七年级数学 整式的乘法平方差公式完全平方公式
- 格式:doc
- 大小:386.50 KB
- 文档页数:6
完全平方公式与平方差公式
1. 完全平方公式:
完全平方公式是一个用于计算平方数的公式,它的形式为:
(a + b)²= a²+ 2ab + b²
其中,a和b是任意实数。
这个公式的意思是,如果你想求出一个由两个实数a和b相加的数的平方,那么你可以使用这个公式。
首先,将a²和b²分别计算出来,然后将它们相加。
接着,你需要计算2ab,这个2ab的意思是a和b的乘积的两倍。
最后,将这些结果相加就得到了(a + b)²的值。
2. 平方差公式:
平方差公式是一个用于计算两个实数之差的平方的公式,它的形式为:
(a - b)²= a²- 2ab + b²
其中,a和b是任意实数。
这个公式的意思是,如果你想求出两个实数a和b之间的差的平方,那么你可以使用这个公式。
首先,将a²和b²分别计算出来,然后将它们相减。
接着,你需要计算-2ab,这个-2ab的意思是a和b的乘积的两倍的相反数。
最后,将这些结果相加就得到了(a - b)²的值。
这两个公式在数学中非常有用,它们可以帮助我们在计算中快速求出平方数和差的平方。
了解它们的含义和用法可以帮助我们更好地理解数学的基本概念。
完全平方公式与平方差公式一.知识要点1.乘法公式就是把一些特殊的多项式相乘的结果加以总结,直接应用。
公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。
公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重要的变形及其逆运算――除法等。
2.基本公式完全平方公式:(a±b)2=a2±2ab+b22 23(1(24由(由5(a+b(a-a n-b n能被a-b整除,a2n+1+b2n+1能被a+b整除,a2n-b2n能被a+b及a-b整除。
二.例题精选例1.已知x、y满足x2+y2+54=2x+y,求代数式xyx y的值。
例2.整数x,y满足不等式x2+y2+1≤2x+2y,求x+y的值。
例3.同一价格的一种商品在三个商场都进行了两次价格调整.甲商场:•第一次提价的百分率为a,第二次提价的百分率为b; 乙商场:两次提价的百分率都是2a b+(a>0,•b>0); 丙商场:第一次提价的百分率为b,第二次提价的百分率为a,•则哪个商场提价最多?说明理由. 例4.计算:(1)6(7+1)(72+1)(74+1)(78+1)+1;(2)1.345×0.345×2.69-1.3453-1.345×0.3452.例5222()例6例7例8数.12A.x 3A 45(2)19492-19502+19512-19522+……+19972-19982+19992=_________。
6.已知a+1a=5,则=4221a a a ++=_____。
7.已知两个连续奇数的平方差为•2000,•则这两个连续奇数可以是______.8.已知a 2+b 2+4a -2b+5=0,则a ba b +-=_____.9.若代数式b x x +-62可化为1)(2--a x ,则b ﹣a 的值是. 10.已知a 、b 、c 均为正整数,且满足a 2+b 2=c 2,又a 为质数.证明:(1)b 与c 两数必为一奇一偶;(2)2(a+b+1)是完全平方数. 参考答案: 一.例题精选例1.提示:由已知得(x-1)2+(y-12)2=0,得x=1,y=12,原式=13例2.原不等式可化为(x-1)2+(y-1)2≤1,且x 、y 为整数,(x-1)2≥0,(y-1)2≥0,•10x -=11x -=±10x -=解得x y =⎧⎨⎩例3例4.(2)设例5. 例6.P <Q ;差值法:P -例7.例8因(x 12+x 22+…+x 102)-(y 12+y 22…+y 102)=(x 12-y 12)+(x 22-y 22)+…+(x 102-y 102) =(x 1+y 1)(x 1-y 1)+(x 2+y 2)(x 2-y 2)+…+(x 10+y 10)(x 10-y 10) =9[(x 1+x 2+…+x 10)-(y 1+y 1+…+y 10)]=0二.同步练习9.121)(222-+-=--a ax x a x ,这个代数式于b x x +-62相等,因此对应的系数相等,即﹣2a =﹣6,解得a =3,b a =-12,将a =3代入得b =8,因此b ﹣a =5. 10.解:(1)因(c+b)(c-b)=a 2,又c+b 与c-b 同奇同偶,c+b>c-b,故a•不可能为偶质数2,a应为奇质数,c+b与c-b同奇同偶,b与c必为一奇一偶.(2)c+b=a2,c-b=1,两式相减,得2b=a2-1,于是2(a+b+1)=2a+2b+2=2a+a2-1+2=(a+1)2,为一完全平方数.。
7年级整式乘法——平方差与完全平方公式(二)完全平方公式1.完全平方公式:①()2222a b a ab b +=++;②()2222a b a ab b -=-+.即:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,这个公式叫做乘法的完全平方公式.2.完全平方公式的结构特征:公式的左边是一个二项式的完全平方;右边是三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍. 3.公式的推广:①()()()222a b a b a b --=-+=+⎡⎤⎣⎦;②()()()222a b a b a b -+=--=-⎡⎤⎣⎦; ③()()222222a b a b ab a b ab +=+-=-+;④()2222222a b c a b c ab bc ac ++=+++++.平方差公式:(a+b)(a-b)=a 2-b 22. (1)(3x+2)(3x-2) (2)(b+2a )(2a-b )3.()()()()4422b aba b a b a +++-= ;4.)32)(32(22y x y x -+5.)32)(32(n m n m ---6.)3)(3(xy z z xy ---7. (1) ; (2) ;公式结构特征:(1) 公式左边两个二项式必须是相同两数的和与差相乘;且左边两括号内的第一项相等、第二项符号相反[互为相反数(式)];(2) 公式右边是这两个数的平方差;即右边是左边括号内的第一项的平方减去第二项的平方。
(3) 公式中的 a 和b 可以是数,也(3) ;(4) ;8.先化简,再求值,其中9. (a -b +c)(a +b +c)10.已知()()227,4a b a b +=-=,求22a b +和ab 的值.11.计算:(1)()()x y z x y z +--+ (2)()22x y z +-13.1 .计算:①()221m -- ②()()()22a b a b a b -+-③()2a b c +- ④()2220.43m n-(1)已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.(2)已知2a -b =5,ab =23,求4a 2+b 2-1的值.(3)已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.拓展小组1.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
树人阁教育一对一个性化辅导教案第三讲、乘法公式知识点讲义知识点:(一)、平方差公式:(a+b)(a-b)=b a 22- 两数 与这两 差的积,等于它们的 。
1、即:(a +b )(a-b) = 相同符号项的平方 - 相反符号项的平方2、平方差公式可以逆用,即:b a 22-=(a+b)(a-b )。
3、能否运用平方差公式的判定①有两数和与两数差的积 即:(a+b )(a -b)或(a+b)(b-a)②有两数和的相反数与两数差的积 即:(-a-b)(a-b)或(a+b)(b-a) ③有两数的平方差 即:b a 22- 或a b 22+-(二)、完全平方公式:)(2b a +=a 2+2ab+b 2 )(2b a -=a 2-2ab+b 2 两数和(或差)的平方,等于它们的 ,加上(或减去)它们的积的 。
1、完全平方公式也可以逆用,即a 2+2ab+b 2=)(2b a + a 2-2ab+b 2=)(2b a - 2、能否运用完全平方式的判定①有两数和(或差)的平方即:)(2b a +或 )(2b a -或 )(2b a --或)(2b a +-②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a 2+2ab+b 2或a 2-2ab+b 2 a -2-2a bb -2或 a -2+2a b-b 2 基础训练:一、选择题1、下列各式中,能用平方差公式计算的是( )ﻩA 、()()p q p q +--ﻩﻩ B 、()()p q q p -- C、(5)()x y y x +-335ﻩ D 、()()2332a b a b +- 2、与()72x y -之积等于y x4249-的因式为 ( ) ﻩA、(7x -y 2)ﻩﻩB、(7x +y2) C、(-7x-y 2) D 、(y 2-7x )3、下列等式能够成立的是 ( )ﻩA 、()242222x y x x y y -=-+ﻩB 、()x y x y +=+222 ﻩC、()1214222a b a a b b -=-+ﻩD、()11222x x x x +=+ 4、要使式子4a2—12a 成为一个完全平方式的结果,则应加上 ( )A、3 ﻩ B、9ﻩﻩ C 、2.25 D 、1.55、()73322x +等于 ( ) A 、737322x x ++ﻩ B 、49972942x x ++ ﻩC 、4997942x x ++ﻩﻩﻩD 、7372942x x ++ 6、[][]()()()()x y x y x y x y +-+-所得结果是 ( ) ﻩA、x y 44- ﻩﻩ B 、x x y y 4224-+ C 、x 4+y 4 D 、x x yy 42242-+7、()a b -2加上如下哪一个后得()a b +2 ( ) A 、2ab ﻩﻩB 、3abﻩ C 、4ab ﻩﻩ D 、0 8、()()x y x x y y +++222等于( ) A 、x y 33+ﻩﻩB、x y 33- C 、()x y +3ﻩﻩD 、以上答案都不对 9、下列各式不能用立方差公式计算的 ( )A 、()()-+-+aa a 112ﻩﻩB 、()(5)a a a 212552-++ C 、()()312932142a a a -++ D 、()()3312aa a +-+ 10、下面四个式子与(a-b )相乘所得的积中是二项式的有 ( )①a +b ﻩ②a a b b 22++ ﻩ③a a b b 22-+ ﻩ④a a b b222-+ ﻩA 、①和④ﻩB、②和③ﻩ C 、①和② ﻩD、③和④ 二、填空题1、()()x y x y+=+33 2、a a b b a b 2223-+=-() 3、()()ab b a -=-121422 4、()+=++m n 2245、()()4144983432233x x y y x y++=- 6、()()x x x -++=112227、()()x y x x y y n m n n m m +-+=22 8、(.)0222a a +=++9、()()()343422x y x y -+=+10、()()---+=x y x x y y 22解答题、1、四个连续偶数a 、b 、c 、d 中最后一个数是第m +2个正偶数,如果b d a c -=412,求这四个数2、已知x y x y +=-=1016,求下列各式的值ﻩ求①x y 22+ﻩ ②()x y -2ﻩﻩ③()()x y ++22④x x yy 22-+3、13122a a a a +=+求4、1)1)(1)(1)(12(222842+++++5、b ab b 22a .6,5a +-=-=+求已知:。
整式之平方差和完全平方整式的加减 同底数幂的乘法、幂的乘方、积的乘方幂 同底数幂的除法、零指数和负整数指数幂单项式乘以单项式 整式及其运算乘法分配律 整式的乘法 单项式乘以多项式乘法分配律多项式乘以多项式、平方差公式、完全平方公式 单项式除以单项式整式的除法乘法分配律多项式除以单项式平方差公式与完全平方公式 一、 公式透析平方差公式:22))((b a b a b a -=-+特点是相乘的两个二项式中,a 表示的是完全相同的项,+b 和-b 表示的是互为相反数的两项。
所以说,两个二项式相乘能不能用平方差公式,关键看是否存在两项完全相同的项,两项互为相反数的项。
完全平方公式:2222)(b ab a b a +±=±注意不要漏掉2ab 项 例1. 填空题: (1)()()a a +-=11 (2)()()33a b a b -+= (3)()()mbm b -+=22(4)()()x x +=-392(5)()()a a+=-5252(6)()()---=3535x y x y(7)()()---=a b b a 2332例2. 计算题: (1)()a212-(2)()-+25232a b(3)()--34222m n(4) ()()231231a b a b --++(5)()()()x y x y x y --+24222(6)()232a b --例3. 计算()()x x 252522+--例4. 化简()()()()212121211248+++++________________。
注意:由乘法公式我们不难得出下面几个公式变形的式子 ①a b ab a b 2222+=+-() ②a b ab a b 2222+=-+() ③()()ab ab a b+--=224④()()ab ab a b+=-+224 这些式子可使许多有关多项式乘法的解题过程变得简捷巧妙,提高思维的创造力。
北师大版七年级下册数学《第一章整式的乘除--完全平方公式》知识点讲解!1.完全平方公式:(a+b)2=a2+b2+2ab (a-b)2=a2+b2-2ab两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
2.派生公式:(a+b)2-2ab=a2+b2(a-b)2+2ab=a2+b2(a-b)2+(a+b)2=2(a2+b2) (a+b)2-(a-b)2=4ab考点解析完全平方公式是进行代数运算与变形的重要知识基础。
该知识点重点是对完全平方公式的熟记及应用,难点是对公式特征的理解(如对公式中积的一次项系数的理解)。
两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,叫做完全平方公式。
为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
理解公式左右边特征(一)学会推导公式(这两个公式是根据乘方的意义与多项式的乘法法则得到的),真实体会随意“创造”的不正确性;(二)学会用文字概述公式的含义:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.(三)这两个公式的结构特征是:1、左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;2、左边两项符号相同时,右边各项全用“+”号连接;左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);3、公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.(四)两个公式的统一:因为所以两个公式实际上可以看成一个公式:两数和的完全平方公式。
这样可以既可以防止公式的混淆又杜绝了运算符号的出错。
平方差公式与完全平方公式首先介绍平方差公式。
平方差公式是指两个数之差的平方可以表示为两个数的平方的差。
具体而言,如果有两个数a和b,那么它们的平方差公式可以表示为(a-b)(a+b)=a^2-b^2、即一个数的平方减去另一个数的平方等于这两个数之差的乘积。
(a-b)(a+b) = a(a+b) - b(a+b) = a^2 + ab - ab - b^2 = a^2 -b^2例如,如果我们要计算64和25之间的差的平方,我们可以利用平方差公式:(64-25)(64+25)=64^2-25^2=3999下面我们来介绍完全平方公式。
完全平方公式是指一个二次多项式可以表示为一个平方的形式。
具体而言,如果有一个二次多项式ax^2+bx+c,其中a、b、c都是实数,并且a不等于0,那么它可以表示为一个完全平方的形式,即(a^2(x+d)^2)+e,其中d和e是实数。
完全平方公式的推导可以通过配方法来证明。
具体而言,我们有:ax^2+bx+c = a(x^2+(b/a)x+(c/a)) = a((x^2+(b/a)x+(b/2a)^2) + (c/a-(b/2a)^2)) = a(x+(b/2a))^2 + (c/a-(b/2a)^2)例如,如果我们有一个二次多项式x^2+6x+9,我们可以使用完全平方公式将其表示为(x+3)^2、因为(x+3)^2=x^2+6x+9,所以这两个表达式是等价的。
完全平方公式在高等数学和代数运算中也有广泛的应用。
在求解二次方程的根时,我们可以使用完全平方公式来简化计算,将二次方程表示为一个平方的形式。
它还可以用于求解三角恒等式和简化代数表达式。
综上所述,平方差公式和完全平方公式是数学中常用的两个公式,它们在代数运算和高等数学中有广泛的应用。
掌握这两个公式可以帮助我们简化计算过程,解决问题,并扩展数学思维的能力。
第一章整式的运算单项式 整 式多项式同底数幂的乘法幂的乘方 积的乘方幂运算 同底数幂的除法零指数幂负指数幂 整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法 多项式与多项式相乘整式运算 平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式一、单项式、单项式的次数:只含有数字与字母的积的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
二、多项式1、多项式、多项式的次数、项几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式:单项式和多项式统称为整式。
四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。
五、幂的运算性质:1、同底数幂的乘法:a m ﹒a n =a m+n (m,n 都是正整数);2、幂的乘方:(a m )n =a mn (m,n 都是正整数);3、积的乘方:(ab )n =a n b n (n 都是正整数);4、同底数幂的除法:a m ÷a n =a m-n (m,n 都是正整数,a ≠0) ;六、零指数幂和负整数指数幂:1、零指数幂:a 0=1(a ≠0);2、负整数指数幂:1(0)p p a a a -=≠p 是正整数。
七、整式的乘除法:1、单项式乘以单项式:整 式 的 运 算法则:单项式与单项式相乘,把它们的系数、p 是正整数相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
3、多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
第一讲 整式及乘法公式第一部分 知识梳理一、基本概念1.同底数幂乘法法则同底数幂相乘,底数不变,指数相加。
即n m n m a a a +=⋅(m 、n 都是正整数) 2.幂的乘方法则幂的乘方,底数不变,指数相乘。
即()mn nm a a =(m 、n 都是正整数)3.积的乘方积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘,即()nn nb a ab = (n为整数)二、平方差公式及完全平方公式(1)平方差公式:(a+b )(a-b )=a 2-b 2;(2)完全平方公式:(a+b )2=a 2+2ab+b 2;(a-b )2=a 2-2ab+b 2,其中a 、b 可以是正数,也可以是负数,既可以是单项式,也可以是多项式。
三、整式的乘法1.单项式相乘,把它们的________分别相乘,对于只在一个单项式里含有的字母,则________.2.单项式与多项式相乘,就是用单项式去乘________,再把所得的积________. 3.多项式与多项式相乘,先用________乘以________,再把所得的积________.第二部分 例题与解题思路方法归纳【例题1】 阅读下列材料:一般地,n 个相同的因数a 相乘个n a a a ⋯⋅记为a n .如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log 28(即log 28=3).一般地,若a n=b (a >0且a ≠1,b >0),则n 叫做以a 为底b 的对数,记为log a b (即log a b=n ).如34=81,则4叫做以3为底81的对数,记为log 381(即log 381=4).(1)计算以下各对数的值:log24=,log216=,log264=.(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?log a M+log a N=;(a>0且a≠1,M>0,N>0)(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义证明上述结论.〖选题意图〗本题是开放性的题目,难度较大.借考查对数,实际考查学生对指数的理解、掌握的程度;要求学生不但能灵活、准确的应用其运算法则,还要会类比、归纳,推测出对数应有的性质.〖解题思路〗首先认真阅读题目,准确理解对数的定义,把握好对数与指数的关系.(1)根据对数的定义求解;(2)认真观察,不难找到规律:4×16=64,log24+log216=log264;(3)有特殊到一般,得出结论:log a M+log a N=log a(MN);(4)首先可设log a M=b1,log a N=b2,再根据幂的运算法则:a n•a m=a n+m以及对数的含义证明结论.〖参考答案〗解:(1)log24=2,log216=4,log264=6;(2)4×16=64,log24+log216=log264;(3)log a M+log a N=log a(MN);(4)证明:设log a M=b1,log a N=b2,则=M,=N,∴MN=,∴b1+b2=log a(MN)即log a M+log a N=log a(MN).【课堂训练题】1.已知2a•5b=2c•5d=10,求证:(a﹣1)(d﹣1)=(b﹣1)(c﹣1).〖参考答案〗证明:∵2a•5b=10=2×5,∴2a﹣1•5b﹣1=1,∴(2a﹣1•5b﹣1)d﹣1=1d﹣1,①同理可证:(2c﹣1•5d﹣1)b﹣1=1b﹣1,②由①②两式得2(a﹣1)(d﹣1)•5(b﹣1)(d﹣1)=2(c﹣1)(b﹣1)•5(d﹣1)(b﹣1),即2(a﹣1)(d﹣1)=2(c﹣1)(b﹣1),∴(a﹣1)(d﹣1)=(b﹣1)(c﹣1).2.若a m=a n(a>0且a≠1,m,n是正整数),则m=n.你能利用上面的结论解决下面的2个问题吗?试试看,相信你一定行!①如果2×8x×16x=222,求x的值;②如果(27﹣x)2=38,求x的值.〖参考答案〗解:(1)∵2×8x×16x=21+3x+4x=222,∴1+3x+4x=22,解得,x=3(2)∵(27﹣x)2=3﹣6x=38,∴﹣6x=8,解得x=﹣【例题2】设m=2100,n=375,为了比较m与n的大小。