合成设计原理案例
- 格式:pptx
- 大小:1.57 MB
- 文档页数:85
实验设计:苯甲酸乙酯的制备一、实验目的:1、掌握酯化反应原理,学习苯甲酸乙酯的制备。
2、学习分水器的使用及液体有机化合物的精制方法。
3、进一步练习蒸馏、萃取等基本操作。
二、实验原理:苯甲酰氯和乙醇反应是一种羧酸衍生物的醇解反应。
与苯甲酸相比,苯甲酰氯中的羰基更容易受到亲核试剂乙醇的进攻,反应活性较高,因此,生成苯甲酸乙酯的产率较高。
三、实验仪器及试剂仪器:圆底烧瓶、回流冷凝器、铁架台、电热套、分液漏斗、导气管、锥形瓶、烧杯,球形冷凝管,分水器。
试剂:苯甲酰氯、无水乙醇、氢氧化钠。
四、实验装置回流加热装置五、实验步骤(1)取12.0mL苯甲酰氯、7.0 mL无水乙醇分别倒入50mL圆底烧瓶中。
(2)冷凝管上端用导气管连接,用10%氢氧化钠溶液对尾气进行吸收,加热回流2 h。
(3)停止加热,冷却到室温,把回流装置改为蒸馏装置。
(4)用电热套加热蒸馏,收集馏分210~212 ℃。
六、注意事项1、制备苯甲酸乙酯时,随着反应的进行,一定要控制好液面位置,使得最上层液体始终为薄薄的一层,放水不要太多。
2、温度要控制好,不要太高,否则反应瓶中颜色很深,甚至炭化。
3、苯甲酰氯有一定的刺鼻气味,操作时注意要在通风的环境下进行。
七、思考题1、苯甲酸乙酯的制备中可能会有什么副产物生成?2、什么情况下,用过量醇,促进平衡向产物移动,没有实用性?3、酯的碱性水解为什么称为皂化反应?为什么优于硫酸催化水解?4、本实验采用了什么原理和措施来提高酯化反应的产率?资料扩展:苯甲酸乙酯又称安息香酸乙酯,具有较强的冬青油和水果香气,天然存在于桃子、菠萝、醋栗等中,常用作重要的有机溶剂。
由于毒性低,也常用于食用香料的调配和皂用香精及烟用香料中。
苯甲酸乙酯采用浓硫酸、无水氯化氢、对甲苯磺酸、氨基磺酸、无机氯化物、结晶硫酸氢钠、壳聚糖硫酸盐、固体超强酸、杂多酸(盐)催化或磺酸等催化下由苯甲酸和乙醇直接酯化法来合成。
目前,对苯甲酸乙酯的合成研究都是采用苯甲酸与乙醇进行酯化反应,所不同的只是选用不同的催化剂,改变反应物料配比和反应时间进行反应条件的优化;。
香蕉水的的合成及工艺设计一、实验目的1、掌握香蕉水的合成方法2、掌握酯化反应及蒸馏操作的原理3、掌握在实验室合成的基础上进行工艺设计概念设计的方法 二、实验原理乙酸异戊酯为无色透明液体,不溶于水,易溶于乙醇、乙醚等有机溶剂。
它是一种香精,因具有香蕉气味,又称为香蕉油。
实验室通常采用冰醋酸和异戊醇在浓硫酸的催化下发生酯化反应来制取。
反应式如下:)水乙酸异戊醇(异戊醇冰醋酸C 142,19.130)C 7.128,15.88(C)(60.06,118)()(22322323223︒︒︒+→+O H CH CH CH COOCH CH CH CH CH HOCH COOH CH酯化反应是可逆的,本实验采取加入过量冰醋酸,并除去反应中生成的水,使反应不断向右进行,提高酯的产率。
生成的乙酸异戊酯中混有过量的冰醋酸、未完全转化的异戊醇、起催化作用的硫酸及副产物醚类,经过洗涤、干燥和蒸馏予以除去。
其操作流程如下:带分水器的回流装置醋酸硫酸水醋酸钠碳酸钠三、仪器药品仪器:三颈烧瓶(250mL)、球形冷凝管、分水器、蒸馏烧瓶(100mL)、直形冷凝管、接液管、分液漏斗(100mL)、量筒(25mL)、温度计(200℃)、锥形瓶(100mL) 电热套。
药品:异戊醇、冰醋酸、硫酸(98%)、碳酸钠溶液(10%)、食盐水(饱和)、硫酸镁(无水)。
四、实验装置图图2反应装置图3蒸馏装置五、步骤⑴酯化在干燥的三颈烧瓶中加入18mL异戊醇和15mL冰醋酸,在振摇与冷却下加入1.5mL浓硫酸,混匀后放入1~2粒沸石。
安装带分水器的回流装置,三颈瓶中口安装分水器,分水器中事先充水至支管口处,然后放出3.2mL水。
一侧口安装温度计(温度计应浸入液面以下),另一侧口用磨口塞塞住。
检查装置气密性后,用电热套(或甘油浴)缓缓加热,当温度升至约108℃时,三颈瓶中的液体开始沸腾。
继续升温,控制回流速度,使蒸气浸润面不超过冷凝管下端的第一个球,当分水器充满水,反应温度达到130℃时,反应基本完成,大约需要1.5h。
间苯二酚双(二苯基磷酸酯)的制备方案一(河南大学、南京师范大学)实验原理一河南大学提出的方案1、中间体间苯二酚双(磷酰二氯)的合成:无水氯化铝做催化剂,三氯氧磷与间苯二酚摩尔比为6:1时的方案是反应温度为90-100℃,反应时间为5h,催化剂用量是三氯氧磷总用量的0.65%时,中间体收率最高达到96.2%。
2、 RDP的合成:无水氯化铝做催化剂,采用苯酚连续加料的方式,加料温度100℃,保温温度140-160℃,苯酚与间苯二酚摩尔比为4.2:1,反映时间为4h,催化剂用量是中间体总量的0.5%时,产品收率达85%左右。
3 试验步骤:将装有机械搅拌器、温度计、冷凝管及恒压漏斗的 100ml 四口烧瓶。
从冷凝管上端经CaCl2干燥塔,HCl 吸收装置,在反应瓶中加入16.0ml 三氯氧磷和0.8g无水三氯化铝,开始搅拌,在预备好的100ml三角瓶中加入30ml三氯氧磷和11.0g(0.1mol)间苯二酚,搅拌下间苯二酚溶解,加到恒压漏斗中,于100℃开始滴加三氯氧磷和间苯二酚的混合物,加毕于100℃保温5h,开始滴加时,反应较快,并有大量HCl气体冒出,可以通过控制滴加速度,控制反应速度。
开始时反应液显黄色透明,随着反应的进行,反应液颜色逐渐变浅,最后为浅黄色透明或接近无色。
减压蒸馏回收三氯氧磷,得中间体间苯二酚双(磷酰二氯)。
再将蒸馏装置改为反应装置,在恒压漏斗中加入熔融苯酚40.3g(0.42mol),补加催化剂,于100℃开始滴加熔融的苯酚,加毕,然后升温到150℃保温4h~8h,所得产物为黄色或无色透明液体。
将反应装置该为减压蒸馏装置,回收没有反应完的苯酚,得阻燃剂 RDP 的粗品。
将RDP 粗品用2%草酸溶液洗涤,2%氢氧化钠水溶液分别洗涤两次,再用水洗至中性,减压蒸馏至无馏分,过滤得到浅黄色或者无色透明粘稠液体,即为最终产品阻燃剂 RDP。
4 主要原料和仪器主要原料厂家物性三氯氧磷天津市光复精细化工研究所分析纯分析纯间苯二酚天津市科蜜欧化学试剂开发中心苯酚天津市科密欧化学试剂开发分析纯公司无水三氯化铝上海美兴化工有限公司分析纯无水氯化钙天津市德恩化学试剂有限公分析纯司氢氧化钠开封化学试剂总厂分析纯草酸开封化学试剂总厂三氯氧磷,分析纯,天津市光复精细化工研究所;间苯二酚,分析纯,天津市科蜜欧化学试剂开发中心;苯酚,分析纯,天津市科密欧化学试剂开发公司;无水氯化钙,分析纯,天津市德恩化学试剂有限公司;氢氧化钠,分析纯,开封化学试剂总厂;草酸,开封化学试剂总厂;D-971 型无极调速搅拌器;温控仪,郑州长城科工贸有限公司;循环水式多用真空泵,郑州长城科工贸有限公司;恒温磁力搅拌器,中外合资深圳天南海北有限公司;AVARTAR 360FT-IR 红外光谱仪,美国.Nicolet 公司;日本精工(Seiko Exstar 6000)TG/DTA6300 热分析仪二南京师范大学提出的实验方案试验步骤:将42.2g三氯氧磷和13.8g间苯二酚加到反应瓶中,加入1.2g无水三氯化铝作催化剂,搅拌并加热,升温到60℃,反应6h,减压蒸馏除去过量的三氯氧磷,将体系温度降至室温,然后加入47.1g苯酚,升温,保持反应在130℃进行,反应8h,减压蒸馏除去未反应完的苯酚,经碱洗、水洗、干燥等过程最终得产品64.6g,收率为90%(以间苯二酚算)。
实景合成原理及应用实例实景合成(Image-based Rendering) 是指根据已有的场景图像或模型信息,通过计算机算法生成新的合成图像的过程。
实景合成技术在计算机图形学、计算机视觉、虚拟现实等领域得到广泛应用。
实景合成的原理主要分为两种方法:基于图像的实景合成和基于模型的实景合成。
1. 基于图像的实景合成:基于图像的实景合成是在已有的一组图片上进行合成。
这种方法利用图像的纹理和颜色信息,通过对图像进行几何和光照的变换,生成新的合成图像。
常用的方法包括纹理映射(Texure Mapping)和视图插值(View Interpolation)。
- 纹理映射:纹理映射是将一个图片的纹理映射到另一个几何模型上的过程。
通过将源图像中的纹理信息根据新的几何模型进行变换,可以生成一个新的合成图像。
纹理映射广泛应用于计算机游戏、虚拟现实、电影特效等领域。
- 视图插值:视图插值是在已知的多个角度或视角的图像上生成新的视角图像。
通过计算不同视角图像之间的差异,再根据新的视角位置生成中间视角的图像。
视图插值在视频压缩、视频合成等领域中得到广泛应用。
2. 基于模型的实景合成:基于模型的实景合成是在已有的三维模型或场景信息的基础上进行合成。
这种方法利用已知的几何、光照和材质等信息,通过渲染算法生成新的合成图像。
常用的方法包括光线追踪(Ray Tracing)和辐射传输方程(Radiosity)。
- 光线追踪:光线追踪是一种模拟光线在场景中的传播和反射的算法。
通过追踪反射、折射和阴影等现象,计算光线最终到达像素的颜色和亮度。
光线追踪可以生成高质量的合成图像,但计算复杂度较高,常用于电影特效和产品设计等领域。
- 辐射传输方程:辐射传输方程是描述光在物体表面上的传播和散射的方程。
通过求解辐射传输方程,可以计算物体表面上每个点的颜色和亮度。
辐射传输方程常用于室内场景的光照计算和逼真的渲染。
实景合成技术在多个领域都有广泛应用。
ch4-co2干重整法制合成气工艺设计原理CO2干重整法制合成气工艺设计原理是一种利用CO2干重整反应将CO2与甲烷(CH4)合成一氧化碳(CO)和氢气(H2)的工艺。
该工艺原理是将CO2和CH4在适当的条件下加热反应,在催化剂的作用下产生CO 和H2、下面将详细介绍该工艺的设计原理。
1.原料准备:CO2和CH4是该工艺的原料,需要对两种原料进行净化处理,以去除其中的杂质。
将净化后的原料送入反应器。
2.加热反应:将原料送入反应器后,需要对反应器进行加热。
加热的目的是提高原料的反应速率和转化率。
通常反应温度为800-1000℃,可以根据实际情况进行调整。
3.催化剂的选择:催化剂对反应的速率和选择性有着重要的影响。
常用的催化剂有镍基、钴基和铁基等。
催化剂的选择要考虑到催化剂的重新活化和寿命等因素。
4.反应动力学:CO2干重整反应是一个复杂的反应过程,涉及到多个反应步骤。
在设计工艺时需要进行反应动力学的研究,确定反应速率和反应机理。
5.产物分离:CO和H2是该工艺的主要产物,需要对产物进行分离和纯化。
常用的分离方法有吸收、吸附、膜分离和凝固等。
选择合适的分离方法可以提高产物的纯度和回收率。
6.反应废气处理:在反应过程中会产生一些非理想产物和废气,如大量的N2和CO2、这些废气需要进行处理,以避免对环境造成污染。
常见的处理方法有吸收、吸附和催化转化等。
在进行CO2干重整法制合成气工艺设计时,需要综合考虑反应条件、催化剂选择、产物分离和废气处理等因素。
同时还需要根据具体情况进行工艺流程的设计和经济性分析,确定最佳的工艺方案。
总结起来,CO2干重整法制合成气工艺设计原理是利用CO2和CH4进行加热反应,在催化剂的作用下产生CO和H2的工艺。
设计原理包括原料准备、加热反应、催化剂选择、反应动力学、产物分离和废气处理等方面。
设计工艺需要综合考虑各个因素,并进行经济性分析,确定最佳的工艺方案。
有机化学中的多步合成与合成路线设计有机化学作为化学科学的重要分支之一,主要研究有机化合物的合成与反应机理。
在有机合成中,多步合成往往是一种常用的合成策略,通过多步反应,逐步构建目标分子的骨架,从而达到目标化合物的合成目的。
本文将介绍有机化学中的多步合成及合成路线设计的基本原理与方法。
一、多步合成的基本原理多步合成是有机化学中常见的合成方法,其基本原理是通过一系列的化学反应,逐步转化原料分子,构建所需的目标化合物。
每一步反应都可以看作是一个中间产物,通过多次反应,逐渐得到目标分子。
多步合成的合成步骤通常包括亲核反应、求电子反应、消除反应等多种类型的反应。
在每一步反应中,需要选择适当的反应条件、催化剂与试剂,以及合理的反应顺序和反应路径,从而实现高效的合成。
二、合成路线设计的基本方法合成路线设计是多步合成中的关键步骤,合理的合成路线设计能够节省合成步骤、提高产率,并最大限度地回收废料。
下面介绍几种常见的合成路线设计方法:1. 逻辑推理法:根据反应类型、反应物性质等信息,通过逻辑推理,确定可能的转化方式与反应路径。
逻辑推理法适用于简单的多步合成,能够快速找到合理的合成路线。
2. 共通中间体法:通过寻找两个或多个目标化合物之间的共通中间体,设计合适的转化方式与反应路径。
共通中间体法能够最大限度地复用中间产物,提高合成效率。
3. 反应优先级法:根据反应的条件、产物稳定性、反应速率等因素,确定反应的优先级,从而合理地选择反应顺序与路径。
反应优先级法能够避免不稳定或容易分解的中间产物的生成,提高合成效果。
4. 变位反应法:通过骨架转化或结构变位反应,将一个复杂的目标分子转化为一个简单的中间产物,再通过简单的反应逐步构建复杂结构。
变位反应法能够简化合成步骤,提高产率。
三、实例分析下面以药物合成为例,介绍多步合成与合成路线设计的实际应用。
以药物A为目标化合物,其结构如下所示:(图略)通过分析药物A的结构与反应类型,可以设计出如下的多步合成路线:1. 氧化反应:将化合物B与氧化剂反应,得到中间产物C。