向心力的实例分析
- 格式:ppt
- 大小:666.50 KB
- 文档页数:16
一、转弯时的向心力实例分析1、汽车、自行车转弯问题汽车在水平路面上转弯,靠的是轮胎与路面间的静摩擦力。
设汽车以速率v 转弯,要转的弯的半径为R ,则需要的侧向静摩擦力Rv m F 2=。
如该汽车与地面间侧向最大静摩擦力为F max ,有R v m F 2max =得,转弯的最大速率mRF v max max =,超过这个速率,汽车就会侧向滑动。
2、火车转弯问题火车在转弯处,外侧的轨道高于内侧轨道,火车的受力分析如图所示,其转弯时所需向心力由重力和弹力的合力提供。
Rv M Mg 2tan =θ解得:v =θtan gR 拓展:①当火车行驶速率v 等于v 规定时,即v =θtan gR 时,支持力和重力的合力恰好充当所需的向心力,则内、外轨都不受挤压(此时为临界条件).②当火车行驶速率v 大于v 规定时,即v >θtan gR 时,支持力和重力的合力不足以提供所需向心力,则此时需要外轨提供一部分向心力,即此时外轨受挤压.③当火车行驶速率小于v 规定时,即v <θtan gR 时,支持力和重力的合力大于所需的向心力,二、竖直平面内的圆周运动实例分析1、汽车过拱桥问题在汽车过拱桥时,汽车的向心力是由汽车的重力和路面的支持力来提供的。
当路面对汽车的支持力为零时,汽车将脱离路面,因此,必须保证支持力N >0,即汽车在最高点时速度的最大值是刚好重力提供向心力,即mg=m rυ2,即该圆周运动的最大速度为v =gr,当速度为该值时,汽车将由沿桥面切线方向上的速度(水平速度)和只受重力作用,而做平抛运动。
因此,汽车过拱桥时,速度应小于gr 。
2、汽车过凹型桥3、小球在绳和杆的作用下通过最高点问题(1)在最低点,不论是线拉物体还是杆连物体,线或杆的弹力指向圆心(竖直向上),物体的重力竖直向下,二者的合力提供向心力,则有mg +T =mr ω2=m rυ2;(2)在最高点时,线拉物体的临界状态是T =0,重力提供向心力mg =m rυ2,即v =gr 。
向⼼⼒典型例题(附问题详解)1、如图所⽰,半径为r的圆筒,绕竖直中⼼轴OO′转动,⼩物块a靠在圆筒的内壁上,它与圆筒的动摩擦因数为µ,现要使a不下滑,则圆筒转动的⾓速度ω⾄少为()A. B. C. D.2、下⾯关于向⼼⼒的叙述中,正确的是()A.向⼼⼒的⽅向始终沿着半径指向圆⼼,所以是⼀个变⼒B.做匀速圆周运动的物体,除了受到别的物体对它的作⽤外,还⼀定受到⼀个向⼼⼒的作⽤C.向⼼⼒可以是重⼒、弹⼒、摩擦⼒中的某个⼒,也可以是这些⼒中某⼏个⼒的合⼒,或者是某⼀个⼒的分⼒D.向⼼⼒只改变物体速度的⽅向,不改变物体速度的⼤⼩3、关于向⼼⼒的说法,正确的是()A.物体由于做圆周运动⽽产⽣了⼀个向⼼⼒B.向⼼⼒不改变圆周运动物体速度的⼤⼩C.做匀速圆周运动的物体其向⼼⼒即为其所受的合外⼒D.做匀速圆周运动的物体其向⼼⼒⼤⼩不变5、如图所⽰,质量为m的⽊块,从半径为r的竖直圆轨道上的A点滑向B点,由于摩擦⼒的作⽤,⽊块的速率保持不变,则在这个过程中A.⽊块的加速度为零B.⽊块所受的合外⼒为零C.⽊块所受合外⼒⼤⼩不变,⽅向始终指向圆⼼D.⽊块所受合外⼒的⼤⼩和⽅向均不变6、甲、⼄两名溜冰运动员,M甲=80 kg,M⼄=40 kg,⾯对⾯拉着弹簧秤做圆周运动的溜冰表演,如图所⽰,两个相距0.9 m,弹簧秤的⽰数为9.2 N,下列判断正确的是()A.两⼈的线速度相同,约为40 m/sB.两⼈的⾓速度相同,为6 rad/sC.两⼈的运动半径相同,都是0.45 mD.两⼈的运动半径不同,甲为0.3 m,⼄为0.6 m7、如图所⽰,在匀速转动的圆筒内壁上有⼀物体随圆筒⼀起转动⽽未滑动.若圆筒和物体以更⼤的⾓速度做匀速转动,下列说法正确的是()A.物体所受弹⼒增⼤,摩擦⼒也增⼤B.物体所受弹⼒增⼤,摩擦⼒减⼩C.物体所受弹⼒减⼩,摩擦⼒也减⼩D.物体所受弹⼒增⼤,摩擦⼒不变8、⽤细绳拴住⼀球,在⽔平⾯上做匀速圆周运动,下列说法中正确的是()A.当转速不变时,绳短易断B.当⾓速度不变时,绳短易断C.当线速度不变时,绳长易断D.当周期不变时,绳长易断9、如图,质量为m的⽊块从半径为R的半球形的碗⼝下滑到碗的最低点的过程中,如果由于摩擦⼒的作⽤使得⽊块的速率不变A.因为速率不变,所以⽊块加速度为零 C.⽊块下滑过程中的摩擦⼒⼤⼩不变B.⽊块下滑的过程中所受的合外⼒越来越⼤D.⽊块下滑过程中的加速度⼤⼩不变,⽅向时刻指向球⼼解析:⽊块做匀速圆周运动,所受合外⼒⼤⼩恒定,⽅向时刻指向圆⼼,故选项A、B不正确.在⽊块滑动过程中,⼩球对碗壁的压⼒不同,故摩擦⼒⼤⼩改变,C错. 答案:D10、如图所⽰,在光滑的以⾓速度ω旋转的细杆上穿有质量分别为m和M的两球,两球⽤轻细线连接.若M>m,则()A.当两球离轴距离相等时,两球相对杆不动B.当两球离轴距离之⽐等于质量之⽐时,两球相对杆都不动C.若转速为ω时,两球相对杆都不动,那么转速为2ω时两球也不动D.若两球相对杆滑动,⼀定向同⼀⽅向,不会相向滑动解析:由⽜顿第三定律可知M、m间的作⽤⼒相等,即F M=F m,F M=Mω2r M,F m=m ω2rm,所以若M、m不动,则r M∶rm=m∶M,所以A、B不对,C对(不动的条件与ω⽆关).若相向滑动,⽆⼒提供向⼼⼒,D对. 答案:CD11、⼀物体以4m/s的线速度做匀速圆周运动,转动周期为2s,则物体在运动过程的任⼀时刻,速度变化率的⼤⼩为()A.2m/s2B.4m/s2C.0D.4π m/s2ω=2π/T=2π/2=π v=ω*r 所以r=4/π a=v∧2/r=16/(4/π)=4π12、在⽔平路⾯上安全转弯的汽车,向⼼⼒是()A.重⼒和⽀持⼒的合⼒B.重⼒、⽀持⼒和牵引⼒的合⼒C 汽车与路⾯间的静摩擦⼒ D.汽车与路⾯间的滑动摩擦⼒⼆、⾮选择题【共3道⼩题】1、如图所⽰,半径为R的半球形碗内,有⼀个具有⼀定质量的物体A,A与碗壁间的动摩擦因数为µ,当碗绕竖直轴OO′匀速转动时,物体A刚好能紧贴在碗⼝附近随碗⼀起匀速转动⽽不发⽣相对滑动,求碗转动的⾓速度.分析:物体A随碗⼀起转动⽽不发⽣相对滑动,物体做匀速圆周运动的⾓速度ω就等于碗转动的⾓速度ω.物体A做匀速圆周运动所需的向⼼⼒⽅向指向球⼼O,故此向⼼⼒不是重⼒⽽是由碗壁对物体的弹⼒提供,此时物体所受的摩擦⼒与重⼒平衡.解析:物体A做匀速圆周运动,向⼼⼒:F n=mω2R⽽摩擦⼒与重⼒平衡,则有µF n=mg 即F n=mg/µ由以上两式可得:mω2R= mg/µ即碗匀速转动的⾓速度为:ω=.2、汽车沿半径为R的⽔平圆跑道⾏驶,路⾯作⽤于车的摩擦⼒的最⼤值是车重的1/10,要使汽车不致冲出圆跑道,车速最⼤不能超过多少?解析:跑道对汽车的摩擦⼒提供向⼼⼒,1/10mg=mv2/r,所以要使汽车不致冲出圆跑道,车速最⼤值为v=. 答案:车速最⼤不能超过3、⼀质量m=2 kg的⼩球从光滑斜⾯上⾼h=3.5 m处由静⽌滑下,斜⾯的底端连着⼀个半径R=1 m的光滑圆环(如图所⽰),则⼩球滑⾄圆环顶点时对环的压⼒为_____________,⼩球⾄少应从多⾼处静⽌滑下才能通过圆环最⾼点,hmin=_________(g=10 m/s2).匀速圆周运动典型问题剖析匀速圆周运动问题是学习的难点,也是⾼考的热点,同时它⼜容易和很多知识综合在⼀起,形成能⼒性很强的题⽬,如除⼒学部分外,电学中“粒⼦在磁场中的运动”涉及的很多问题仍然要⽤到匀速圆周运动的知识,对匀速圆周运动的学习可重点从两个⽅⾯掌握其特点,⾸先是匀速圆周运动的运动学规律,其次是其动⼒学规律,现就各部分涉及的典型问题作点滴说明。
向心力的实例分析引言向心力是物体受到外力作用时,沿着力的方向向中心运动的力。
它是一种重要的力学概念,广泛应用于各个领域,包括物理学、工程学和天文学等。
本文将通过分析一些具体的示例,来深入探讨向心力的作用机制和实际应用。
实例一:绕轴旋转的物体考虑一个在水平轴上绕着转动的物体,如图所示:图1图1这个物体受到的向心力可以通过以下公式计算:$$F_c = \\frac{mv^2}{r}$$其中,m是物体的质量,v是物体的速度,r是物体相对于轴的距离。
根据这个公式,我们可以看出,向心力与物体的质量成正比,与速度的平方成正比,与距离的倒数成正比。
当物体的质量增加时,向心力也会增加,从而使物体更难改变运动状态。
当物体的速度增加时,向心力也会增加,从而使物体更难以逃离圆周运动。
当物体相对于轴的距离减小时,向心力也会增加,从而使物体更加受限于轴周围的运动。
实例二:行星绕太阳运动行星绕太阳的运动是一个经典的向心力示例。
根据万有引力定律,行星受到来自太阳的引力作用,这个引力提供了向心力,使得行星绕太阳做圆周运动。
根据开普勒第三定律,行星绕太阳的周期T与它与太阳的平均距离a的关系可以表示为:$$T^2 = \\frac{4\\pi^2}{GM}a^3$$其中,G是引力常数,M是太阳的质量。
由此可以看出,行星的运动周期与其与太阳的平均距离的三次方成正比。
这个公式还可以告诉我们,行星距离太阳越远,其运动周期越长;行星距离太阳越近,其运动周期越短。
这也是为什么地球绕太阳运动的周期为一年,而水星绕太阳运动的周期只有88天的原因。
实例三:离心机离心机是一种利用向心力的装置,广泛应用于化学实验室和制药工业中。
它通过调节转速产生的向心力,将混合物中的固体颗粒或液体分离出来。
离心机的工作原理是基于不同物质密度的差异。
当混合物旋转时,向心力会将密度较大的成分更快地向外推动,而密度较小的成分则更容易靠近轴。
通过调整离心机的转速和离心力的大小,可以实现对不同物质的分离。
向心力的实例分析讲义离心运动复习一、引言向心力和离心力是物体在进行圆周运动时所受到的两种力。
向心力指的是物体向圆心的力,离心力则是物体远离圆心的力。
在本篇讲义中,我们将通过分析一些实例来复习向心力和离心力的概念。
二、向心力的实例分析1.系在绳子上旋转的小球考虑一个小球系在绳子上进行旋转的实例。
当小球在绳子上旋转时,绳子对小球施加一个向心力,使其向绳子的中心点运动。
2.向心力对人体的影响在过山车等高速旋转的游乐设施上,乘客会感受到向心力对身体的影响。
当过山车在弯道上快速转向时,向心力会使乘客向内侧倾斜,产生一种被拍在座位上的感觉。
3.地球对月球的引力地球对月球的引力同样也是一个向心力的实例。
尽管月球在绕地球运动时并没有被绳子所束缚,但是地球的引力会使月球向地球的中心移动,从而产生类似向心力的效果。
三、离心力的实例分析1.旋转的洗衣机当洗衣机进入高速旋转阶段时,内壁对湿衣物施加的离心力将使水分远离衣物并被排除出机器。
2.汽车在转弯时的倾斜当汽车在弯道上行驶时,离心力会使汽车产生一个外倾的力矩,从而使车身倾斜。
这种倾斜能够提高车辆在弯道上的稳定性。
3.离心仓的分离物料在一些工业生产过程中,常常会使用离心力将物料分离。
比如在化工过程中,通过旋转离心定置器,可以将固体颗粒与液体分离出来。
四、向心力与离心力的关系向心力和离心力之间有着一种互补的关系。
当物体在进行圆周运动时,我们可以将绳子向外一侧拉着物体,称之为向心力。
同样地,我们也可以将绳子向内一侧拉着物体,称之为离心力。
五、结论通过上述实例的分析,我们可以更好地理解向心力和离心力的概念。
向心力和离心力是物体在进行圆周运动时所受到的两种力,它们之间有着互补的关系。
向心力使物体向圆心移动,离心力使物体远离圆心。
在实际生活和工业生产中,向心力和离心力都有着重要的应用价值。
对于理解这两种力的概念,我们可以通过分析实例来加深理解和记忆。