水平井特点及司钻讲解
- 格式:doc
- 大小:143.51 KB
- 文档页数:10
第五章长、中曲率半径水平井钻井专用工具水平井钻井技术是指在一定钻井工艺的控制下使井眼由垂直状态变为水平状态或近似水平状态,这种钻井原理同定向钻井极为类似,也可以说,水平井钻井即是一种难度较大的特殊定向钻井。
水平井要求在产层或某一指定的地层钻成有一定长度延伸的水平段,这就决定了其工艺上固有的特殊性。
而工具的选择与使用必须能够保证钻头(或钻柱)按照设计的井眼轨迹准确运行。
水平井、特别是中半径水平井井身轨迹的特殊性,需要造斜工具必须具有较高的造斜能力,这是钻成水平井的基本保障;其次,在满足高造斜率要求的基础上还必须使工具有较好的稳定性。
要想使井眼有一定的偏斜并不困难,以往的定向钻井工艺早已解决了这方面的问题,但当井斜角大到一定程度后,继续增斜、至使井斜角接近或超过90°,这就存在着很大的难度,这是常规的定向钻井工具所不能完成的。
另外,水平井段的钻进也是我们前未遇的新问题,钻柱在这种特殊状态下的延伸必须有特殊的工具辅以维持。
为了满足水平井钻井施工的需要,设计制造出钻各种大、中曲率半径水平井的井下专用工具,通过现场试验使用进一步改进完善,总结出适合水平井钻井的工具模式。
一般说来,水平井钻井的生产工序环节,大致上分为造斜,增斜、稳斜或稳平,有时根据地质要求需另附加水平取芯段。
水平井井身轨迹的控制要求严格,各阶段使用的工具不尽相同,各种工具的研究技术难点也各不相同。
水平井钻井工具主要包括水平井钻井常用井下工具和地面工具两部分,该章主要介绍的井下工具是稳定器、无磁钻铤、螺旋钻铤、加重钻杆、定向接头、弯接头、定向弯接头、定向造斜专用PDC钻头、井底动力钻具(螺杆动力钻具、涡轮钻具)•和水平井取心工具等。
地面工具主要包括转盘量角器、钻杆量角器、钻铤量角器、方钻杆标定尺、钻杆划线规、定向键调节扳手。
第一节稳定器一、概述稳定器用途最为广泛,不论是增斜降斜段,还是稳斜稳平段,都是不可缺少的工具之一。
根据不同生产段的需要和水平井自身的特点,有着不同稳定器的形状及几何尺寸。
第七章----水平井技术第七章水平井技术7.1 水平井的定义所谓水平井,是这样一种定向井,其最大井斜度达到90°左右(一般大于85°就叫水平井),且在目的层内维持一定长度的水平的或近水平井段。
八十年代以来水平井钻井技术的不断成熟主要归功于整个定向钻井技术,它是定向钻井技术发展的重大进步。
7.2 水平井的分类及其特点目前,根据造斜井段的曲率半径,水平井可以分为四种类型:长半径、中半径、短半径水平井(见图7-1)和超短半径水平井。
①长半径水平井系统水平井钻井技术已经进入新的历史时期,但是长曲率半径系统仍然有着它的应用领域,在勘探和探明油田面积方面利用长半径系统成功地钻出了许多水平井。
对于海上钻井平台,大跨度或综合考虑障碍的井口位置和在城市下面的油田等,最好使用长半径。
通常来说,长曲率半径水平井是采用常规的井下工具。
这一类型的水平井的造斜点比较靠近井口;由于曲率半径大,能达到较大的水平位移。
②中半径水平钻井系统从广义上讲,这一钻井系统的水平井眼是根据API对钻柱的弯曲和扭转的复合应力所给出的极限值,进行有效的钻井作业。
经实践,最大的实际狗腿严重度在旋转钻方式中为20°/100ft,在定向钻方式中可达30°/100ft。
中半径水平井系统的适用范围很大,而且在北海、墨西哥湾、洛杉矾和阿拉斯加的北部作业中取得了巨大的成功。
它成功地应用于解决水锥、气锥、生物礁和裂缝地层的油层的开发。
虽然油层的自然性质对于中半径水平井系统的使用性有着某些影响,但是比长半径系统少多了。
尽管钻井液的漏失使得作业复杂化,但钻裂缝性油层的最经济方法在目前来说还是首推中半径水平井。
中半径弯曲井段所需要的垂直深度比长半径系统的深度小得多,许多复杂的井段能够在中曲率半径水平井的垂直井段顺利通过。
并且能在钻弯曲井段和水平井段之前下入套管将其封固。
当然,这样做可能因为增加下套管井深而多一些费用,但是在比较短的弯曲井眼中钻进能够节省时间和减少潜在的井眼复杂情况。
水平井钻井技术概述完整版水平井是一种井底部分或全部在地下水平方向延伸的钻井。
与传统的垂直井相比,水平井具有以下几个主要优点:首先,它可以增加井底与油气储层接触长度,从而扩大产能;其次,水平井可以改善油气的流动性,减少产量损失;此外,水平井还可以降低井底压力,减少地层综合损害,提高采收率。
水平井钻井技术主要包括以下几个步骤:首先,选择合适的位置进行水平井的定位。
选择水平段的位置通常是根据油气储层的特征进行确定,根据地质勘探资料和地质模型,选择对应的位置进行钻井。
其次,进行导向钻井。
导向钻井是将钻铤送到地下指定的位置,通过调整钻井方向控制井眼的走向。
导向钻井可以利用地磁、地震等物理方法,也可以借助于惯性导航系统和全站仪等工具进行。
第三,进行水平段钻井。
在导向钻井的基础上,继续在水平方向进行钻井。
水平段钻井通常使用高转速、低推力的钻机,采用连续循环钻井方法进行。
第四,完成井筒完井和测试。
在完成钻井后,需要进行井筒完井操作,包括套管下入、固井、开除砂器等,最后进行井筒测试,评估井筒和储层的产能。
水平井钻井技术在实际应用中有许多变种。
例如,曲线水平井是一种在导向钻井中添加一个弯曲部分的水平井形式,可以更好地适应地层的特点;多段水平井是在一个井筒中钻探多个水平段,以更好地发挥地层的产能;水平侧向井是一种特殊的水平井形式,可以在地层的侧向进行钻井;而水平井注水技术则是将水平井与注水技术结合起来,用于增强油气储层的压力,提高采收率。
总的来说,水平井钻井技术是一种现代油气开采中非常重要的技术,它可以改善油气的流动性,提高产能,减少开采成本。
随着油气资源的逐渐减少,水平井钻井技术将会得到更广泛的应用,并进一步改进和完善。
水平井特点一、由垂直井眼变成倾斜(水平)井眼带来的特性1、钻具贴井壁,受力状况发生变化从造斜段开始,钻具受力状况相对直井发生了根本的变化。
①造斜段:由于斜井段钻具的斜向拉力造成此处钻具被"拉向"上井壁。
造斜点较高的井可明显在井口出现钻具向定向方向的"偏移"。
随着井深增加,造斜点以下钻具重量随着造斜率的增大,在造斜段出现的侧向力F侧随之增大、起下的摩阻增大,随着时间的延长,起下钻和转动在此处形成键槽。
图1②斜井段:由于钻具自重,钻具"躺在"下井壁,对井壁侧压力的增大,带来磨阻(起下)和扭矩的增大(旋转)。
图2③钻头的受力变化出现侧向分力,当使用增斜钻具结构时,由于近钻头扶正器的"支点"作用而产生向高边的侧向力;使用降斜组合时,由于"钟摆力"作用而向低边产生侧向力;由于下部钻具结构和钻头重力作用,始终产生"降斜趋势,需用刚性组合来保持井斜的稳定或大于此趋势产生增斜力。
2、偏心环空和岩屑床国外专家和"七五"攻关项目中刘希圣教授等专家研究表明,由于斜井钻具偏向下井壁而形成了"偏心环空",岩屑的沉降,运移与直井相比发生了根本的变化,岩屑出现向井壁径向沉降的趋势,由于偏心环空流速的不均匀,在下井壁形成岩屑床,在一定条件下还会发生岩屑床的滑移、堆积。
给大斜度、水平井施工带来威胁,如何正确认识此特点和采取相应的措施是定向井,尤其是大斜度井、水平井成功与否的关键。
图5研究的主要结论有:①偏心环空场中,大环隙处流速大,小环隙处流速小,促使岩屑床的产生。
②岩屑床厚度随流速的减少和井眼斜度的增加而增加,但倾角大于一定值后,其岩屑床厚度基本保持不变。
③环空岩屑浓度在临界角(30°≤θ≤60°)范围内最大。
环空岩屑浓度随流速的增加而降低。
注:对临界角的界限,有人认为35°~70°,但总的范围是相近的。
③当井眼倾角处于临界倾角范围内时,由于岩屑床的形成及滑移,岩屑势必下滑堆积。
容易造成钻具的阻卡。
水平井特点一、由垂直井眼变成倾斜(水平)井眼带来的特性1、钻具贴井壁,受力状况发生变化从造斜段开始,钻具受力状况相对直井发生了根本的变化。
①造斜段:由于斜井段钻具的斜向拉力造成此处钻具被"拉向"上井壁。
造斜点较高的井可明显在井口出现钻具向定向方向的"偏移"。
随着井深增加,造斜点以下钻具重量随着造斜率的增大,在造斜段出现的侧向力F侧随之增大、起下的摩阻增大,随着时间的延长,起下钻和转动在此处形成键槽。
图1②斜井段:由于钻具自重,钻具"躺在"下井壁,对井壁侧压力的增大,带来磨阻(起下)和扭矩的增大(旋转)。
图2③钻头的受力变化出现侧向分力,当使用增斜钻具结构时,由于近钻头扶正器的"支点"作用而产生向高边的侧向力;使用降斜组合时,由于"钟摆力"作用而向低边产生侧向力;由于下部钻具结构和钻头重力作用,始终产生"降斜趋势,需用刚性组合来保持井斜的稳定或大于此趋势产生增斜力。
2、偏心环空和岩屑床国外专家和"七五"攻关项目中刘希圣教授等专家研究表明,由于斜井钻具偏向下井壁而形成了"偏心环空",岩屑的沉降,运移与直井相比发生了根本的变化,岩屑出现向井壁径向沉降的趋势,由于偏心环空流速的不均匀,在下井壁形成岩屑床,在一定条件下还会发生岩屑床的滑移、堆积。
给大斜度、水平井施工带来威胁,如何正确认识此特点和采取相应的措施是定向井,尤其是大斜度井、水平井成功与否的关键。
图5研究的主要结论有:①偏心环空场中,大环隙处流速大,小环隙处流速小,促使岩屑床的产生。
②岩屑床厚度随流速的减少和井眼斜度的增加而增加,但倾角大于一定值后,其岩屑床厚度基本保持不变。
③环空岩屑浓度在临界角(30°≤θ≤60°)范围内最大。
环空岩屑浓度随流速的增加而降低。
注:对临界角的界限,有人认为35°~70°,但总的范围是相近的。
③当井眼倾角处于临界倾角范围内时,由于岩屑床的形成及滑移,岩屑势必下滑堆积。
容易造成钻具的阻卡。
④各倾角都存在一个"临界流速"。
当环空流速大于该临界流速时,理论认为不会产生岩屑床。
⑤流体粘度升高导致岩屑床厚度降低,岩屑浓度降低,提高了岩屑输送效果。
下面就斜井几种状态下的井屑运动方式做一分析:以临界角为界把斜井分为三种类型:第一种:小于临界角的范围(<30°),只有垂直沉降,而无径向沉降。
vs为垂直沉降速度,vsr为径向沉降速度,vsa为轴向沉降速度。
Vs图6-1Vs≈0 Vsa≈Vsθ升高则Vsa越大,•该范围最易形成岩屑床,越接近上界越易产生岩屑床下滑堆集,是大斜度井、水平井施工中主要清除岩屑床的井段。
该种情况可近似为直井状态,不易形成岩屑床。
第二种:临界范围内(>30°,>60°)图6-2Vsa=Vs*COSθ、Vsr≈Vs*SINθθ升高则Vsa越大,•该范围最易形成岩屑床,越接近上界越易产生岩屑床下滑堆集,是大斜度井、水平井施工中主要清除岩屑床的井段。
第三种:大于临界角(α〉60°或有的认为α〉65°)Vs图6-3Vsa≈0、Vsr≈Vs该情况可近似视为水平井段的状况,岩屑床受洗井液的冲刷厚度不再增加,也不产生滑移,聚集,此井段的岩屑往往被洗井液带到临界角附近聚集(60°~70°范围)。
大斜度井和水平井的实践证实了以上理论是正确的,解决的办法是:①一般的定向井井斜角度尽量选择在30°~35°,不易形成岩屑床,施工较安全。
② •对已经形成岩屑床的井或大井斜角度的井采用以下三种方法减少岩屑床厚度,清洁井眼、保证施工安全。
A、•在条件允许的情况下,尽可能提高循环排量,使其接近临界返速而消弱岩屑床,但要注意防止井径扩大。
B、提高泥浆的屈服值(YP),增强携岩能力,减缓岩屑的径向沉积,也是减少岩屑床厚度的有效办法。
C、由于以上两种办法的限制,最有效的办法则是利用机械办法除砂:有顶部驱动手段的可利用边起钻边转动钻具的办法搅动岩屑床。
同时循环泥浆,清除岩屑床;在没有顶部驱动条件的施工中,则采用定时定井段的短起下钻手段,起一段,循环一段的办法清除大斜度井段(或水平段)的岩屑床。
随着井斜的增大,大斜度井段的增长,短起下的时间间隙缩短。
现在施工中,可从振动筛返出岩屑量的减少和扭矩、摩阻的增加来判断,是否需要短起下。
3、被钻开的岩层受力状况发生变化:在地层倾角较小的直井,被钻开的岩层层面与井眼轴线是垂直的。
由于岩层纵向的压实程度较高,钻开的井眼部分相对较稳定。
随着井斜角的增大,岩层层面与井眼轴线夹角变小,不稳定岩层(如易吸水膨胀的泥岩层)暴露面积增大,受垂直压力影响,容易吸水膨胀,剥蚀掉块,造成井壁不稳定;对于水平井来说,水平段则完全在油层中延伸,其稳定性大为值得重视,这就提出了比直井更为严格的要求钻井液防塌性要好,失水要小。
4、椭圆井眼的形成和键槽的产生①由于斜井段钻具靠井壁,起下钻和旋转使下井壁逐渐掏大,形成椭圆井眼:左右井壁基本保持近钻头的井眼R1,而上下方向则形成了长轴R2,在双井径测井曲线上可以明显的看到长短轴的存在,往往在下井壁还存在钻具旋转磨出的直径与钻杆接头接近的槽沟R3,井眼倾角越大,施工时间越长形成的椭圆井眼越严重。
在大斜度井段,由于地层软硬交错和泥岩井径的扩大,还容易在下井壁被旋转的钻具磨出硬地层凸出处的键槽。
这些"键槽"与扩大的泥岩井径形成"台阶",造成起钻时,稍大于钻杆接头的7″、8″钻铤迂阻;严重时起不出钻(特点是定深迂阻,能下放单上体不过)。
椭圆井眼带来的影响有:A、井径扩大,循环上返速度降低,不利于洗井。
B、形成"键槽"和"台阶",造成复杂情况和事故。
C、影响固井质量。
②造斜点附近在上井壁提出"键槽"图7图8图9如前所述,造斜段由于下部钻具拉力作用,使钻具靠向"上井壁",产生侧向力,在钻具旋转和起下钻的刮削作用下,逐渐形成直径与钻杆接头外径相近的"键槽",起钻时,易使稍大于钻杆接头尺寸的7"、8"钻铤被拉入槽内而卡钻。
一般在槽深大于被卡钻具半径后发生。
键槽形成的程度与以下因素有关:①造斜率(即造斜段狗腿度)越大,形成键槽越快、越严重。
②造斜点以下井段越长,钻具越重,形成键槽越严重。
③斜井段井斜角越大,侧向拉力越大,形成键槽越严重。
④随钻井作业时间而加深。
5、对悬重和钻压的影响:①躺在下井壁的钻具使得悬重变"轻",上提钻具摩阻使得悬重大于钻具总重,下放则小于悬重。
对正常井眼来说,悬重的增减是有规律的,超过正常增减范围,则是有了阻卡。
②同样,"钻压"的确定也要考虑摩阻的影响。
二、由井身轨迹控制需要带来的特性1、由于定向和方位角调整的需要,增加定向作业①使用动力马达定向、调方位时,钻柱不旋转,定向测量时钻具相对静止时间长,则要求泥浆性能稳定、携岩性和润滑性良好。
这就是为什么在定向前要调整好泥浆和适当混油的理由。
②由于弯接头或弯外壳动力钻具的使用,使得下部钻具弯曲。
要求定向前井眼畅通,•而且对弯接头的度数有限制(一般不大于3°),避免钻头偏离井眼轴线太大而下不去。
③由于弯曲钻具的方向性(工具面方向),决定了动力钻具在井内不得随意开泵和使用动力马达划眼。
若中途遇阻,必须起出换转盘钻具通井。
④动力马达的工作排量一般较小,又不允许长时间停在一处循环,所以定向完后,通井是十分必要的。
2、增加测量工作量:除定向(或方位调整时)要频繁单点测斜(随钻则每根起下电缆)外,转盘钻也需定点测斜监控。
一般测量间隔不超过50米。
为了保证测量的安全,规定每次测量前要充分循环泥浆除砂(一般一周以上)。
3、•轨迹控制需要带来了比直井更多的起下钻更换钻具组合。
往往钻头用不到家,定向井比直井多发生起下钻作业、多消耗钻头。
4、使用满眼扶正器(稳定器)的下部结构带来的"满眼"问题:①下钻易发生遇阻,螺旋稳定器还会在小井眼段造成钻柱的"旋转"。
不严重的阻卡往往可以通过有控制的"下砸"和"提放"通过。
②起钻易带来抽吸(拔活塞)问题:由于"满眼",在易吸水膨胀井段起钻拔活塞,胜利油田曾发生在斜井中拔活塞引起的气层井喷失控,教训是惨痛的。
正因为这样,要求斜井泥浆抑制性要好,井壁泥饼要薄,操作中要十分小心拔活塞的发生,并正确处理。
③弯曲井眼对钻具刚度变化的敏感问题:已钻过的弯曲井眼曲率是一定的。
当钻具组合因轨迹控制需要刚性变大时(增加扶正器只数和缩短扶正器间隔),易遇阻遇卡,下钻要格外小心,划眼是必要的。
特别值得提醒注意的是,定向或调整完方位后,先用较"软"的转盘钻具组合通井,十分必要。
影响定向井(水平井)安全的因素一、合理的剖面设计:1、剖面类型的选择:除了多目标井和开发有特殊要求的定向井(如限定造斜点深度、要求垂直进入油层等)外,剖面越简单,越安全易打。
常常采用的是"三段制"剖面。
•获得的位移大,相对摩阻小,而"S"形井眼(四、五段制)的摩阻较大,一般尽量避免。
国外有人认为变造斜率打出的"悬链式"剖面使钻具受力最小、摩阻最小,但这种"变造斜率"在实施过程中难以实现,并使施工变得十分复杂。
2、造斜点和造斜率的选择:①造斜点高使得定向容易(起下钻和测量快,容易定准,进尺快,动力钻具工作时间短);上部地层软,形成的键槽软,易破坏掉;用较小的井斜获得的位移大。
其缺点是轨迹控制井段变长,后面井段长,钻具重,更容易形成键槽。
通常达到稳斜段后,下一层技套封固造斜段可避免键槽带来的麻烦。
②造斜点低则定向困难,需要的造斜率和最大井斜相对要大。
但需要控制的井段大大缩短,为了准确,往往采用随钻测量工具定向。
③造斜率的选择:高造斜点选用高造斜率是十分危险的。
形成的狗腿角大,很容易在下部(长井段)钻具重量作用下形成严重的键槽,造成卡钻。
相反,为了减少轨迹控制的工作量,提高定向井建井速度,在位移条件允许情况下,可采用低造斜点高造斜率施工,全井的磨阻也会因斜井段减少而变小。
同样,需要随钻测量的手段保证定向的准确。
3、最大井斜的选择根据实际位移的需要,尽可能把井斜角选在大于15°和小于35°之间,井斜过小,方位不易控制,井斜过大则带来岩屑床沉积,增大不安全性。
4、有关的约束条件目的层深度,现有的工具造斜能力;测量手段;安全性;经济性都是定向井设计的约束条件,应综合考虑使得设计出的定向井切实可行,安全经济。
二、井身结构的选择:1、套管层次和井眼尺寸的选择原则(1)•尽可能下技套封住造斜段和增斜段,有利于保护上部松软地层和造斜狗腿。
(2) 避免斜井裸眼段过长(尤其是大斜度和水平井)。
(3)•避免 17-1/2″以上井眼尺寸中定向造斜(尤其是大斜度井和水平井)过大的扭矩会带来钻具事故。