希尔伯特黄变换20页PPT
- 格式:ppt
- 大小:2.19 MB
- 文档页数:20
目录∙ 1 本质模态函数(IMF)∙ 2 经验模态分解(EMD)∙ 3 结论∙ 4 相关条目∙ 5 参考文献∙ 6 外部链接[编辑]本质模态函数(IMF)任何一个资料,满足下列两个条件即可称作本质模态函数。
⒈局部极大值(local maxima)以及局部极小值(local minima)的数目之和必须与零交越点(zero crossing)的数目相等或是最多只能差1,也就是说一个极值后面必需马上接一个零交越点。
⒉在任何时间点,局部最大值所定义的上包络线(upper envelope)与局部极小值所定义的下包络线,取平均要接近为零。
因此,一个函数若属于IMF,代表其波形局部对称于零平均值。
此类函数类似于弦波(sinusoid-like),但是这些类似于弦波的部分其周期与振幅可以不是固定。
因为,可以直接使用希尔伯特转换,求得有意义的瞬时频率。
[编辑]经验模态分解(EMD)EMD算法流程图建立IMF是为了满足希尔伯特转换对于瞬时频率的限制条件之前置处理,也是一种转换的过程。
我们将IMF来做希尔伯特转换可以得到较良好的特性,不幸的是大部分的资料并不是IMF,而是由许多弦波所合成的一个组合。
如此一来,希尔伯特转换并不能得到正确的瞬时频率,我们便无法准确的分析资料。
为了解决非线性(non-linear)与非稳态(non-stationary)资料在分解成IMF时所遇到的困难,便发展出EMD。
经验模态分解是将讯号分解成IMF的组合。
经验模态分解是借着不断重复的筛选程序来逐步找出IMF。
以讯号为例,筛选程序的流程概述如下:步骤 1 : 找出中的所有局部极大值以及局部极小值,接着利用三次样条(cubic spline),分别将局部极大值串连成上包络线与局部极小值串连成下包络线。
步骤 2 : 求出上下包络线之平均,得到均值包络线。
步骤 3 : 原始信号与均值包络线相减,得到第一个分量。
步骤 4 : 检查是否符合IMF的条件。
第四章 窄带随机过程 4.1 希尔伯特变换和解析过程4.1.1 希尔伯特变换 一. 希尔伯特变换的定义设有实信号)(t x ,它的希尔伯特变换记作)(ˆt x或)]([t x H ,并定义为τττπd t x t x H t x ⎰∞∞--==)(1)]([)(ˆ用'ττ+=t 代入上式,进行变量替换,可得到上式的等效形式为:'')'(1)(ˆτττπd t x t x ⎰∞∞-+-=也可得'')'(1)(ˆτττπd t x t x ⎰∞∞--=希尔伯特反变换为τττπd t xt x H t x ⎰∞∞----==)(ˆ1)](ˆ[)(1经变量替换后得τττπτττπd t xd t xt x ⎰⎰∞∞-∞∞-+=--=)(ˆ1)(ˆ1)(二. 希尔伯特变换的性质1. 希尔伯特变换相当于一个090的理想移相器。
从定义可以看出,希尔伯特变换是)(t x 和t π1的卷积,即tt x t xπ1*)()(ˆ=于是,可以将)(ˆt x看成是将)(t x 通过一个具有冲激响应为t t h π1)(=的线性滤波器的输出。
由冲激响应可得系统的传输函数为)sgn()(ωωj H -=式中,)sgn(ω为符号函数,其表达式为0101)sgn(<-≥=ωωω可得滤波器的传输函数为00)(<≥-=ωωωj j H即1)(=ωH202)(<≥-=ωπωπωϕ上式表明,希尔伯特变换相当于一个090的理想移相器。
由上述分析可得,)(ˆt x的傅立叶变换)(ˆωX 为)()sgn()sgn()()(ˆωωωωωX j j X X-=-⋅= 2. )(ˆt x的希尔伯特变换为)(t x -,即)()](ˆ[t x t x H -=。
3. 若)(*)()(t x t v t y =,则)(t y 的希尔伯特变换为)(*)(ˆ)(ˆ*)()(ˆt x t v t x t v t y==4.)(t x 与)(ˆt x的能量及平均功率相等,即 dt t xTdt t x Tdt t xdt t x TTT TT T ⎰⎰⎰⎰-∞→-∞→∞∞-∞∞-==)(ˆ21lim )(21lim )(ˆ)(2222此性质说明希尔伯特变换只改变信号的相位,不会改变信号的能量和功率。
HHT-希尔伯特·黄变换1998年,Norden E. Huang等人提出了经验模态分解方法,并引入了Hilbert谱的概念和Hilbert谱分析的方法,美国国家航空和宇航局(NASA)将这一方法命名为Hilbert-Huang Transform,简称HHT,即希尔伯特-黄变换。
HHT主要内容包含两部分,第一部分为经验模态分解(Empirical Mode Decomposition,简称EMD),它是由Huang提出的;第二部分为Hilbert谱分析(Hilbert Spectrum Analysis,简称HAS)。
简单说来,HHT处理非平稳信号的基本过程是:首先利用EMD方法将给定的信号分解为若干固有模态函数(以Intrinsic Mode Function或IMF表示,也称作本征模态函数),这些IMF是满足一定条件的分量;然后,对每一个IMF进行Hilbert变换,得到相应的Hilbert谱,即将每个IMF表示在联合的时频域中;最后,汇总所有IMF的Hilbert谱就会得到原始信号的Hilbert谱。
与传统的信号或数据处理方法相比,HHT具有如下特点:(1)HHT能分析非线性非平稳信号。
传统的数据处理方法,如傅立叶变换只能处理线性非平稳的信号,小波变换虽然在理论上能处理非线性非平稳信号,但在实际算法实现中却只能处理线性非平稳信号。
历史上还出现过不少信号处理方法,然而它们不是受线性束缚,就是受平稳性束缚,并不能完全意义上处理非线性非平稳信号。
HHT则不同于这些传统方法,它彻底摆脱了线性和平稳性束缚,其适用于分析非线性非平稳信号。
(2)HHT具有完全自适应性。
HHT能够自适应产生“基”,即由“筛选”过程产生的IMF。
这点不同于傅立叶变换和小波变换。
傅立叶变换的基是三角函数,小波变换的基是满足“可容性条件”的小波基,小波基也是预先选定的。
在实际工程中,如何选择小波基不是一件容易的事,选择不同的小波基可能产生不同的处理结果。
北⼤随机信号分析基础课件希尔伯特变换和解析过程第四章窄带随机过程 4.1 希尔伯特变换和解析过程4.1.1 希尔伯特变换⼀.希尔伯特变换的定义设有实信号)(t x ,它的希尔伯特变换记作)(?t x或)]([t x H ,并定义为τττπd t x t x H t x ?∞∞--==)(1)]([)(?⽤'ττ+=t 代⼊上式,进⾏变量替换,可得到上式的等效形式为:'')'(1)(?τττπd t x t x ?∞∞-+-=也可得'')'(1)(?τττπd t x t x ?∞∞--=希尔伯特反变换为τττπd t xt x H t x ?∞∞----==)(?1)](?[)(1经变量替换后得τττπτττπd t xd t xt x ?-∞∞-+=--=)(?1)(?1)(⼆.希尔伯特变换的性质1. 希尔伯特变换相当于⼀个090的理想移相器。
从定义可以看出,希尔伯特变换是)(t x 和tπ1的卷积,即tt x t xπ1*)()(?=于是,可以将)(?t x看成是将)(t x 通过⼀个具有冲激响应为t t h π1)(=的线性滤波器的输出。
由冲激响应可得系统的传输函数为)sgn()(ωωj H -=式中,)sgn(ω为符号函数,其表达式为0101)sgn(<-≥=ωωω可得滤波器的传输函数为00)(<≥-=ωωωj j H即1)(=ωH=ωπωπω?上式表明,希尔伯特变换相当于⼀个090的理想移相器。
由上述分析可得,)(?t x的傅⽴叶变换)(?ωX 为)()sgn()sgn()()(?ωωωωωX j j X X-=-?= 2. )(?t x的希尔伯特变换为)(t x -,即)()](?[t x t x H -=。
3. 若)(*)()(t x t v t y =,则)(t y 的希尔伯特变换为)(*)(?)(?*)()(?t x t v t x t v t y==4.)(t x 与)(?t x的能量及平均功率相等,即 dt t xTdt t x Tdt t xdt t x TTT TT T ?-∞→-∞→∞-==)(?21lim )(21lim )(?)(2222此性质说明希尔伯特变换只改变信号的相位,不会改变信号的能量和功率。