向心力的实例分析
- 格式:ppt
- 大小:1.68 MB
- 文档页数:44
向心力的实例分析-知识探讨1.火车转弯情况:向心力的来源:(1)靠挤压铁轨获得.(2)内外侧铁轨高度不同,支持力和重力的合力获得.2.汽车过拱桥:重力和支持力的合力提供向心力.3.竖直平面内圆周运动(1)绳或内轨道(类水流星)(2)杆或外轨道(类拱桥)4.圆锥摆:靠绳的拉力和重力的合力提供向心力.5.解决圆周运动问题的步骤:(1)正确地受力分析.(2)根据运动情况找到圆周的圆心.(3)在指向圆心的方向上建立x 轴.(4)x 轴上的合力充当向心力并列出方程;y 轴上的合力提供切线加速度.例题思考【例1】 火车在倾斜的轨道上转弯,如图所示.弯道的倾角为θ,半径为r .则火车转弯的最大速率是(设转弯半径水平)A.θsin grB.θcos grC.θtan grD.θcot gr解析:先对车的受力进行分析,车受到的重力竖直向下,受到的支持力垂直斜面向上,两者的合力水平,根据牛顿第二定律可得:mg tan θ=mv 2/r ,解得C 正确.答案:C点评:正确的受力分析是解决圆周运动问题的关键.【例2】 细线长为L ,小球质量为m ,使小球在水平面内做圆周运动.增大小球绕O 点的圆周运动的角速度ω′,会发现线与竖直方向的夹角θ随着增大,为什么?解析:小球受重力mg 、拉力T .我们可以说由mg 和T 的合力充当向心力,也可以说由T 的水平分量充当向心力,因为小球是在水平面内做圆周运动,而重力方向竖直向下,与水平面垂直,重力的水平分量为零.有T cos θ=mg ,Tsin θ=m ω2r ,r =L sin θ所以mg tan θ=m ω2L sin θ所以cos θ=g /L ω2,可见,ω增大则cos θ减小,在0<θ<π/2范围内,cos θ减小则θ增大.所以转得越快,θ角就越大.点评:绳的拉力在此有两个分量,水平分量充当向心力,竖直分量与重力平衡.知识总结规律:牛顿运动定律,圆周运动的规律.知识:力的分解与合成的应用.方法:1.圆周运动的最高点的速度极限分析(1)绳子、内侧轨道:这两种约束情况只能提供向下的拉力或支持力,不能提供向上的力,所以,通过最高点的条件是v≥gR.(2)外侧轨道:只能提供向上的支持力,它不能提供向下的拉力,所以速度有最大值,超过这个值,物体会做平抛运动.能够通过最高点的条件是v<gR.(3)杆、管:硬杆和管道既能提供向下的力,也能提供向上的力,所以能够通过最高点的条件为v>0.2.圆周运动往往和机械能守恒结合处理竖直方向的圆周运动问题.注意零势能点的选取.。
一、转弯时的向心力实例分析1、汽车、自行车转弯问题汽车在水平路面上转弯,靠的是轮胎与路面间的静摩擦力。
设汽车以速率v 转弯,要转的弯的半径为R ,则需要的侧向静摩擦力Rv m F 2=。
如该汽车与地面间侧向最大静摩擦力为F max ,有R v m F 2max =得,转弯的最大速率mRF v max max =,超过这个速率,汽车就会侧向滑动。
2、火车转弯问题火车在转弯处,外侧的轨道高于内侧轨道,火车的受力分析如图所示,其转弯时所需向心力由重力和弹力的合力提供。
Rv M Mg 2tan =θ解得:v =θtan gR 拓展:①当火车行驶速率v 等于v 规定时,即v =θtan gR 时,支持力和重力的合力恰好充当所需的向心力,则内、外轨都不受挤压(此时为临界条件).②当火车行驶速率v 大于v 规定时,即v >θtan gR 时,支持力和重力的合力不足以提供所需向心力,则此时需要外轨提供一部分向心力,即此时外轨受挤压.③当火车行驶速率小于v 规定时,即v <θtan gR 时,支持力和重力的合力大于所需的向心力,二、竖直平面内的圆周运动实例分析1、汽车过拱桥问题在汽车过拱桥时,汽车的向心力是由汽车的重力和路面的支持力来提供的。
当路面对汽车的支持力为零时,汽车将脱离路面,因此,必须保证支持力N >0,即汽车在最高点时速度的最大值是刚好重力提供向心力,即mg=m rυ2,即该圆周运动的最大速度为v =gr,当速度为该值时,汽车将由沿桥面切线方向上的速度(水平速度)和只受重力作用,而做平抛运动。
因此,汽车过拱桥时,速度应小于gr 。
2、汽车过凹型桥3、小球在绳和杆的作用下通过最高点问题(1)在最低点,不论是线拉物体还是杆连物体,线或杆的弹力指向圆心(竖直向上),物体的重力竖直向下,二者的合力提供向心力,则有mg +T =mr ω2=m rυ2;(2)在最高点时,线拉物体的临界状态是T =0,重力提供向心力mg =m rυ2,即v =gr 。
向心力的实例分析引言向心力是物体受到外力作用时,沿着力的方向向中心运动的力。
它是一种重要的力学概念,广泛应用于各个领域,包括物理学、工程学和天文学等。
本文将通过分析一些具体的示例,来深入探讨向心力的作用机制和实际应用。
实例一:绕轴旋转的物体考虑一个在水平轴上绕着转动的物体,如图所示:图1图1这个物体受到的向心力可以通过以下公式计算:$$F_c = \\frac{mv^2}{r}$$其中,m是物体的质量,v是物体的速度,r是物体相对于轴的距离。
根据这个公式,我们可以看出,向心力与物体的质量成正比,与速度的平方成正比,与距离的倒数成正比。
当物体的质量增加时,向心力也会增加,从而使物体更难改变运动状态。
当物体的速度增加时,向心力也会增加,从而使物体更难以逃离圆周运动。
当物体相对于轴的距离减小时,向心力也会增加,从而使物体更加受限于轴周围的运动。
实例二:行星绕太阳运动行星绕太阳的运动是一个经典的向心力示例。
根据万有引力定律,行星受到来自太阳的引力作用,这个引力提供了向心力,使得行星绕太阳做圆周运动。
根据开普勒第三定律,行星绕太阳的周期T与它与太阳的平均距离a的关系可以表示为:$$T^2 = \\frac{4\\pi^2}{GM}a^3$$其中,G是引力常数,M是太阳的质量。
由此可以看出,行星的运动周期与其与太阳的平均距离的三次方成正比。
这个公式还可以告诉我们,行星距离太阳越远,其运动周期越长;行星距离太阳越近,其运动周期越短。
这也是为什么地球绕太阳运动的周期为一年,而水星绕太阳运动的周期只有88天的原因。
实例三:离心机离心机是一种利用向心力的装置,广泛应用于化学实验室和制药工业中。
它通过调节转速产生的向心力,将混合物中的固体颗粒或液体分离出来。
离心机的工作原理是基于不同物质密度的差异。
当混合物旋转时,向心力会将密度较大的成分更快地向外推动,而密度较小的成分则更容易靠近轴。
通过调整离心机的转速和离心力的大小,可以实现对不同物质的分离。
向心力的实例分析讲义离心运动复习一、引言向心力和离心力是物体在进行圆周运动时所受到的两种力。
向心力指的是物体向圆心的力,离心力则是物体远离圆心的力。
在本篇讲义中,我们将通过分析一些实例来复习向心力和离心力的概念。
二、向心力的实例分析1.系在绳子上旋转的小球考虑一个小球系在绳子上进行旋转的实例。
当小球在绳子上旋转时,绳子对小球施加一个向心力,使其向绳子的中心点运动。
2.向心力对人体的影响在过山车等高速旋转的游乐设施上,乘客会感受到向心力对身体的影响。
当过山车在弯道上快速转向时,向心力会使乘客向内侧倾斜,产生一种被拍在座位上的感觉。
3.地球对月球的引力地球对月球的引力同样也是一个向心力的实例。
尽管月球在绕地球运动时并没有被绳子所束缚,但是地球的引力会使月球向地球的中心移动,从而产生类似向心力的效果。
三、离心力的实例分析1.旋转的洗衣机当洗衣机进入高速旋转阶段时,内壁对湿衣物施加的离心力将使水分远离衣物并被排除出机器。
2.汽车在转弯时的倾斜当汽车在弯道上行驶时,离心力会使汽车产生一个外倾的力矩,从而使车身倾斜。
这种倾斜能够提高车辆在弯道上的稳定性。
3.离心仓的分离物料在一些工业生产过程中,常常会使用离心力将物料分离。
比如在化工过程中,通过旋转离心定置器,可以将固体颗粒与液体分离出来。
四、向心力与离心力的关系向心力和离心力之间有着一种互补的关系。
当物体在进行圆周运动时,我们可以将绳子向外一侧拉着物体,称之为向心力。
同样地,我们也可以将绳子向内一侧拉着物体,称之为离心力。
五、结论通过上述实例的分析,我们可以更好地理解向心力和离心力的概念。
向心力和离心力是物体在进行圆周运动时所受到的两种力,它们之间有着互补的关系。
向心力使物体向圆心移动,离心力使物体远离圆心。
在实际生活和工业生产中,向心力和离心力都有着重要的应用价值。
对于理解这两种力的概念,我们可以通过分析实例来加深理解和记忆。