天津大学《量子化学》Gaussian软件简介
- 格式:ppt
- 大小:4.12 MB
- 文档页数:64
Gaussian03软件在有机化学教学中的应用-精选教育文档有机化学是化学、药学等专业一门重要的基础课。
由于原子、分子的电子结构或几何结构为微观结构,无法通过肉眼进行直接的观察,并且微观结构难以用宏观结构进行科学的描述,所以学生很难通过抽象思维对微观结构有一个准确无误的刻画。
如何使学生将抽象的化学知识简单化、形象化,帮助学生理解复杂的有机反应机理,提高学习积极性,这对教师的教学方法和手段有很高的要求。
随着计算机技术的迅猛发展,计算机辅助教学已逐步深入到各化学课程的教学中,部分量子化学软件也逐步开始走进了化学课堂。
这对突破教学难点、提高课堂教学效率有积极的作用。
Gaussian03是目前计算化学领域内最流行、应用范围最广的商业化量子化学计算程序包,最早是由美国卡内基梅隆大学的约翰?波普(John A Pople,1998年诺贝尔化学奖)在上世纪60年代末、70年代初主导开发的。
它是一个量子化学综合软件包,可以进行各种类型的从头算、半经验和密度泛函计算。
它可以预测气相和液相条件下,分子和化学反应的许多性质,包括:分子的能量和结构、过渡态的能量和结构、振动频率、红外和拉曼光谱、热化学性质、成键和化学反应能量、化学反应路径、分子轨道、原子电荷、电多极矩,等等。
面友好(有GaussianView图形界面显示窗口),便于操作。
目前,该软件不仅在科学研究方面发挥了重要的作用,同时也成为有机化学教学中重要的工具。
与传统教学手段相比较,它将抽象的化学知识简单化、形象化,帮助学生理解复杂的有机反应机理,使教学过程变得明了、清晰,提高了学生学习的积极性。
本文根据有机化学的教学特点,介绍Gaussian03软件在教学方面的一些应用。
一、显示分子立体模型在有机化学教学中,让学生掌握的基本思想是“结构决定性质,性质决定用途”。
首先要对分子的结构有充分的认识和理解,这部分既是重点又是难点。
在教学中,通过GaussianView,可以建立显示化合物的3D分子结构,且演示模型有球棍模型、Stuart模型、Sticks模型及金属线模型,使学生既充分地、直观生动地认识了分子结构,又加强了对空间思维、形象思维的培养。
根据您提供的主题,我将为您撰写一篇关于Gaussian09计算旋轨耦合的文章。
Gaussian09是一个广泛使用的量子化学计算软件,它可以用于研究分子的结构、能量、振动频率等性质。
旋轨耦合是指自旋轨道相互作用,它在研究分子的磁性质和光学性质时具有重要作用。
在本文中,我们将探讨如何使用Gaussian09计算旋轨耦合,以及其在理论化学研究中的应用。
一、Gaussian09简介1. Gaussian09是由Gaussian, Inc.开发的一款用于量子化学计算的软件,它可以进行从量子力学到分子动力学等多种计算。
2. Gaussian09具有强大的功能和灵活的使用方式,广泛应用于理论化学、生物化学、材料科学等领域。
二、旋轨耦合的理论基础1. 旋轨耦合是量子力学中的重要概念,它描述了自旋和轨道运动之间的相互作用。
2. 在分子中,电子的自旋和轨道运动相互作用会导致分子的磁性质和光学性质发生变化,因此对旋轨耦合的研究具有重要意义。
三、Gaussian09计算旋轨耦合的方法1. 在Gaussian09中,可以通过设置适当的计算参数来进行旋轨耦合的计算。
2. 通过在输入文件中指定旋轨耦合的计算方法和相关的分子结构信息,可以使用Gaussian09进行旋轨耦合的计算。
四、旋轨耦合在理论化学研究中的应用1. 旋轨耦合的计算结果可以用于研究分子的磁性质和光学性质,为理论化学研究提供重要的参考数据。
2. 通过对旋轨耦合进行计算和分析,可以揭示分子中电子的运动规律和相互作用机制,为理论化学研究提供重要的理论基础。
五、结论通过对Gaussian09计算旋轨耦合的方法和应用进行探讨,我们可以看到旋轨耦合在理论化学研究中的重要性和应用前景。
使用Gaussian09进行旋轨耦合的计算不仅可以为理论化学研究提供重要的数据支持,也为研究者提供了一个强大的工具和评台,有助于推动理论化学研究的发展。
致力于提供高质量的理论化学研究工具和支持,Gaussian09的不断发展和完善将为理论化学研究提供更多的可能性和机遇。
gaussian计算相互作用能【原创实用版】目录1.引言2.Gaussian 计算相互作用能的原理3.Gaussian 计算相互作用能的具体步骤4.Gaussian 计算相互作用能的优点与局限性5.总结正文一、引言在量子化学中,计算分子间的相互作用能是一项重要的研究任务。
Gaussian 是一款广泛应用于量子化学计算的软件,能够有效地计算分子间的相互作用能。
本文将介绍 Gaussian 计算相互作用能的原理、具体步骤以及优点与局限性。
二、Gaussian 计算相互作用能的原理Gaussian 基于密度泛函理论(DFT)计算分子间的相互作用能。
DFT 将电子密度作为基本变量,通过引入交换关联作用,可以有效地描述电子相关性。
Gaussian 使用分组方法将分子划分为不同的组,然后计算每组之间的相互作用能,最后将各组间的相互作用能相加得到总相互作用能。
三、Gaussian 计算相互作用能的具体步骤1.准备输入文件:在计算相互作用能之前,需要首先准备输入文件,包括分子的几何结构、元素种类、轨道类型等参数。
2.运行 Gaussian 软件:将输入文件提交给 Gaussian 软件,软件将自动进行计算。
3.分析输出结果:Gaussian 计算完成后,会生成输出文件,其中包括相互作用能的结果。
需要对输出结果进行分析,提取相互作用能的数值。
四、Gaussian 计算相互作用能的优点与局限性1.优点:Gaussian 计算相互作用能具有较高的准确性和可靠性,可以广泛应用于各种分子体系。
此外,Gaussian 软件操作简便,计算效率较高,适用于大规模计算。
2.局限性:尽管 Gaussian 在计算相互作用能方面具有很多优点,但它仍然有一定的局限性。
例如,对于某些具有较大空间伸展性的分子,Gaussian 计算结果可能存在误差。
此外,Gaussian 计算相互作用能的计算成本较高,对于计算资源有限的研究者而言可能存在一定的限制。
gaussian 09w计算实例
Gaussian 09W是一种用于计算化学结构和性质的量子化学软件,它可以进行从简单的分子力场计算到复杂的量子力学计算等多种类
型的计算。
下面我将从几个方面介绍Gaussian 09W的计算实例。
首先,Gaussian 09W可以用于分子结构优化。
通过输入分子的
初始几何结构和所需的计算方法,Gaussian 09W可以利用量子力学
方法对分子的结构进行优化,找到最稳定的构型,并给出最低能量
的构型。
其次,Gaussian 09W可以用于计算分子的振动频率和红外光谱。
通过输入优化后的分子结构,Gaussian 09W可以计算分子的振动频
率和红外光谱,从而帮助研究者理解分子内部原子的振动特性和分
子与外界光的相互作用。
此外,Gaussian 09W还可以用于计算分子的电子结构和性质。
通过输入分子的结构信息和所需的计算方法,Gaussian 09W可以计
算分子的电子结构、电离能、电子亲和能等性质,帮助研究者深入
了解分子的电子行为和化学性质。
另外,Gaussian 09W也可以用于计算分子间相互作用和反应动力学。
通过输入反应物和所需的计算方法,Gaussian 09W可以模拟分子间的相互作用和化学反应过程,帮助研究者理解和预测化学反应的动力学行为。
综上所述,Gaussian 09W是一款功能强大的量子化学软件,可以广泛应用于分子结构优化、振动频率和红外光谱计算、电子结构和性质计算以及分子间相互作用和反应动力学等多个方面的计算。
通过合理选择输入参数和方法,研究者可以利用Gaussian 09W进行全面而深入的分子计算研究。
Gaussian简介Gaussian简介Gaussian是做半经验计算和从头计算使用最广泛的量子化学软件,可以研究:分子能量和结构,过渡态的能量和结构化学键以及反应能量,分子轨道,偶极矩和多极矩,原子电荷和电势,振动频率,红外和拉曼光谱,NMR,极化率和超极化率,热力学性质,反应路径。
计算可以模拟在气相和溶液中的体系,模拟基态和激发态。
Gaussian 03还可以对周期边界体系进行计算。
Gaussian是研究诸如取代效应,反应机理,势能面和激发态能量的有力工具。
功能①基本算法②能量③分子特性④溶剂模型Gaussian03新增加的内容①新的量子化学方法②新的分子特性③新增加的基本算法④新增功能(1)基本算法可对任何一般的收缩gaussian函数进行单电子和双电子积分。
这些基函数可以是笛卡尔高斯函数或纯角动量函数多种基组存储于程序中,通过名称调用。
积分可储存在内存,外接存储器上,或用到时重新计算对于某些类型的计算,计算的花费可以使用快速多极方法(FMM)和稀疏矩阵技术线性化。
将原子轨(AO)积分转换成分子轨道基的计算,可用的方法有in-core(将AO积分全部存在内存里),直接(不需储存积分),半直接(储存部分积分),和传统方法(所有AO 积分储存在硬盘上)。
(2)能量使用AMBER,DREIDING和UFF力场的分子力学计算。
使用CNDO, INDO, MINDO/3, MNDO, AM1,和PM3模型哈密顿量的半经验方法计算。
使用闭壳层(RHF),自旋非限制开壳层(UHF),自旋限制开壳层(ROHF) Hartree-Fock 波函数的自洽场SCF)计算。
使用二级,三级,四级和五级Moller-Plesset微扰理论计算相关能。
MP2计算可用直接和半直接方法,有效地使用可用的内存和硬盘空间用组态相互作用(CI)计算相关能,使用全部双激发(CID)或全部单激发和双激发(CISD)。
双取代的耦合簇理论(CCD),单双取代耦合簇理论(CCSD),单双取代的二次组态相互作用(QCISD), 和Brueckner Doubles理论。