的矩形的面积是(5﹣)×(5+ )=6, 周长是2(5﹣+5+ )=20,故答案为:6, 20.故答案为:6,20.故答案为: 6,20.故答案为:6,20.点评: 此题主要考查了一次函数与反比例函数的交点, 必须先求出交点坐标, 难易程度适中.17. (2分)(2014•常州)在平面直角坐标系xOy中, 已知一次函数y=kx+b(k≠0)的图象过点P(1, 1), 与x轴交于点A, 与y轴交于点B, 且tan∠ABO=3, 那么点A的坐标是(﹣2, 0)或(4, 0).考点: 待定系数法求一次函数解析式;锐角三角函数的定义专题: 压轴题.分析: 已知tan∠ABO=3就是已知一次函数的一次项系数是或﹣.根据函数经过点P, 利用待定系数法即可求得函数解析式, 进而可得到A的坐标.解答: 解: 在Rt△AOB中, 由tan∠ABO=3, 可得OA=3OB, 则一次函数y=kx+b中k=±.∵一次函数y=kx+b(k≠0)的图象过点P(1, 1),∴当k=时, 求可得b=;k=﹣时, 求可得b=.即一次函数的解析式为y=x+或y=﹣x+.令y=0, 则x=﹣2或4,∴点A的坐标是(﹣2, 0)或(4, 0).故答案为:(﹣2, 0)或(4, 0).点评: 本题考查求一次函数的解析式及交点坐标.三、解答题(本大题共2小题, 满分18分, 解答应写出文字说明、证明过程或演算步骤)18. (8分)(2014•常州)计算与化简:(1)﹣(﹣)0+2tan45°;(2)x(x﹣1)+(1﹣x)(1+x).考点: 整式的混合运算;实数的运算;零指数幂;特殊角的三角函数值.分析: (1)先求出每一部分的值, 再代入合并即可;(2)先算乘法, 再合并同类项即可.(2)先算乘法,再合并同类项即可.(2)先算乘法,再合并同类项即可.解答: 解: (1)原式=2﹣1+2×1=2﹣1+2=﹣1;(2)原式=x2﹣x+1﹣x2=1﹣x.=1﹣x.点评: 本题考查了二次根式的性质, 零指数幂, 特殊角的三角函数值, 整式的混合运算的应用, 主要考查学生的计算能力, 题目比较好, 难度适中.19. (10分)(2014•常州)解不等式组和分式方程:(1);(2).考点: 解一元一次不等式组;解分式方程专题: 计算题.分析: (1)分别求出不等式组中两不等式的解集, 找出解集的公共部分即可;(2)分式方程去分母转化为整式方程, 求出整式方程的解得到x的值, 经检验即可得到分式方程的解.(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答: 解: (1),由①得: x>1,由②得:x>﹣2,则不等式组的解集为: x>1;(2)去分母得: 3x+2=x﹣1,移项得: 3x﹣x=﹣1﹣2, 即2x=﹣3,解得:x=﹣,经检验x=﹣是分式方程的解.经检验x=﹣是分式方程的解.点评: 此题考查了解一元一次不等式组, 以及解分式方程, 熟练掌握运算法则是解本题的关键.四.解答题:20. (7分)(2014•常州)为迎接“六一”儿童节的到来, 某校学生参加献爱心捐款活动, 随机抽取该校部分学生的捐款数进行统计分析, 相应数据的统计图如下:(1)该校本的容量是50, 样本中捐款15元的学生有10人;(2)若该校一共有500名学生, 据此样本估计该校学生的捐款总数.考点: 条形统计图;用样本估计总体;扇形统计图.分析: (1)用捐5元的人数除以所占的百分比即是样本容量, 用总人数减去捐5元与10元的人数即是捐款15元的学生人数;(2)求出平均每人的捐款数再乘以该校人数即可得学生的捐款总数.(2)求出平均每人的捐款数再乘以该校人数即可得学生的捐款总数.解答: 解: (1)15÷30%=50(人), 50﹣15﹣25=10(人),故答案为:50, 10;(2)平均每人的捐款数为: ×(5×15+10×25+15×10)=9.5(元),9.5×500=4750(元),答:该校学生的捐款总数为4750元.答: 该校学生的捐款总数为4750元.答:该校学生的捐款总数为4750元.点评: 本题考查的是条形统计图和扇形统计图的综合运用, 读懂统计图, 从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21. (8分)(2014•常州)一只不透明的箱子里共有3个球, 把它们的分别编号为1, 2, 3, 这些球除编号不同外其余都相同.(1)从箱子中随机摸出一个球, 求摸出的球是编号为1的球的概率;(2)从箱子中随机摸出一个球, 记录下编号后将它放回箱子, 搅匀后再摸出一个球并记录下编号, 求两次摸出的球都是编号为3的球的概率.考点: 列表法与树状图法;概率公式.分析: (1)直接利用概率公式求解即可;(2)首先列出树状图, 然后利用概率公式求解即可.(2)首先列出树状图,然后利用概率公式求解即可.(2)首先列出树状图,然后利用概率公式求解即可.解答: 解: (1)从箱子中随机摸出一个球, 摸出的球是编号为1的球的概率为: ;(2)画树状图如下:共有9种等可能的结果, 两次摸出的球都是编号为3的球的概率为.共有9种等可能的结果,两次摸出的球都是编号为3的球的概率为.共有9种等可能的结果,两次摸出的球都是编号为3的球的概率为.点评: 本题考查了列表法与树状图法级概率公式, 难点在于正确的列出树形图, 难点中等.五.解答题(本大题共2小题, 共12分, 请在答题卡指定区域内作答, 解答应写出证明过程)22.(5分)(2014•常州)已知: 如图, 点C为AB中点, CD=BE, CD∥BE.求证:△ACD≌△CBE.考点: 全等三角形的判定专题: 证明题.分析: 根据中点定义求出AC=CB, 根据两直线平行, 同位角相等, 求出∠ACD=∠B, 然后利用SAS即可证明△ACD≌△CBE.解答: 证明: ∵C是AB的中点(已知),∴AC=CB(线段中点的定义).∵CD∥BE(已知),∴∠ACD=∠B(两直线平行, 同位角相等).在△ACD和△CBE中,,∴△ACD≌△CBE(SAS).∴△ACD≌△CBE(SAS).点评: 本题主要考查了全等三角形的判定方法, 判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等, 判定两个三角形全等时, 必须有边的参与, 若有两边一角对应相等时, 角必须是两边的夹角.23. (7分)(2014•常州)已知: 如图, E, F是四边形ABCD的对角线AC上的两点, AF=CE, 连接DE, DF, BE, BF. 四边形DEBF为平行四边形.求证:四边形ABCD是平行四边形.考点: 平行四边形的判定与性质. 21世纪教育网专题: 证明题.分析: 由“平行四边形的对角线相互平分”推知OD=OB, OE=OF;然后结合已知条件推知四边形ABCD的对角线互相平分, 则易证得结论.解答: 证明: 如图, 连结BD交AC于点O.∵四边形DEBF为平行四边形,∴OD=OB, OE=OF,∵AF=CE,∴AF﹣EF=CE﹣EF, 即AE=CF,∴AE+OE=CF+OF, 即OA=OC∴四边形ABCD是平行四边形.点评: 本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种, 应用时要认真领会它们之间的联系与区别, 同时要根据条件合理、灵活地选择方法.六.画图与应用(本大题共5小题, 请在答题卡指定区域内作答, 共14分)24.(7分)(2014•常州)在平面直角坐标系xOy中, 如图, 已知Rt△DOE, ∠DOE=90°, OD=3, 点D在y轴上, 点E在x轴上, 在△ABC中, 点A, C在x轴上, AC=5.∠ACB+∠ODE=180°, ∠ABC=∠OED, BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M, 点E 的对应点为点N), 画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中点A, B, C的对应点分别为点A′, B′, C′), 使得B′C′与(1)中的△OMN的边NM重合;(3)求OE的长.考点: 作图-旋转变换;作图-平移变换.专题: 作图题.分析: (1)以点O为圆心, 以OE为半径画弧, 与y轴正半轴相交于点M, 以OD为半径画弧, 与x轴负半轴相交于点N, 连接MN即可;(2)以M为圆心, 以AC长为半径画弧与x轴负半轴相交于点A′, B′与N重合, C′与M重合, 然后顺次连接即可;(3)设OE=x, 则ON=x, 作MF⊥A′B′于点F, 判断出B′C′平分∠A′B′O, 再根据角平分线上的点到角的两边距离相等和角平分线的对称性可得B′F=B′O=OE=x, F C′=O C′=OD=3, 利用勾股定理列式求出A′F, 然后表示出A′B′、A′O, 在Rt△A′B′O中, 利用勾股定理列出方程求解即可.(3)设OE=x,则ON=x,作MF⊥A′B′于点F,判断出B′C′平分∠A′B′O,再根据角平分线上的点到角的两边距离相等和角平分线的对称性可得B′F=B′O=OE=x,F C′=O C′=OD=3,利用勾股定理列式求出A′F,然后表示出A′B′、A′O,在Rt△A′B′O中,利用勾股定理列出方程求解即可.(3)设OE=x,则ON=x,作MF⊥A′B′于点F,判断出B′C′平分∠A′B′O,再根据角平分线上的点到角的两边距离相等和角平分线的对称性可得B′F=B′O=OE=x,F C′=O C′=OD=3,利用勾股定理列式求出A′F,然后表示出A′B′、A′O,在Rt△A′B′O中,利用勾股定理列出方程求解即可.解答: 解: (1)△OMN如图所示;(2)△A′B′C′如图所示;(3)设OE=x, 则ON=x, 作MF⊥A′B′于点F,由作图可知: B′C′平分∠A′B′O, 且C′O⊥O B′,所以, B′F=B′O=OE=x, F C′=O C′=OD=3,∵A′C′=AC=5,∴A′F= =4,∴A′B′=x+4, A′O=5+3=8,在Rt△A′B′O中, x2+82=(4+x)2,解得x=6,即OE=6.点评: 本题考查了利用旋转变换作图, 利用平移变换作图, 勾股定理, 熟练掌握性质变化与平移变化的性质是解题的关键.38 36 34 32 30 28 2625. (7分)(2014•常州)某小商场以每件20元的价格购进一种服装, 先试销一周, 试销期间每天的销量(件)与每件的销售价x(元/件)如下表:x(元/件)t件) 4 8 12 16 20 24 28假定试销中每天的销售号(件)与销售价x(元/件)之间满足一次函数.(1)试求与x之间的函数关系式;(2)在商品不积压且不考虑其它因素的条件下, 每件服装的销售定价为多少时, 该小商场销售这种服装每天获得的毛利润最大?每天的最大毛利润是多少?(注: 每件服装销售的毛利润=每件服装的销售价﹣每件服装的进货价)考点: 二次函数的应用. 21世纪教育网分析: (1)设y与x的函数关系式为t=kx+b, 将x=38, y=4;x=36, y=8分别代入求出k、b, 即可得到t与x之间的函数关系式;(2)根据利润=(售价﹣成本)×销售量列出函数关系式, 利用二次函数的性质即可求出小商场销售这种服装每天获得的毛利润最大值以及每天的最大毛利润是多少.(2)根据利润=(售价﹣成本)×销售量列出函数关系式,利用二次函数的性质即可求出小商场销售这种服装每天获得的毛利润最大值以及每天的最大毛利润是多少.(2)根据利润=(售价﹣成本)×销售量列出函数关系式,利用二次函数的性质即可求出小商场销售这种服装每天获得的毛利润最大值以及每天的最大毛利润是多少.解答: 解: (1)设与x之间的函数关系式为: t=kx+b, 因为其经过(38, 4)和(36, 8)两点, ∴,解得: .故y=﹣2x+80.(2)设每天的毛利润为w元, 每件服装销售的毛利润为(x﹣20)元, 每天售出(80﹣2x)件,则w=(x﹣20)(80﹣2x)=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,当x=30时, 获得的毛利润最大, 最大毛利润为200元.当x=30时,获得的毛利润最大,最大毛利润为200元.当x=30时,获得的毛利润最大,最大毛利润为200元.点评: 本题主要考查运用待定系数法求一次函数的解析式及二次函数的应用, 根据利润=(售价﹣成本)×销售量列出函数关系式, 另外要熟练掌握二次函数求最值的方法.26. (8分)(2014•常州)我们用[a]表示不大于a的最大整数, 例如: [2.5]=2, [3]=3, [﹣2.5]=﹣3;用<a>表示大于a的最小整数, 例如: <2.5>=3, <4>=5, <1.5>>=﹣1. 解决下列问题:(1)[﹣4.5]=﹣5, <3.5>=4.(2)若[x]=2, 则x的取值范围是1<x≤2;若<y>=﹣1, 则y的取值范围是﹣2≤y <﹣1.(3)已知x, y满足方程组, 求x, y的取值范围.考点: 一元一次不等式组的应用. 21世纪教育网专题: 新定义.分析: (1)根据题目所给信息求解;(2)根据[2.5]=2, [3]=3, [﹣2.5]=﹣3, 可得[x]=2中的1<x≤2, 根据<a>表示大于a 的最小整数, 可得<y>=﹣1中, ﹣2≤y<﹣1;(3)先求出[x]和<y>的值, 然后求出x和y的取值范围.(3)先求出[x]和<y>的值,然后求出x和y的取值范围.(3)先求出[x]和<y>的值,然后求出x和y的取值范围.解答: 解: (1)由题意得, [﹣4.5]=﹣5, <3.5>=4;(2)∵[x]=2,∴则x的取值范围是1<x≤2;∵<y>=﹣1,∴y的取值范围是﹣2≤y<﹣1;(3)解方程组得: ,∴x, y的取值范围分别为﹣1≤x<0, 2≤y<3.∴x,y的取值范围分别为﹣1≤x<0,2≤y<3.∴x,y的取值范围分别为﹣1≤x<0,2≤y<3.点评: 本题考查了一元一次不等式组的应用, 解答本题的关键是读懂题意, 根据题目所给的信息进行解答.27. (7分)(2014•常州)在平面直角坐标系xOy中, 二次函数y=﹣x2+x+2的图象与x轴交于点A, B(点B在点A的左侧), 与y轴交于点C. 过动点H(0, m)作平行于x轴的直线l, 直线l与二次函数y=﹣x2+x+2的图象相交于点D, E.(1)写出点A, 点B的坐标;(2)若m>0, 以DE为直径作⊙Q, 当⊙Q与x轴相切时, 求m的值;(3)直线l上是否存在一点F, 使得△ACF是等腰直角三角形?若存在, 求m的值;若不存在, 请说明理由.考点: 二次函数综合题. 21世纪教育网分析: (1)A.B两点的纵坐标都为0, 所以代入y=0, 求解即可.(2)由圆和抛物线性质易得圆心Q位于直线与抛物线对称轴的交点处, 则Q的横坐标为, 可推出D、E两点的坐标分别为:(﹣m, m), (+m, m).因为D、E都在抛物线上, 代入一点即可得m.(3)使得△ACF是等腰直角三角形, 重点的需要明白有几种情形, 分别以三边为等腰三角形的两腰或者底, 则共有3种情形;而三种情形中F点在AC的左下或右上方又各存在2种情形, 故共有6种情形.求解时.利用全等三角形知识易得m的值.(3)使得△ACF是等腰直角三角形,重点的需要明白有几种情形,分别以三边为等腰三角形的两腰或者底,则共有3种情形;而三种情形中F点在AC的左下或右上方又各存在2种情形,故共有6种情形. 求解时. 利用全等三角形知识易得m的值.(3)使得△ACF是等腰直角三角形,重点的需要明白有几种情形,分别以三边为等腰三角形的两腰或者底,则共有3种情形;而三种情形中F点在AC的左下或右上方又各存在2种情形,故共有6种情形.求解时.利用全等三角形知识易得m的值.解答: 解: (1)当y=0时, 有,解得: x1=4, x2=﹣1,∴A、B两点的坐标分别为(4, 0)和(﹣1, 0).(2)∵⊙Q与x轴相切, 且与交于D.E两点,∴圆心Q位于直线与抛物线对称轴的交点处,∵抛物线的对称轴为, ⊙Q的半径为H点的纵坐标m(m>0),∴D.E两点的坐标分别为: (﹣m, m), (+m, m)∵E点在二次函数的图象上,∴,解得或(不合题意, 舍去).(3)存在.①如图1,当∠ACF=90°, AC=FC时, 过点F作FG⊥y轴于G,∴∠AOC=∠CGF=90°,∵∠ACO+∠FCG=90°, ∠GFC+∠FCG=90°,∴∠ACO=∠CFG,∴△ACO≌△∠CFG,∴CG=AO=4,∵CO=2,∴m=OG=2+4=6;反向延长FC, 使得CF=CF′, 此时△ACF′亦为等腰直角三角形,易得yC﹣yF′=CG=4,∴m=CO﹣4=2﹣4=﹣2.②如图2,当∠CAF=90°, AC=AF时, 过点F作FP⊥x轴于P,∵∠AOC=∠APF=90°, ∠ACO+∠OAC=90°, ∠FAP+∠OAC=90°,∴∠ACO=∠FAP,∴△ACO≌△∠FAP,∴FP=AO=4,∴m=FP=4;反向延长FA, 使得AF=AF′, 此时△ACF’亦为等腰直角三角形,易得yA﹣yF′=FP=4,∴m=0﹣4=﹣4.③如图3,当∠AFC=90°, FA=FC时, 则F点一定在AC的中垂线上, 此时存在两个点分别记为F, F′,分别过F, F′两点作x轴、y轴的垂线, 分别交于E, G, D, H.∵∠DFC+∠CFE=∠CFE+∠EFA=90°,∴∠DFC=∠EFA,∵∠CDF=∠AEF, CF=AF,∴△CDF≌△AEF,∴CD=AE, DF=EF,∴四边形OEFD为正方形,∴OA=OE+AE=OD+AE=OC+CD+AE=OC+2CD,∴4=2+2•CD,∴CD=1,∴m=OC+CD=2+1=3.∵∠HF′C+∠CGF′=∠CGF′+∠GF′A,∴∠HF′C=∠GF′A,∵∠HF′C=∠GF′A, CF′=AF′,∴△HF′C≌△GF′A,∴HF′=GF′, CH=AG,∴四边形OHF′G为正方形,∴OH=CH﹣CO=AG﹣CO=AO﹣OG﹣CO=AO﹣OH﹣CO=4﹣OH﹣2,∴OH=1,∴m=﹣1.∵y=﹣x2+x+2=﹣(x﹣)2+ ,∴y的最大值为.∵直线l与抛物线有两个交点, ∴m<.∴m可取值为:﹣4、﹣2、﹣1或3.综上所述, 直线l上存在一点F, 使得△ACF是等腰直角三角形, m的值为﹣4、﹣2、﹣1或3.综上所述,直线l上存在一点F,使得△ACF是等腰直角三角形,m的值为﹣4、﹣2、﹣1或3.综上所述,直线l上存在一点F,使得△ACF是等腰直角三角形,m的值为﹣4、﹣2.﹣1或3.综上所述,直线l上存在一点F,使得△ACF是等腰直角三角形,m的值为﹣4.﹣2、﹣1或3.综上所述,直线l上存在一点F,使得△ACF是等腰直角三角形,m的值为﹣4、﹣2、﹣1或3.点评: 本题难度适中, 考查的主要是二次函数、圆、等腰直角三角形及全等三角形性质, 但是最后一问情形较多不易找全, 非常锻炼学生的全面思考.28. (10分)(2014•常州)在平面直角坐标系xOy中, 点M(, ), 以点M为圆心, OM 长为半径作⊙M. 使⊙M与直线OM的另一交点为点B, 与x轴, y轴的另一交点分别为点D, A (如图), 连接AM. 点P是上的动点. 21·cn·jy·com(1)写出∠AMB的度数;(2)点Q在射线OP上, 且OP•OQ=20, 过点Q作QC垂直于直线OM, 垂足为C, 直线QC 交x轴于点E. 21·世纪*教育网①当动点P与点B重合时, 求点E的坐标;。
数学(考试时间:120分钟满分:120分)注意事项:1.试卷分为试题卷和答题卡两部分,在本试...题.卷上作答无效........2.答题前,请认真阅读答题....卡.上的注意事项.......3.考试结束后,将本试卷和答题......卡.一并交回.一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题..卡.上对应题目的答案标号涂黑).1.在0,-1,2,-1.5这四个数中,是负整数的是A. -1B. 0C. 2D. -1.5(知识范围:有理数能力:了解难度: 0.95)2.如图,与∠1是同位角的是A.∠2 B.∠3 C.∠4 D.∠5(知识范围:同位角能力:了解难度: 0.95)3.如图,数轴上点N表示的数可能是A.10B.5C.3D.2(知识范围:实数、数轴能力:理解难度: 0.90)4.下面四个图案是某种衣物的说明标识,其中没有用到图形的平移、旋转或轴对称设计的是(知识范围:图形的平移、旋转和对称能力:了解难度: 0.95)5.在一次多人参加的男子马拉松长跑比赛中,其中一名选手要判断自己的成绩是否比一半以上选手的成绩好,他可以根据这次比赛中全部选手成绩的哪一个统计结果进行比较(A)平均数(B)众数(C)极差(D)中位数(知识范围:统计能力:理解难度: 0.85)6.下列计算正确的是(A) 222)(nmmm-=-(B) 62232)2(baab=(C) aaa283=(D) xyxyxy532=+(知识范围:有关运算能力:理解难度: 0.85)7.图l是由六个小正方体组合而成的一个立体图形,它的主视图是(知识范围:视图能力:了解难度: 0.90)第2题图第3题图8.若分式xx x 2422--的值为零,则x 的值为A. -2B. 2C. 0D.-2或2(知识范围: 分式,因式分解 能力: 理解 难度: 0.8)9.如图,一个圆锥形零件,高为8cm ,底面圆的直径为12cm ,则 此圆锥的侧面积是A. 260cm π B. 248cm π C. 296cm π D. 230cm π(知识范围:圆锥侧面展开 能力:掌握 难度: 0.75)10.如图,在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3y x =(0x >)上的一个动点,当点B 的横坐标逐渐增大时,OAB △的面积将会 A.逐渐增大 B .不变 C .逐渐减小 D .先增大后减小(知识范围:反比例函数 能力: 掌握 难易程度: 0.75) 11.一个边长为4的等边三角形ABC 的高与⊙O 的直径相等,如图放置, ⊙O 与BC 相切于点C ,⊙O 与AC 相交于点E ,则CE 的长是: A. 32 B .3 C .2 D .3(知识范围: 圆,三角形 能力 : 灵活运用 难度: 0.60)12.如图,已知扇形的圆心角为︒60,半径为1,将它沿着箭头方向无滑动滚动到B A O '''位置,则有:①点O 到O '的路径是1OO →21O O →O O '2; ②点O 到O '的路径是⋂1OO →⌒21O O →⋂'O O 2; ③点O 在1O →2O 段上的运动路径是线段21O O ; ④点O 到O '所经过的路径长为π34; 以上命题正确的序号是:A. ②③ B .③④ C .①④ D .②④(知识范围: 图形旋转、圆的弧长 能力: 灵活运用 难度: 0.40) 二、填空题(共6小题,每小题3分,共18分,请将答案填在答题..卡.上). 13.函数42-=x y 的自变量x 的取值范围是___________。
2014~2015常州市教育学会九年级数学新课结束考试 2015.4一、选择题(本大题共有8小题,每小题2分,共16分。
)1.已知⊙O的半径为4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是()A.相交 B.相切 C.相离 D.无法确定2.设边长为3的正方形的对角线长为a,下列关于a的四种说法:① a是无理数;② a可以用数轴上的一个点来表示;③ 3<a<4;④ a是18的算术平方根。
其中,所有正确说法的序号是()A.①④ B.②③ C.①②④D.①③④3.在Rt△ABC中,∠C=90°,AC=12,BC=5,那么tanA等于()A. 5 13 B. 12 13 C. 5 12 D. 12 54.下列说法中错误的是()A .某种彩票的中奖率为1 %,买100 张彩票一定有1 张中奖B .从装有10 个红球的袋子中,摸出1 个白球是不可能事件C .为了解一批日光灯的使用寿命,可采用抽样调查的方式D.掷一枚普通的正六面体骰子,出现向上一面点数是2的概率是5.下列命题,其中正确命题的个数为()(1)等边三角形是中心对称图形;(2)一组对边平行,另一组对边相等的四边形是平行四边形;(3)两条对角线互相垂直的矩形是正方形;(4)两条对角线互相垂直的四边形是菱形.A.1个B.2个C.3个D.4个6.抛物线y=-x2+x-1与坐标轴(含x轴、y轴)的公共点的个数是()A.0 B.1 C.2 D.37.如图,在△ABC中,点D、E分别在AB、AC上,且DE∥BC,S△ADE:S△BDE=1:2,则S△ADE:S△BEC=()A.1:4B.1:6C.1:8D.1:98.已知点D与点A(0,6),B(0,-4),C(x,y)是平行四边形的四个顶点,其中x,y满足3x-4y+12=0,则CD长的最小值为()A.10B.72C.516D.4二、填空题(本大题共有9小题,每小题2分,共18分。
2014年初三年级数学测试卷答案一、选择题(本题共32分,每小题4分)1.D2.A3.C4.C5.B6.B7.D8.C二、填空题(本题共16分,每小题4分)9.-110.答案不唯一,如平行四边形11.12.1+,,(第1、2每个空各1分,第3个空2分)三、解答题(本题共30分,每小题5分)13.证明:∵AE=CF,AE+EF=CF+EF.即AF=CE.1分∵AD∥BC,C.2分又∵AD=BC,3分△ADF≌△CBE.4分DF=BE.5分14.解:原式4分=.5分15.解:将方程整理,得.去分母,得x-3+3+x-2=0.2分解得x=1.3分经检验x=1是原分式方程的解.4分原分式方程的解为x=1.5分16.解:原式=2分=.3分∵x-5y=0,x=5y.4分原式=.5分17.解:设一支康乃馨的价格是x元,一支百合的价格是y元.1分根据题意,得3分解得4分答:一支康乃馨的价格是6元,一支百合的价格是8元.5分18.解:(1)根据题意,得0.1分即-43(1-k)0.解得k-2.2分∵k为负整数,k=-1,-2.3分(2)当k=-1时,不符合题意,舍去;4分当k=-2时,符合题意,此时方程的根为x1=x2=1.5分四、解答题(本题共20分,题每小题5分)19.解:(1)在Rt△ABC中,∵AB=,B=60,AC=ABsin60=6.2分(2)作DEAC于点E,∵DAB=90,BAC=30,DAE=60,∵AD=2,DE=.3分AE=1.∵AC=6,CE=5.4分在Rt△DEC中,..5分20.解:(1)14.5,3.4;2分(2)①=9.4(分);4分②120(人).5分估计在报名的学生中有102人得分不少于9分.21.(1)证明:如图①,连接AD.∵E是的中点,.DAE=EAB.∵C=2EAB,C=BAD.∵AB是⊙O的直径,ADB=ADC=90.CAD=90.BAD+CAD=90.即BAAC.AC是⊙O的切线.2分(2)解:如图②,过点F做FHAB于点H. ∵ADBD,DAE=EAB,FH=FD,且FH∥AC.在Rt△ADC中,∵,AC=6,CD=4.3分同理,在Rt△BAC中,可求得BC=9. BD=5.设DF=x,则FH=x,BF=5-x.∵FH∥AC,BFH=C..即.4分解得x=2.BF=3.5分22.解:(1)如图1分(2);3分(3)当点P在线段CB的延长线上时,(2)中结论仍然成立.理由如下:过点P分别作两坐标轴的平行线,与x轴、y轴分别交于点M、N,则四边形ONPM为平行四边形,且PN=x,PM=-y.OM=x,BM=5-x.∵PM∥OC,△PMB∽△COB.4分,即..5分本文导航1、首页2、初三年级数学测试卷答案-2五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.解:(1)1;1分(2)∵OP=m,MN=(-m2+3m)-(-m2+2m)=m,OP=MN.2分①当0∵PM=-m2+2m,PN=-m2+3m.若PM=OP=MN,有-m2+2m=m,解得m=0,m=1(舍).3分若PN=OP=MN,有-m2+3m=m,解得m=0(舍),m=2(舍).4分②当2③当m3时,∵PM=m2-2m,PN=m2-3m.若PM=OP=MN,有m2-2m=m,解得m=0(舍),m=3(舍).6分若PN=OP=MN,有m2-3m=m,解得m=0(舍),m=4.7分综上,当m=1或m=4,这四条线段中恰有三条线段相等.24.解:(1)△CDF是等腰直角三角形.1分证明:∵ABC=90,AFAB,FAD=DBC.∵AD=BC,AF=BD,△FAD≌△DBC.FD=DC.2分2.∵3=90,3=90.即CDF=903分△CDF是等腰直角三角形.(2)过点A作AFAB,并截取AF=BD,连接DF、CF.4分∵ABC=90,AFAB,FAD=DBC.∵AD=BC,AF=BD,△FAD≌△DBC.FD=DC,2.∵3=90,3=90.即CDF=90.△CDF是等腰直角三角形.5分FCD=APD=45.FC∥AE.∵ABC=90,AFAB,AF∥CE.四边形AFCE是平行四边形.6分AF=CE.BD=CE.7分page]初三年级数学测试卷答案-3精心整理,仅供学习参考。
江苏省常州市九年级上学期期末数学试卷(五四学制)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2014·衢州) 下列四个几何体中,主视图为圆的是()A .B .C .D .2. (2分)(2020·哈尔滨模拟) 在△ABC中,∠C=90°,sinA= ,则cosB的值是()A . 1B .C .D .3. (2分)函数y=kx+b与函数y=在同一坐标系中的大致图象正确的是()A .B .C .D .4. (2分)如图,抛物线y=ax2+bx+c(a≠0)经过点(-1,0),对称轴为:直线x=1,则下列结论中正确的是()A . a>0B . 当x>1时,y随x的增大而增大C . c<0D . x=3是一元二次方程ax2+bx+c=0(a≠0)的一个根5. (2分) (2015七上·南山期末) 下面四个立体图形,从正面、左面、上面观察看到都是长方形的是()A .B .C .D .6. (2分)下列命题是假命题的是()A . 中心投影下,物高与影长成正比B . 平移不改变图形的形状和大小C . 三角形的中位线平行于第三边D . 圆的切线垂直于过切点的半径7. (2分)把抛物线y=5x2向上平移2个单位后,所得抛物线的解析式是()A . y=-5x2-2B . y=-5x2+2C . y=5x2-2D . y=5x2+28. (2分)如图,AC为⊙O的直径,AB为⊙O的弦,∠A=35°,过点C的切线与OB的延长线相交于点D,则∠D=()A . 20°B . 30°C . 40°D . 35°9. (2分) (2019八上·郑州期中) 如图,直线y=x+1分别与x轴、y轴相交于点A,B,以点A为圆心、AB 长为半径画弧交x轴于点A1 ,再过点A作x轴的垂线交直线于点B1 ,以点A为圆心、AB1长为半径画弧交x 轴于点A2按此做法进行下去,则点A2020的坐标是()A . (22020 , 0)B . (21010 , 0)C . (21010+1,0)D . (21010-1,0)10. (2分)(2016·湘西) 如图,在△ABC中,DE∥BC,DB=2AD,△ADE的面积为1,则四边形DBCE的面积为()A . 3B . 5C . 6D . 811. (2分)某闭合电路中,电源电压不变,电流与电阻R()成反比例,图2表示的是该电路中电流I与电阻R之间函数关系的图像,则用电阻R表示电流I的函数表达式为()A .B .C .D .12. (2分) (2019九上·杭州月考) 如图为抛物线y=ax2+bx+c的图象,A,B,C为抛物线与坐标轴的交点,且OA=OC=1,则下列关系中正确的是()A . a+b=﹣1B . a﹣b=﹣1C . b<2aD . ac<0二、填空题 (共6题;共6分)13. (1分)如图,平行四边形ABCD的顶点A、C在双曲线y1=﹣上,B、D在双曲线y2=上,k1=2k2(k1>0),AB∥y轴,S▱ABCD=24,则k1=________ .14. (1分) (2016七上·太康期末) 如图是一个正方体的表面展开图,如果正方体相对的面上标注的值相等,那么x+2y=________.15. (1分) (2017九上·北京月考) 如下图为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<0;②方程ax2+bx+c=0的根是x1= -1,x2= 3,③a+b+c>0 ④当x>1时,y随x的增大而增大. 以上说法中,正确的有________.16. (1分)(2018·无锡模拟) 在Rt△ABC中,∠C=90°,AB=2,BC= ,则sinA=________.17. (1分)正多边形的每个外角都为60°,它是________ 边形.18. (1分)(2018·武汉模拟) 如图,抛物线y=x2﹣2x+k与x轴交于A、B两点,与y轴交于点C(0,﹣3).若抛物线y=x2﹣2x+k上有点Q,使△BCQ是以BC为直角边的直角三角形,则点Q的坐标为________.三、解答题 (共8题;共81分)19. (5分)计算:(1﹣)0+|﹣ |﹣2cos45°+()﹣120. (5分)在Rt△ABC中,∠C=90°.(1)用尺规作图作Rt△ABC的重心P.(保留作图痕迹,不要求写作法和证明);(2)你认为只要知道Rt△ABC哪一条边的长即可求出它的重心与外心之间的距离?并请你说明理由.21. (5分)如图是某市一座人行天桥的示意图,天桥离地面的高BC是10米,坡面AC的倾斜角∠CAB=45°,在距A点10米处有一建筑物HQ.为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面DC的倾斜角∠BDC=30°,若新坡面下D处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除?(计算最后结果保留一位小数).(参考数据: =1.414, =1.732)22. (15分) (2019九上·普陀期中) 已知:如图,在中,,,,是斜边的中点,以为顶点,作,的两边交边于点、(点不与点重合)(1)当时,求的长度;(2)当绕点转动时,设,,求关于的函数解析式,并写出的取值范围.(3)联结,是否存在点,使△ 与△ 相似?若存在,请求出此时的长度;若不存在,请说明理由.23. (11分)(2014·淮安) 如图,点A(1,6)和点M(m,n)都在反比例函数y= (x>0)的图象上,(1)k的值为________;(2)当m=3,求直线AM的解析式;(3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由.24. (10分) (2019九上·黄石期中) 已知AB是⊙O的直径,弦CD⊥AB于点E.(1)如图①,若CD=8,BE=2,求⊙O的半径;(2)如图②,点G是上一点,AG的延长线与DC的延长线交于点F,求证:∠AGD=∠FGC.25. (15分) (2018八上·绍兴期末) 某商店销售A型和B型两种型号的电脑,销售一台A型电脑可获利120元,销售一台B型电脑可获利140元.该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的3倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y与x的关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售利润最大?(3)若限定商店最多购进A型电脑60台,则这100台电脑的销售总利润能否为13600元?若能,请求出此时该商店购进A型电脑的台数;若不能,请求出这100台电脑销售总利润的范围.26. (15分)(2018·鹿城模拟) 在平面直角坐标系xOy中,矩形ABCO的面积为15,边OA比OC大2,E为BC的中点,以OE为直径的⊙ O′交x轴于D点,过点D作DF⊥AE于F.(1)求OA,OC的长;(2)求证:DF为⊙ O′的切线;(3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共81分)19-1、20-1、21-1、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、。
2014——2015学年度第一学期期末测试九 年 级 数 学参考答案一、选择题:本大题共 小题,每小题 分,共 分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的代号填入题后括号内.. . .C . . . . . . . 二、填空题:本大题共 小题,每小题 分,共 分.请把最后结果填在题中横线上.. . . .52 .277.( , ) .- < < .②④三、解答题:本大题共 小题,共 分.解答时应写出文字说明、证明过程或演算步骤..(本小题满分 分)每图 分 .(本小题满分 分)解:由表可以看出,随机地摸取一个小球然后放回,再随机地摸出一个小球,可能出现的结果有 个,它们出现的可.能性相等.………… 分( )满足两次取的小球的标号相同的结果有 个,所以 ( ) 164 41.…… 分( )满足两次取的小球的标号的和等于 的结果有 个,所以 ( ) 163.… 分.(本小题满分 分)( ) π ( 分) ( )( 分)( )③( 分) .(本小题满分 分)证明:连接 .……………………………………………… 分 , .……………………… 分 切 于点 , .…………………… 分,,即 + , ∥ ,…………………………………………… 分 ,…………………………… 分 平分∠ .…………………………………… 分.(本小题满分 分)解:设所围成圆锥的底面半径和高分别为 和 .∵扇形半径为 ㎝,圆心角为 °, 12032180r ππ⋅⋅=,…………………………………………………………………… 分BCDO.(第,…………………………………………………………………………………… 分h ==.………………………………………………………………… 分.(本小题满分 分)解:( )令 ,得2230x x --=,……………………………………………………… 分解得 , - ,……………………………………………………………… 分 ∴抛物线与 轴交点坐标为( , )和(- , ).…………………………… 分 ( )令 ,得 - ,∴抛物线与 轴交点坐标为( ,- ),………………………………………… 分 ∴将此抛物线向上平移 个单位后可以经过原点.…………………………… 分 平移后抛物线解析式为22y x x =-.……………………………………… 分.(本小题满分 分)( )证明: , , , ,…………… 分 .……………………………………………………………… 分( )解: ,AD DEEF FC=.………………………… 分 , , , 52.…………………………………… 分, , 四边形 是平行四边形, ,…… 分 52 152.……………………………………………………… 分.(本小题满分 分)( )证明: 四边形 是正方形, , .…分, , ,…………………………… 分 ,…………………………………………………………………… 分 .…………………………………………………………………… 分 ( )解: 正方形的边长为 , x , -x . , DA AEEB BF=,…………………………………………… 分 44x x y =-, 2(4)144x x y x x -==-+,………………………………… 分.(本小题满分 分) 解:( )由题意得1060xy -=.………………………………………………………… 分( )由题意得1200040101)200)(1060()200(2++-=+-=+=x x x x x y z . 分 ( )由题意得)1060(201200040101202xx x y z w --++-=-=10800421012++-=x x .………………………………………… 分当每个房间的定价2102=-=abx (元)时, 有最大值,最大值是 .………分.(本小题满分 分)解:( )∵点 坐标为( , ),∴ .∵矩形 面积为 ,∴ ,…… 分∴抛物线的对称轴为直线 .………………………………………………… 分 ( ) , , ,MOMD MD AM =, MO AM MD ⋅=2.设 ,则 - . )3(4-=x x , 41=x ,12-=x , , 点坐标为( , ).… 分设抛物线的解析式为4)2(2+-=x a y . 将点 ( , )代入得443+=a , 41-=a , 抛物线的解析式为4)2(412+--=x y .…………………………… 分 ( )∵⊙ 在 轴上截得线段长为 , , 点纵坐标为 或 .…… 分在4)2(412+--=x y 中,令 或 得 4)2(4122+--=x 或4)2(4142+--=x ,……………………………… 分解得2221+=x ,2222-=x ,23=x ,点坐标为(222+, )、(222-, )或( , ).……………… 分。
2014-2015学年江苏省常州市九年级(上)期末数学试卷一、填空题:(20分)1.(2分)若x=3是方程x 2﹣5x +m=0的一个根,则m 是. 2.(2分)已知数据:2,﹣1,3,5,6,5,则这组数据的极差是,则这组数据的极差是 ,方差是差是 . 3.(2分)在比例尺为1:2000的地图上测得AB 两地间的图上距离为5cm ,则AB 两地间的实际距离为两地间的实际距离为m . 4.(2分)在△ABC 中,∠A :∠B :∠C=1:2:3,则sinA 的值为的值为 . 5.(2分)在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是,则黄球的个数为,则黄球的个数为个.6.(2分)直径为10cm 的⊙O 中,弦AB=5cm ,则弦AB 所对的圆周角是所对的圆周角是 . 7.(2分)如图所示,一个宽为2cm 的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm ),那么该光盘的直径是,那么该光盘的直径是cm .8.(2分)若圆锥的母线长为4cm ,底面半径为3cm ,则圆锥的侧面展开图的面积是积是cm 2.9.(2分)如图,⊙O 是△ABC 的外接圆,⊙O 的半径R=2,sinB=,则弦AC 的长为长为.10.(2分)如图,在矩形AOBC 中,点A 的坐标是(﹣2,1),点C 的纵坐标是4,则B 点的坐标为点的坐标为.二、选择题:(18分)11.(3分)甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是S 甲2=0.65,S 乙2=0.55,S 丙2=0.50,S 丁2=0.45,则射箭成绩最稳定的是(绩最稳定的是( ) A .甲B .乙C .丙D .丁12.(3分)关于x 的一元二次方程x 2﹣3x +m=0有两个不相等的实数根,则实数m 的取值范围为(的取值范围为( ) A .B .C .D .13.(3分)有一斜坡的水平距离为10米,铅直高度为10米,则坡度为( )A .30°B .60°C .1:D .:114.(3分)如图,若△ABC 和△DEF 的面积分别为S 1、S 2,则(,则()A .S 1=S 2B .S 1=S 2C .S 1=S 2D .S 1=S 215.(3分)如图,已知AB 是⊙O 的直径,C 是AB 延长线上一点,BC=OB ,CE 是⊙O 的切线,切点为D ,过点A 作AE ⊥CE ,垂足为E ,则CD :DE 的值是( )A .B .1C .2D .316.(3分)如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a >2),半径为2,函数y=x 的图象被⊙P 截得的弦AB 的长为,则a 的值是( )A.2 B.2+ C.2 D.2+三、解答题17.(10分)(1)计算:;(2)解方程:x2﹣2x﹣2=0.18.(6分)如图,在Rt△ABC中,∠C=90°,D是BC边上一点,AC=2,CD=1,设∠CAD=a.(1)求sina、cosa、tana的值;(2)若∠B=∠CAD,求BD的长.19.(6分)从3名男生和2名女生中随机抽取2014年南京青奥会志愿者.求下列事件的概率:(1)抽取1名,恰好是女生;(2)抽取2名,恰好是1名男生和1名女生.20.(7分)甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.分数 7分 8分 9分 10分人数 11 0 8(1)请将甲校成绩统计表和图2的统计图补充完整;(2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.21.(7分)如图,某翼装飞行员从离水平地面高AC=500m的A处出发,沿着俯角为15°的方向,直线滑行1600米到达D点,然后打开降落伞以75°的俯角降落到地面上的B点.求他飞行的水平距离BC(结果精确到1m).22.(6分)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均每年增长的百分率为x.万元;年的可变成本为(1)用含x的代数式表示第3年的可变成本为(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.23.(6分)如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为,OP=1,求BC的长.24.(7分)如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,将边BC折叠,使点B落在边OA的点D处.已知折痕CE=,且.(1)判断△OCD与△ADE是否相似?请说明理由;(2)求直线CE与x轴交点P的坐标.25.(7分)如图,直线l1与l2相交于点A,点B、C分别在直线l1与l2上,且BC ⊥l2,垂足为C点.点D在直线l2上,AC=4,BC=3.(1)画出⊙O,使⊙O经过点B且与直线l2相切于点D(不写画法,保留画图痕迹);(2)是否存在这样的⊙O1,既与直线l2相切又与直线l1相切于点B?若存在,求出⊙O1的半径;若不存在,请说明理由.2014-2015学年江苏省常州市九年级(上)期末数学试卷参考答案与试题解析一、填空题:(20分)1.(2分)若x=3是方程x2﹣5x+m=0的一个根,则m是 6 .【解答】解:把x=3代入x2﹣5x+m=0得9﹣15+m=0,解得m=6.故答案为6.2.(2分)已知数据:2,﹣1,3,5,6,5,则这组数据的极差是,则这组数据的极差是 7 ,方差是 .【解答】解:这组数据的极差=6﹣(﹣1)=7,这组数据的平均数==,所以这组数据的方差=[22+(﹣1)2+32+52+62+52﹣6×()2]=.故答案为7,.3.(2分)在比例尺为1:2000的地图上测得AB两地间的图上距离为5cm,则AB两地间的实际距离为两地间的实际距离为 100 m.【解答】解:设AB两地间的实际距离为x,=,解得x=10000cm=100m.故答案为:100m.4.(2分)在△ABC中,∠A:∠B:∠C=1:2:3,则sinA的值为的值为 .【解答】解:按比例分配,得A 180×=30°,sinA=sin30°==,sinA=sin30°故答案为:.5.(2分)在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色24外都相同.若从中随机摸出一个球是白球的概率是,则黄球的个数为,则黄球的个数为个.【解答】解:设黄球的个数为x 个, 根据题意得:=,解得:x=24,经检验:x=24是原分式方程的解; ∴黄球的个数为24. 故答案为:24;6.(2分)直径为10cm 的⊙O 中,弦AB=5cm ,则弦AB 所对的圆周角是所对的圆周角是 30°或150° .【解答】解:连接OA 、OB , ∵AB=OB=OA , ∴∠AOB=60°, ∴∠C=30°,∴∠D=180°﹣30°30°=150°=150°. 故答案为:30°或150°.7.(2分)如图所示,一个宽为2cm 的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm ),那么该光盘的直径是,那么该光盘的直径是 10 cm .【解答】解:如图,设圆心为O ,弦为AB ,切点为C .如图所示.则AB=8cm ,CD=2cm .连接OC ,交AB 于D 点.连接OA .∵尺的对边平行,光盘与外边缘相切, ∴OC ⊥AB . ∴AD=4cm .设半径为Rcm ,则R 2=42+(R ﹣2)2, 解得R=5,∴该光盘的直径是10cm . 故答案为:108.(2分)若圆锥的母线长为4cm ,底面半径为3cm ,则圆锥的侧面展开图的面积是积是 12π cm 2.【解答】解:圆锥的侧面展开图的面积=•2π•3•4=12π(cm 2). 故答案为12π.9.(2分)如图,⊙O 是△ABC 的外接圆,⊙O 的半径R=2,sinB=,则弦AC 的长为长为 3 .【解答】解:连接AO 并延长至⊙O 于点D ,则△ACD 为直角三角形, ∵∠B=∠D , ∴sinD=sinB==,∵AD=2R=4, ∴AC=3.10.(2分)如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B点的坐标为点的坐标为 (,3) .【解答】解:过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,过点C作CF∥y轴,过点A作AF∥x轴,交点为F,延长CA交x轴于点H,∵四边形AOBC是矩形,∴AC∥OB,AC=OB,∴∠CAF=∠BOE=∠CHO,在△ACF和△OBE中,,∴△CAF≌△BOE(AAS),∴BE=CF=4﹣1=3,∵∠AOD+∠BOE=∠BOE+∠OBE=90°,∴∠AOD=∠OBE,∵∠ADO=∠OEB=90°,∴△AOD∽△OBE,∴,即 ,∴OE=,即点B( ,3),故答案为:(,3).二、选择题:(18分)11.(3分)甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是S 甲2=0.65,S 乙2=0.55,S 丙2=0.50,S 丁2=0.45,则射箭成绩最稳定的是(绩最稳定的是( ) A .甲 B .乙 C .丙 D .丁【解答】解:∵=0.65,=0.55,=0.50,=0.45,丁的方差最小,∴射箭成绩最稳定的是:丁. 故选:D .12.(3分)关于x 的一元二次方程x 2﹣3x +m=0有两个不相等的实数根,则实数m 的取值范围为(的取值范围为( ) A .B .C .D .【解答】解:根据题意得△=(﹣3)2﹣4m >0, 解得m <. 故选:B .13.(3分)有一斜坡的水平距离为10米,铅直高度为10米,则坡度为( ) A .30°B .60°C .1:D .:1【解答】解:坡度=10÷(10)=1:.故选:C .14.(3分)如图,若△ABC 和△DEF 的面积分别为S 1、S 2,则(,则()A .S 1=S 2B .S 1=S 2C .S 1=S 2D .S 1=S 2【解答】解:过A 点作AG ⊥BC 于G ,过D 点作DH ⊥EF 于H . 在Rt △ABG 中,AG=AB•sin40°=AG=AB•sin40°=5sin40°5sin40°, ∠DEH=180°﹣140°140°=40°=40°, 在Rt △DHE 中,DH=DE•sin40°=8sin40°,S 1=8×5sin40°÷2=20sin40°, S 2=5×8sin40°÷2=20sin40°. 则S 1=S 2. 故选:C .15.(3分)如图,已知AB 是⊙O 的直径,C 是AB 延长线上一点,BC=OB ,CE 是⊙O 的切线,切点为D ,过点A 作AE ⊥CE ,垂足为E ,则CD :DE 的值是( )A .B .1C .2D .3【解答】解:如图,连接OD , ∵AB 是⊙O 的直径,BC=OB , ∴OA=OB=BC , ∵CE 是⊙O 的切线, ∴OD ⊥CE , ∵AE ⊥CE , ∴OD ∥AE ,∴△COD ∽△CAE ,∴==,∴=2.16.(3分)如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a 的值是(的值是( )A.2 B.2+ C.2 D.2+【解答】解:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接P A.∵PE⊥AB,AB=2,半径为2,∴AE=AB=,PA=2,根据勾股定理得:PE==1,∵点A在直线y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴△OCD是等腰直角三角形,∴OC=CD=2,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=.∵⊙P的圆心是(2,a),∴a=PD+DC=2+.三、解答题17.(10分)(1)计算:;(2)解方程:x2﹣2x﹣2=0.【解答】解:(1)原式=﹣1=1﹣1=0;(2)x2﹣2x﹣2=0,x2﹣2x=2,x2﹣2x+1=1+2,(x﹣1)2=3,x﹣1=,x1=1+,x2=1﹣.18.(6分)如图,在Rt△ABC中,∠C=90°,D是BC边上一点,AC=2,CD=1,设∠CAD=a.(1)求sina、cosa、tana的值;(2)若∠B=∠CAD,求BD的长.【解答】解:在Rt△ACD中,∵AC=2,DC=1,∴AD==.(1)sinα===,cosα===,tanα==;(2)在Rt△ABC中,tanB=,即tanα==,∴BC=4,∴BD=BC﹣CD=4﹣1=3.19.(6分)从3名男生和2名女生中随机抽取2014年南京青奥会志愿者.求下列事件的概率:(1)抽取1名,恰好是女生;(2)抽取2名,恰好是1名男生和1名女生.【解答】解:(1)5名学生中有2名女生,所以抽取1名,恰好是女生的概率为;共有20种情况,恰好是1名男生和1名女生的情况数有由树形图可得出:共有(2)由树形图可得出:12种,所以概率为.20.(7分)甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.分数 7分 8分 9分 10分人数 11 0 1 8(1)请将甲校成绩统计表和图2的统计图补充完整;(2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.【解答】解:(1)5÷=20(人),20×=3(人),20﹣11﹣8=1(人),填表如下:如下尚不完整的统计图表.分数 7分 8分 9分 10分人数 11 0 1 8如图所示:(2)甲校的平均分为=(7×11+8×0+9×1+10×8)=8.3分,分数从低到高,第10人与第11人的成绩都是7分,故中位数=(7+7)=7(分);由于两校平均分相等,乙校成绩的中位数大于甲校的中位数,所以从平均分和中位数角度上判断,乙校的成绩较好.故答案为:1.21.(7分)如图,某翼装飞行员从离水平地面高AC=500m的A处出发,沿着俯角为15°的方向,直线滑行1600米到达D点,然后打开降落伞以75°的俯角降落到地面上的B点.求他飞行的水平距离BC(结果精确到1m).【解答】解:过点D作DE⊥AC于点E,过点D作DF⊥BC于点F,由题意可得:∠ADE=15°,∠BDF=15°,AD=1600m,AC=500m,ADE=cos15°==≈0.97,∴cos∠ADE=cos15°∴≈0.97,解得:DE=1552(m),sin15°==≈0.26,sin15°∴≈0.26,解得;AE=416(m),∴DF=500﹣416=84(m),BDF=tan15°==≈0.27,∴tan∠BDF=tan15°∴≈0.27,解得:BF=22.68(m),∴BC=CF+BF=1552+22.68=1574.68≈1575(m),答:他飞行的水平距离为1575m.22.(6分)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均每年增长的百分率为x.年的可变成本为2.6(1+x)2 万元;(1)用含x的代数式表示第3年的可变成本为(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x.【解答】解:(1)由题意,得第3年的可变成本为:2.6(1+x)2,故答案为:2.6(1+x)2;(2)由题意,得4+2.6(1+x)2=7.146,解得:x1=0.1,x2=﹣2.1(不合题意,舍去).答:可变成本平均每年增长的百分率为10%.23.(6分)如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的直线交OP 的延长线于点C,且CP=CB.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为,OP=1,求BC的长.【解答】(1)证明:连接OB,如图,∵OP⊥OA,∴∠AOP=90°,∴∠A+∠APO=90°,∵CP=CB,∴∠CBP=∠CPB,而∠CPB=∠APO,∴∠APO=∠CBP,∵OA=OB,∴∠A=∠OBA,∴∠OBC=∠CBP+∠OBA=∠APO+∠A=90°,∴OB⊥BC,∴BC是⊙O的切线;(2)解:设BC=x,则PC=x,在Rt△OBC中,OB=,OC=CP+OP=x+1,∵OB2+BC2=OC2,∴()2+x2=(x+1)2,解得x=2,即BC的长为2.24.(7分)如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A 在x轴上,点C在y轴上,将边BC折叠,使点B落在边OA的点D处.已知折痕CE=,且.(1)判断△OCD与△ADE是否相似?请说明理由;(2)求直线CE与x轴交点P的坐标.【解答】解:(1)△OCD与△ADE相似.理由如下:由折叠知,∠CDE=∠B=90°,∴∠EDA+∠CDO=90°,∵∠EDA+∠DEA=90°,∴∠CDO=∠DEA,又∵∠COD=∠DAE=90°,∴△OCD∽△ADE;(2)∵tan∠EDA=,∴设AE=3t,则AD=4t,由勾股定理得DE=5t,∴OC=AB=AE+EB=AE+DE=8t,由(1)△OCD∽△ADE,得,∴,∴CD=10t,在△DCE中,∵CD2+DE2=CE2,∴(10t)2+(5t)2=(5)2,解得t=1,∴OC=8,AE=3,点C的坐标为(0,8),点E的坐标为(10,3),设直线CE的解析式为y=kx+b,∴,解得:,∴,令y=0,得到x=16,则点P的坐标为(16,0).25.(7分)如图,直线l1与l2相交于点A,点B、C分别在直线l1与l2上,且BC⊥l2,垂足为C点.点D在直线l2上,AC=4,BC=3.(1)画出⊙O,使⊙O经过点B且与直线l2相切于点D(不写画法,保留画图痕迹);(2)是否存在这样的⊙O1,既与直线l2相切又与直线l1相切于点B?若存在,求出⊙O1的半径;若不存在,请说明理由.【解答】解:(1)如图1:①连接BD,作BD的垂直平分线MN,②过点D作直线l2的垂线,交直线MN于点O,③以点O为圆心,OD长为半径作圆,则⊙O即为所求的圆;(2)存在.如图2:设⊙O1切直线l2于点E,连接O1B,O1E,过点O1作O1F⊥BC于点F, ∵BC⊥l2,∴∠O1EC=∠ECF=∠O1FD=90°,∠O1BA=90°,∴四边形ECFO1是矩形,∴FC=O1E,∵∠BAC+∠ABC=90°,∠O1BF+∠ABC=90°,∴∠BAC=∠O1BF,∵∠O1FB=∠ACB=90°,∴△BO1F∽△ABC,∴,设⊙O1的半径为x,∵AC=4,BC=3,∴BF=BC﹣CF=3﹣x,在Rt△ABC中,AB==5,第21页(共21页)页)∴,解得:x=,∴⊙O 1的半径为.如图3中,设⊙O 2的半径为r ,则有AB 2=BO 2•BO 1,可得r=15,综上所述,满足条件的⊙O 的半径为15或.。
九 年 级 教 学 情 况 调 研 测 试 2014.4数 学 试 题注意事项:1.本试卷满分为120分,考试时间为120分钟.2.学生在答题过程中不能使用任何型号的计算器和其它计算工具;若试题计算没有要求取近似值,则计算结果取精确值(保留根号与π). 3.请将答案按对应的题号全部填写在答题纸上,在本试卷上答题无效.一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给的四个选项中,只有一个选项是正确的)1.下列各式中,与2是同类二次根式的是 ( ) A .4B .8C .12D .242.已知四边形ABCD 是平行四边形,下列结论中不正确...的是 ( ) A .当AB =BC 时,它是菱形 B .当AC ⊥BD 时,它是菱形C .当∠ABC =90º时,它是矩形D .当AC =BD 时,它是正方形3.下列运算正确的是 ( )A .632a a a =⋅ B .22412aa =- C .532)(a a = D .22223a a a --=-4.下列各点中,在函数xy 12-=的图象上的点是 ( ) A .(3,4) B .(-2,-6)C .(-2,6)D .(-3,-4)5.为了帮助本市一名患“白血病”的高中生,某班15名同学积极捐款,他们捐款数额如下表:关于这15名学生所捐款的数额,下列说法正确的是 ( )A .众数是100B .平均数是30C .极差是20D .中位数是206.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连结AC 、AD 、BD , 若︒=∠35CAB ,则ADC ∠的度数为 ( )A .35°B .55°C .65°D .70°7.把二次函数c bx ax y ++=2的图像向左平移4个单位或向右平移1个单位后都会经过原点,则二次函数图像的对称轴与x 轴的交点是 ( )A .(-2.5,0)B .(2.5,0)C .(-1.5,0)D .(1.5,0)第6题图8.如图,矩形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙由点A (2,0)同时出发,沿矩形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2014次相遇地点的坐标是 ( ) .A (2,0) .B (-1,1).C (-2,1).D (-1,-1)二、填空题(本大题共9小题,第9小题4分,其余8小题每小题2分,共20分)9. 计算:=-22,= ,=⨯22 ,=÷22 .10.函数23-=x y 中自变量x 的取值范围是 ,当x =1时,y = . 11.若关于x 的方程x 2-5x -3k =0的一个根是-3,则k = ,另一个根是 . 12.在△ABC 中,若AB =AC =5,BC =8,则sinB = .13.如图,在Rt ABC ∆中,90C ∠=︒,AC =5cm , BC =12cm ,以BC 边所在的直线为轴,将ABC ∆旋转一周得到的圆锥侧面积是 .14.如图,任意四边形ABCD 各边中点分别是E 、F 、G 、H ,若对角线AC 、BD 的长都为10 cm ,则四边形EFGH 的周长是 cm .15.如图,在□ABCD 中,AB =3,AD =4,∠ABC =60°,过BC 的中点E 作EF ⊥AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF 的面积是 . 16.已知二次函数c bx ax y ++=2中,函数y 与自变量x 的部分对应值如下表:若1()A m y ,,2(1)B m y +,两点都在该函数的图象上,当m = 时,1y =2y .17.已知点A (0,-4),B (8,0)和C (a,-a ),若过点C 的圆的圆心是线段AB 的中点,则这个圆的半径的最小值等于 .DAB CDEFGH第14题图ABC 第13题图第8题图三、解答题(本大题共有11小题,共84分.请在答题卡指定区域内作答,解答时 应写出必要的文字说明、证明过程或演算步骤)18.化简(每题4分) ⑴︒+-45sin 1821⑵ 145tan 230tan 3-19.解方程(每题5分) ⑴ )3(7)3(+=+x x x ⑵ 0652=-+x x20.(本小题满分7分) 甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.⑴ 请将甲校成绩统计表和图2的统计图补充完整;⑵ 经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.乙校成绩条形统计图分数图2乙校成绩扇形统计图图1甲校成绩统计表21.(本小题满分8分)小颖为学校联欢会设计了一个“配紫色”的游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,游戏者同时转动两个转盘,如果转盘A 转出了红色,转盘B 转出了蓝色,那么红色和蓝色在一起配成了紫色,游戏者获胜.求游戏者获胜的概率.(用列表法或树状图)22.(本小题满分6分)已知:如图,□ABCD 中,∠BCD 的平分线交AB 于E ,交DA 的延长线于F . 求证:AE =AF .A 盘B 盘ABCDEF23.(本小题满分7分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,P为边AC上一个点(可以包括点C但不包括点A),以P为圆心P A为半径作⊙P交AB于点D,过点D 作⊙P的切线交边BC于点E. 试猜想BE与DE的数量关系,并说明理由.24.(本小题满分6分)如图所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB和CD(均与水平面垂直),再将集热板安装在AD 上.为使集热板吸热率更高,公司规定:AD与水平线夹角为θ1,且在水平线上的射影AF 为140cm.现已测量出屋顶斜面与水平面夹角为θ2,并已知tanθ1≈1.1,tanθ2≈0.4.如果安装工人已确定支架AB高为25cm,求支架CD的高(结果精确到1cm)?DCBAABCEFDθ1θ2ABCE25.(本小题满分6分)某五金店购进一批数量足够多的Q型节能电灯,进价为35元/只,以50元/只销售,每天销售20只.市场调研发现:若每只每降1元,则每天销售数量比原来多3只.现商店决定对Q型节能电灯进行降价促销活动,每只降价x元(x为正整数).在促销期间,商店要想每天获得最大销售利润,每只应降价多少元?每天最大销售毛利润为多少?(注:每只节能灯的销售毛利润指每只节能灯的销售价与进货价的差)26.(本小题满分8分)对于平面直角坐标系中的任意两点A(a,b),B(c,d),我们把|a-c|+|b-d|叫做A、B两点之间的直角距离,记作d(A,B)⑴已知O为坐标原点,①若点P坐标为(-1,2),则d(O,P)=_____________; ②若Q(x,y)在第一象限,且满足d(O,Q)=2,请写出x与y之间满足的关系式,并在平面直角坐标系内画出符合条件的点Q组成的图形.⑵设M是一定点,N是直线y=mx+n上的动点,我们把d(M,N)的最小值叫做M到直线y=mx+n的直角距离,试求点M(2,-1)到直线y=x+3的直角距离.27.(本小题满分8分)已知,如图,四边形ABCD中,∠BAD=∠BCD=90°,M为BD的中点,AB=AD,BD=CD=2.⑴取AC中点E,连接ME,求证:ME⊥AC;⑵在⑴的条件下,过点M作CD的垂线l,垂足为F,并交AC于点G,试说明:△MEG是等腰直角三角形.ABC DM28.(本小题满分10分)如图,在平面直角坐标系中, 点A 为二次函数142-+-=x x y 图象的顶点,图象与y 轴交于点C ,过点A 并与AC 垂直的直线记为BD ,点B 、D 分别为直线与y 轴和 x 轴的交点,点E 是二次函数图象上与点C 关于对称轴对称的点,将一块三角板的直角顶点放在A 点,绕点A 旋转,三角板的两直角边分别与线段OD 和线段OB 相交于点P 、Q 两点.⑴ 点A 的坐标为____________,点C 的坐标为_____________. ⑵ 求直线BD 的表达式.⑶ 在三角板旋转过程中,平面上是否存在点R ,使得以D 、E 、P 、R 为顶点的四边形为菱形,若存在,直接写出P 、Q 、R 的坐标;若不存在请说明理由.备用图九年级教学情况调研测试 数学参考答案 2014.4一、选择题二、填空题18.⑴︒+-45sin 1821⑵ 145tan 230tan 3-=222322+- --------------- 3分 =112333-⨯⨯------------ 3分=22- ----------------------------- 4分=1 ------------------- 4分19.)3(7)3(+=+x x x⑵ 0652=-+x xx (x+3)-7(x+3)=0 ----------------------- 1分(x+3)(x-7)=0 ----------------------------- 3分 449252=⎪⎭⎫ ⎝⎛+x ---------------- 2分7;321=-=x x ------------------------ 5分--- 2725±=+x ---------------------- 3分 6;121-==x x ------------------ 5分20.⑴ 1; --------------------------------------------------------------------------------------------------- 1分3 及画图正确 --------------------------------------------------------------------------------------- 3分 ⑵ 甲校的平均分=8.3分,中位数是:7分, ------------------------------------------- 5分22.证明:∵CF 平分∠BCD ∴∠BCE=∠DCE , ∵平行四边形ABCD ∴AB ∥DE ,AD ∥BC ∴∠F=∠BCE ,∠AEF=∠DCE∴∠F=∠AEF --------------------------------------------------- 4分∴AE=AF , ----------------------------------------------------- 6分23.猜想:BE=DE --------------------------------1分证明: 连接PD . ∵DE 切⊙O 于D .∴PD ⊥DE . -------------------------------------------------------------------------------------------------- 2分 ∴∠BDE+∠PDA=90°. ------------------------------------------------------------------------------------ 3分 ∵∠C=90°.∴∠B+∠A=90°. ------------------------------------------------------------------------------------------ 4分 ∵PD=PA .∴∠PDA=∠A .--------------------------------------------------------------------------------------------------------- 5分 ∴∠B=∠BDE . -------------------------------------------------------------------------------------------- 6分∴BE=DE ; ------------------------------------------------------------------------------------------------- 7分24.矩形ABEF 中,AF=BE=140,AB=EF=25. -------------------------------------------------- 1分 Rt △DAF 中:∠DAF =θ1,DF =AF tan θ1 ≈154 -------------------------------------------------------------------- 3分 Rt △CBE 中:∠CBE =θ2,CE =BE tan θ2 ≈56 --------------------------------------------------------------------- 4分 DE=DF+EF=154+25=179, --------------------------------------------------------------------------- 5分 DC=DE-CE=179-56=123.答:支架CD 的高为123cm. ------------------------------------------------------------------------ 6分25.每天的销售毛利润W=(50-35-x )(20+3x )=-3x 2+25x+300 ---------------------- 2分 ∴ 图象对称轴为625=x ------------------------------------------------------------------------- 3分 ∵x 为正整数,x=4或5且62554625-<- ------------------------------------------------- 5分∴x=4时,W 取得最大值,最大销售毛利润为352元 ------------------------------------- 6分26.⑴ ①3 ----------------------------------------------------------------------------------------------------- 2分;第11页 (共8页)② x+y=2, ------------------------------------------------------------------------------------------ 4分画图正确 --------------------------------------------------------------------------------------------- 5分⑵ d(M,N)=∣x-2∣+∣x+4∣………7分, d 最小=6 -------------------------------------------- 8分 27. ⑴ 理由正确 ----------------------------------------------------------------------------------------- 3分 ⑵ △MEG 是等腰直角三角形理由正确 --------------------------------------------------------- 8分28. ⑴ 点A 的坐标为(2,3),点C 的坐标为(0,-1) ---------------------------------------------------- 2分 ⑵ 直线BD 的表达式为:421+-=x y ------------------------------------------------------ 4分⑶ P 1(8-17,0),Q 1(0, 31723+-),R 1(4-17,-1);P 2(847,0),Q 2(0,125),R 2(,849,-1) (以上各点分别1分) -------------------------------------- 10分。