解释结构模型ISM及其应用共31页文档
- 格式:pptx
- 大小:260.75 KB
- 文档页数:31
ISM模型ISM模型,即 Interpretive Structural Modeling,是一种系统性的分析方法,旨在揭示事物之间的相互作用关系和结构。
该模型可以帮助理解和解释事物之间的因果关系,为决策提供可靠的依据。
ISM模型的应用领域广泛,涵盖了管理、工程、经济、社会科学等多个领域。
下面将对ISM模型的原理和应用进行详细介绍。
ISM模型的原理ISM模型主要基于图论、系统论和结构方程等理论,通过对事物之间的相互影响和作用关系进行分析,抽象出事物的结构性关系。
ISM模型的核心思想是将事物分解成不同的元素,并通过建立元素之间的关系来描绘事物的整体结构。
ISM模型的建模过程包括以下几个步骤:1.确定元素:首先确定要分析的事物和元素,将事物分解成可操作的元素。
2.建立关系:确定元素之间的关系,包括因果关系、影响关系等。
3.构建矩阵:将元素之间的关系表示为矩阵,以便进行进一步分析和计算。
4.运用模型:利用计算工具和方法对矩阵进行分析,得出事物的结构性信息和结论。
ISM模型的应用ISM模型在各个领域都有广泛的应用,例如在管理领域,可以利用ISM模型分析组织结构、决策过程、产品设计等方面;在工程领域,可以应用ISM模型进行系统设计、风险评估等工作;在经济学领域,ISM模型可以用于市场分析、竞争战略制定等方面。
ISM模型的应用优势主要体现在以下几个方面:•系统性:ISM模型可以帮助分析事物的整体结构和相互作用关系,提供多维度的分析视角。
•可视化:通过建立元素之间的关系图,可以直观地展示事物的结构和关系。
•决策支持:ISM模型可以为决策提供科学依据,帮助制定有效的决策方案。
结语ISM模型作为一种解决复杂问题的工具,具有较强的实用性和普适性。
通过对事物结构的深入分析,可以揭示事物之间的关系和作用机制,为问题解决和决策提供有力支持。
希望本文对ISM模型的原理和应用有所帮助。
以上是对ISM模型的介绍,通过分析事物之间的相互关系,ISM模型可以为决策过程和问题解决提供有力的支持。
解释结构模型ISM及其应用探讨作者:张贺来源:《市场周刊·市场版》2018年第02期摘要:解释结构模型ISM应用范围非常广泛,本文主要是该模型在教学研究方面的应用,这些应用也涉及到教学研究的各个方面,从一个教学计划的制定,到具体的教学课程的安排和教材的选择,直到最后教学结果的分析。
通过运用这种方法使得复杂的教学管理工作变得层次分明、条理清楚,为教学科研的管理提供了科学的方法和依据,同时也简化和方便了教学管理。
关键词:解释结构模型ISM;教学管理;科学一、解释结构模型ISM在教学系统制定方面的应用在《解释结构模型法ISM在内蒙古省高校体育教育专业课程设置中的应用》中使用解释结构模型法通过计算得到了内蒙古地区“体育教育复合型人才”的素质、能力、知识多层递阶结构模型。
许多学者还对现有的教学系统做了深入的思考。
王燕(2008)在《利用ISM法分析以教为主的教学系统设计的要素》中用ISM来分析了以教为主教学系统设计的要素,找出了要素间的关系,对教师进行以教为主的教学设计有一定的帮助。
而郑冬红等(2011)在《基于ISM 模型的以学生为中心的教学结构要素分析》和李志军(2015)在《利用ISM法分析项目教学法设计的要素》中利用ISM结构解释模型法来分析教学结构各要素之间的层次关联,论证以学生为中心的教学结构的一般模型,为建构主义学习理论下的教学实践活动提供直观模型,促进其操作性。
在现代互联网时代背景下,网上教学和远程教育以其方便性,廉价性,高效性等特点逐渐被人们所接受,并普及开来。
吕文波和赵君香(2006)在《基于网上教学资源的远程支持服务系统要素的ISM分析》和李慧(2011)在《基于ISM模型的现代远程教育系统的结构分析》中都通过ISM分析网上教学和远程教学系统的各个组成要素及子系统,研究系统要素的内部关联关系,建立了解释结构模型,实现系统结构的层次化分析,对我国现代远程教育系统和网上教学的构建、应用和研究具有重要的借鉴意义和参考价值。
结构模型ISM(Interpretive Structure Model )邻接矩阵的数学形式 (图论-矩阵)(见后面) 设系统S 有n 个元素, S=[e 1、e 2、…e n ] 则邻接矩阵A = 111112112212221121212n n n n n nn nS e a a a S e a a a S e a a a nS S S e ee ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1 当S i 对Sj 有影响 其中各元素 a ij =0 当S i 对Sj 无影响这是布尔矩阵,应遵循布尔矩阵运算规则①逻辑和 AUB =C (C 为布尔矩阵对应元素)c ija ij Ub ijmax {},ij ij a b②逻辑乘 A B =C (C 为布尔矩阵对应元素) cijaijbijmin {},aij bij③A 和B 乘积 AB=D d ij a i1 b 1j a 12b 2j …{}in njik kj i11j i22j in nj 1a b a b =max min(a ,b ),min(a ,b ),,min(a ,b )n k =邻接矩阵的性质①邻接矩阵与系统结构模型图一一对应12345123450000010000100100010000100e e e e e e e e e e ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦③邻接矩阵A 转置后的A T 是与A 相应的结构模型图箭头反过来后的图的相应的邻接矩阵010001010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦123123000101010e e e e e e ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦③邻接矩阵中如有一列元素都是0(如第I 列),则e i 是系统的源点,如图中的(e 5),如有一行(如K 行)元素全为0,则e k 为汇点,如图中的e 1④如果从e i 出发经k 段支路到达e j , 我们就说e i 与e j 之间有“长度”为k 的通路存在。
我们计算A K ,得出的n ×n 方阵中各元素表示的便是相应各单元间有无“长度”为k 的通路存在。
第六章解释结构模型系统是由许多具有一定功能的要素(如设备、事件、子系统等)所组成的,各要素之间总是存在着相互支持或相互制约的逻辑关系。
在这些关系中,又可以分为直接关系和间接关系等。
为此,开发或改造一个系统时,首先要了解系统中各要素间存在怎样的关系,是直接的还是间接的关系,只有这样才能更好地完成开发或改造系统的任务。
要了解系统中各要素之间的关系,也就是要了解和掌握系统的结构,建立系统的结构模型。
结构模型化技术目前已有许多种方法可供应用,其中尤以解释结构模型法(Interpretative Structural Modeling,简称ISM)最为常用。
第一节结构模型概述一、解释结构模型的概念解释结构模型(ISM)是美国J.华费尔特教授于1973年作为分析复杂的社会经济系统有关问题的一种方法而开发的。
其特点是把复杂的系统分解为若干子系统(要素),利用人们的实践经验和知识,以及电子计算机的帮助,最终将系统构造成一个多级递阶的结构模型。
ISM属于概念模型,它可以把模糊不清的思想、看法转化为直观的具有良好结构关系的模型,应用面十分广泛。
从能源问题等国际性问题到地区经济开发、企事业甚至个人范围的问题等,都可应用ISM来建立结构模型,并据此进行系统分析。
它特别适用于变量众多、关系复杂且结构不清晰的系统分析,也可用于方案的排序等。
所谓结构模型,就是应用有向连接图来描述系统各要素间的关系,以表示一个作为要素集合体的系统的模型,图6-1所示即为两种不同形式的结构模型。
结构模型一般具有以下基本性质:(1)结构模型是一种几何模型。
结构模型是由节点和有向边构成的图或树图来描述一个系统的结构。
节点用来表示系统的要素,有向边则表示要素间所存在的关系。
这种关系随着系统的不同和所分析问题的不同,可理解为“影响”、“取决于”、“先于”、“需要”、“导致”或其他含义。
(2)结构模型是一种以定性分析为主的模型。
通过结构模型,可以分析系统的要素选择是否合理,还可以分析系统要素及其相互关系变化对系统总体的影响等问题。
结构模型ISM(Interpretive Structure Model )邻接矩阵的数学形式 (图论-矩阵)(见后面) 设系统S 有n 个元素, S=[e 1、e 2、…e n ] 则邻接矩阵A = 111112112212221121212n n n n n nn nS e a a a S e a a a S e a a a nS S S e ee ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1 当S i 对Sj 有影响 其中各元素 a ij =0 当S i 对Sj 无影响这是布尔矩阵,应遵循布尔矩阵运算规则①逻辑和 AUB =C (C 为布尔矩阵对应元素)c ija ij Ub ijmax {},ij ij a b②逻辑乘 A B =C (C 为布尔矩阵对应元素) cijaijbijmin {},aij bij③A 和B 乘积 AB=D d ij a i1 b 1j a 12b 2j …{}in njik kj i11j i22j in nj 1a b a b =max min(a ,b ),min(a ,b ),,min(a ,b )n k =邻接矩阵的性质①邻接矩阵与系统结构模型图一一对应12345123450000010000100100010000100e e e e e e e e e e ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦③邻接矩阵A 转置后的A T 是与A 相应的结构模型图箭头反过来后的图的相应的邻接矩阵010001010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦123123000101010e e e e e e ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦③邻接矩阵中如有一列元素都是0(如第I 列),则e i 是系统的源点,如图中的(e 5),如有一行(如K 行)元素全为0,则e k 为汇点,如图中的e 1④如果从e i 出发经k 段支路到达e j , 我们就说e i 与e j 之间有“长度”为k 的通路存在。
我们计算A K ,得出的n ×n 方阵中各元素表示的便是相应各单元间有无“长度”为k 的通路存在。