椭圆综合专题
- 格式:doc
- 大小:1.77 MB
- 文档页数:19
高中数学椭圆大题之向量综合题型一:单一共线型例1、已知B A 、是椭圆1222=+y x 上的两点,并且点)0,2(-N 满足NB NA λ=,当⎥⎦⎤⎢⎣⎡∈31,51λ时,求直线AB 斜率的取值范围.例2、已知定点)0,2(M ,若过M 的直线l (斜率不为零)与椭圆1322=+y x 交于不同的两点F E 、(E 在点F M 、之间),记OMFOMES S ∆∆=λ,求λ的取值范围.练1、椭圆1232222=+cy c x 的两个焦点分别为)0,(1c F -和)0,(2c F ,过点)0,3(c E 的直线与椭圆交于B A 、两点,且B F A F 21//,B F A F 212=,求直线AB 的斜率.练2、设)0,(1c F -,)0,(2c F 分别为椭圆1322=+y x 的左右焦点,B A 、在椭圆上,若B F A F 215=,求点A 的坐标.题型二、点在曲线上例1、已知椭圆22233b y x =+,斜率为1且过右焦点F 的直线交椭圆于A 、B 两点,M 为椭圆上任一点,且OB OA OM μλ+=,证明22μλ+为定值.练1、椭圆C:12322=+y x ,过右焦点F 的直线l 与C 交于A,B 两点,C 上是否存在点P ,使得当l 绕F 转到某一位置时,有OB OA OP +=成立?若存在,求出所有P 的坐标与l 的方程;若不存在,说明理由.练2、设动点P 满足ON OM OP 2+=,其中M,N 是椭圆C:12422=+y x 上的点,直线OM 与ON 的斜率之积为21-,求P 的轨迹.。
课下层级训练(四十七) 直线与椭圆的综合问题[A 级 基础强化训练]1.已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线与椭圆C 交于A ,B 两点,且|AB |=3,则C 的方程为( ) A .x 22+y 2=1B .x 23+y 23=1C .x 24+y 23=1D .x 25+y 24=1【★答案★】C [设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),则c =1.因为过F 2且垂直于x 轴的直线与椭圆交于A ,B 两点,且|AB |=3,所以b 2a =32,b 2=a 2-c 2,所以a 2=4,b 2=a 2-c 2=4-1=3,椭圆的方程为x 24+y 23=1.]2.(2019·山东枣庄检测)过椭圆x 25+y 24=1的右焦点作一条斜率为2的直线与椭圆交于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A .43 B .53 C .54D .103【★答案★】B [由题意知椭圆的右焦点F 的坐标为(1,0),则直线AB 的方程为y =2x -2.联立⎩⎪⎨⎪⎧x 25+y 24=1,y =2x -2,解得交点坐标为(0,-2),⎝ ⎛⎭⎪⎫53,43,不妨设A 点的纵坐标y A =-2,B 点的纵坐标y B =43,∴S △OAB =12·|OF |·|y A -y B |=12×1×⎪⎪⎪⎪⎪⎪-2-43=53.]3.已知椭圆x 2a 2+y 2b2=1(a >b >0)的一条弦所在的直线方程是x -y +5=0,弦的中点坐标是M (-4,1),则椭圆的离心率是( ) A .12 B .22 C .32D .55【★答案★】C [设直线与椭圆交点为A (x 1,y 1),B (x 2,y 2),分别代入椭圆方程,由点差法可知y M =-b 2a 2k x M ,代入k =1,M (-4,1),解得b 2a 2=14,e =1-⎝ ⎛⎭⎪⎫b a2=32.]4.已知椭圆E 的左、右焦点分别为F 1,F 2,过F 1且斜率为2的直线交椭圆E 于P ,Q 两点,若△PF 1F 2为直角三角形,则椭圆E 的离心率为( )A .53 B .23 C .23D .13【★答案★】A [由题意可知,∠F 1PF 2是直角,且tan ∠PF 1F 2=2,∴|PF 2||PF 1|=2,又|PF 1|+|PF 2|=2a ,∴|PF 1|=2a 3,|PF 2|=4a 3. 根据勾股定理得⎝ ⎛⎭⎪⎫2a 32+⎝ ⎛⎭⎪⎫4a 32=(2c )2,所以离心率e =c a =53.] 5.(2019·山东济宁模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)及点B (0,a ),过点B 与椭圆相切的直线交x 轴的负半轴于点A ,F 为椭圆的右焦点,则∠ABF =( ) A .60° B .90° C .120°D .150°【★答案★】B [由题意知,切线的斜率存在,设切线方程y =kx +a (k >0),与椭圆方程联立,⎩⎪⎨⎪⎧y =kx +a ,x 2a 2+y2b2=1,消去y 整理得(b 2+a 2k 2)x 2+2ka 3x +a 4-a 2b 2=0, 由Δ=(2ka 3)2-4(b 2+a 2k 2)(a 4-a 2b 2)=0,得k =c a ,从而y =c a x +a 交x 轴于点A (-a 2c,0),又F (c,0),易知BA →·BF →=0,故∠ABF =90°.]6.已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=____________.【★答案★】12 [设MN 交椭圆于点P ,连接F 1P 和F 2P (其中F 1、F 2是椭圆C 的左、右焦点),利用中位线定理可得|AN |+|BN |=2|F 1P |+2|F 2P |=2×2a =4a =12.]7.P 为椭圆x 29+y 28=1上的任意一点,AB 为圆C :(x -1)2+y 2=1的任一条直径,则PA →·PB →的取值范围是______________.【★答案★】[3,15] [圆心C (1,0)为椭圆的右焦点,PA →·PB →=(PC →+CA →)·(PC →+CB →)=(PC →+CA →)·(PC →-CA →)=PC →2-CA →2=|PC →|2-1,显然|PC →|∈[a -c ,a +c ]=[2,4],所以PA →·PB →=|PC →|2-1∈[3,15].]8.椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的左,右焦点分别为F 1,F 2,焦距为2c .若直线y =3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________________. 【★答案★】3-1 [直线y =3(x +c )过点F 1(-c,0),且倾斜角为60°,所以∠MF 1F 2=60°,从而∠MF 2F 1=30°,所以MF 1⊥MF 2.在Rt △MF 1F 2中,|MF 1|=c ,|MF 2|=3c ,所以该椭圆的离心率e =2c 2a =2cc +3c=3-1.]9.(2019·山东济南模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,其中左焦点为F (-2,0).(1)求椭圆C 的方程;(2)若直线y =x +m 与椭圆C 交于不同的两点A ,B ,且线段AB 的中点M 在圆x 2+y 2=1上,求m 的值.【★答案★】解 (1)由题意,得⎩⎪⎨⎪⎧c a =22,c =2,a 2=b 2+c 2,解得⎩⎨⎧a =22,b =2.∴椭圆C 的方程为x 28+y 24=1.(2)设点A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),线段AB 的中点为M (x 0,y 0),由⎩⎪⎨⎪⎧x 28+y 24=1,y =x +m ,消去y 得,3x 2+4mx +2m 2-8=0, Δ=96-8m 2>0,∴-23<m <23.∵x 0=x 1+x 22=-2m 3,∴y 0=x 0+m =m3. ∵点M (x 0,y 0)在圆x 2+y 2=1上, ∴⎝ ⎛⎭⎪⎫-2m 32+⎝ ⎛⎭⎪⎫m 32=1,∴m =±355.10.如图,已知椭圆x 22+y 2=1的左焦点为F ,O 为坐标原点,设过点F 且不与坐标轴垂直的直线交椭圆于A ,B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.【★答案★】解 设直线AB 的方程为y =k (x +1)(k ≠0),代入x 22+y 2=1,整理得(1+2k 2)x 2+4k 2x +2k 2-2=0.因为直线AB 过椭圆的左焦点F ,所以方程有两个不等实根,记A (x 1,y 1),B (x 2,y 2),AB 中点N (x 0,y 0), 则x 1+x 2=-4k22k 2+1,x 0=12(x 1+x 2)=-2k 22k 2+1,y 0=k (x 0+1)=k2k 2+1,所以AB 的垂直平分线NG 的方程为y -y 0=-1k(x -x 0).令y =0,得x G =x 0+ky 0=-2k 22k 2+1+k22k 2+1=-k 22k 2+1=-12+14k 2+2.因为k ≠0,所以-12<x G <0,所以点G 横坐标的取值范围为⎝ ⎛⎭⎪⎫-12,0.[B 级 能力提升训练]11.(2019·辽宁沈阳模拟)已知椭圆C 的中心在原点,焦点在x 轴上,焦距为43,离心率为32. (1)求椭圆C 的方程;(2)设直线l 经过点M (0,1),且与椭圆C 交于A ,B 两点,若AM →=2MB →,求直线l 的方程.【★答案★】解 (1)设椭圆方程为x 2a 2+y 2b2=1(a >b >0),因为c =2 3.e =c a =32,所以a =4,b =2, 所求椭圆方程为x 216+y 24=1.(2)由题得直线l 的斜率存在,设直线l 方程为y =kx +1,则由⎩⎪⎨⎪⎧y =kx +1,x 216+y 24=1得(1+4k 2)x 2+8kx -12=0,且Δ>0.设A (x 1,y 1),B (x 2,y 2),则由若AM →=2MB →, 得x 1=-2x 2,又x 1+x 2=-8k 1+4k 2,x 1x 2=-121+4k 2,所以-x 2=-8k 1+4k 2,-2x 22=-121+4k 2,消去x 2解得k 2=320,k =±1510,所以直线l 的方程为y =±1510x +1. 12.(2019·山东东营月考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)过点(0,-1),离心率e =22.(1)求椭圆的方程;(2)已知点P (m,0),过点(1,0)作斜率为k (k ≠0)直线l ,与椭圆交于M ,N 两点,若x 轴平分∠MPN ,求m 的值.【★答案★】解 (1)因为椭圆的焦点在x 轴上,过点(0,-1),离心率e =22,所以b =1,c a =22, 所以由a 2=b 2+c 2,得a 2=2, 所以椭圆C 的标准方程是x 22+y 2=1,(2)因为过椭圆的右焦点F 作斜率为k 直线l ,所以直线l 的方程是y =k (x -1).联立方程组⎩⎪⎨⎪⎧y =k (x -1),x 22+y 2=1消去y , 得(1+2k 2)x 2-4k 2x +2k 2-2=0, 显然Δ>0,设点M (x 1,y 1),N (x 1,y 1), 所以x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-21+2k 2,因为x 轴平分∠MPN ,所以∠MPO =∠NPO . 所以k MP +k NP =0, 所以y 1x 1-m +y 2x 2-m=0,所以y 1(x 2-m )+y 2(x 1-m )=0,所以k (x 1-1)(x 2-m )+k (x 2-1)(x 1-m )=0, 所以2kx 1x 2-(k +km )(x 1+x 2)+2km =0, 所以2·2k 2-21+2k 2-(1+m )·4k21+2k 2+2m =0所以-4+2m1+2k2=0,所以-4+2m =0,所以m =2.13.(2019·山东德州模拟)如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与C D .当直线AB 斜率为0时,AB =4.(1)求椭圆的方程;(2)若|AB |+|CD |=487,求直线AB 的方程.【★答案★】解 (1)由题意知e =c a =12,2a =4.又a 2=b 2+c 2,解得a =2,b =3,所以椭圆方程为x 24+y 23=1.(2)①当两条弦中一条弦所在直线的斜率为0时,另一条弦所在直线的斜率不存在,由题意知|AB |+|CD |=7,不满足条件.②当两弦所在直线的斜率均存在且不为0时,设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2), 则直线CD 的方程为y =-1k(x -1).将直线AB 方程代入椭圆方程中并整理得 (3+4k 2)x 2-8k 2x +4k 2-12=0, 则x 1+x 2=8k 23+4k 2,x 1·x 2=4k 2-123+4k 2,所以|AB |=k 2+1|x 1-x 2|=k 2+1·(x 1+x 2)2-4x 1x 2=12(k 2+1)3+4k2.同理,|CD |=12⎝ ⎛⎭⎪⎫1k 2+13+4k2=12(k 2+1)3k 2+4. 所以|AB |+|CD |=12(k 2+1)3+4k 2+12(k 2+1)3k 2+4=84(k 2+1)2(3+4k 2)(3k 2+4)=487, 解得k =±1,所以直线AB 的方程为x -y -1=0或x +y -1=0.14.(2019·湖北荆州模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,且椭圆C 过点⎝ ⎛⎭⎪⎫1,-32,直线l过椭圆C 的右焦点F 且与椭圆C 交于M ,N 两点. (1)求椭圆C 的标准方程;(2)已知点P (4,0),求证:若圆Ω:x 2+y 2=r 2(r >0)与直线PM 相切,则圆Ω与直线PN 也相切.【★答案★】(1)解 设椭圆C 的焦距为2c (c >0),依题意⎩⎪⎨⎪⎧c a =12,a 2=b 2+c 2,1a 2+94b 2=1解得a =2,b =3,c =1,故椭圆C 的标准方程为x 24+y 23=1.(2)证明 当直线l 的斜率不存在时,直线l 的方程为x =1,M ,N 两点关于x 轴对称,点P (4,0)在x 轴上, 所以直线PM 与直线PN 关于x 轴对称, 所以点O 到直线PM 与直线PN 的距离相等,故若圆Ω:x 2+y 2=r 2(r >0)与直线PM 相切,则也会与直线PN 相切;当直线l 的斜率存在时,设直线l 的方程为y =k (x -1),M (x 1,y 1),N (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 23=1得(3+4k 2)x 2-8k 2x +4k 2-12=0,所以x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k2,k PM =y 1x 1-4=k (x 1-1)x 1-4,k PN =y 2x 2-4=k (x 2-1)x 2-4,k PM +k PN =k (x 1-1)x 1-4+k (x 2-1)x 2-4=k [2x 1·x 2-5(x 1+x 2)+8](x 1-4)(x 2-4)=k ⎝ ⎛⎭⎪⎫8k 2-243+4k 2-40k 23+4k 2+8(x 1-4)(x 2-4)=0,所以,∠MPO =∠NPO ,于是点O 到直线PM 与直线的距离PN 相等, 故若圆Ω:x 2+y 2=r 2(r >0)与直线PM 相切,则也会与直线PN 相切;综上所述,若圆Ω:x 2+y 2=r 2(r >0)与直线PM 相切,则圆Ω与直线PN 也相切.感谢您的下载!快乐分享,知识无限!由Ruize收集整理!。
椭圆综合练习题一1.“a >b >0”是“方程122=+by ax 表示焦点在y 轴上的椭圆”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 2.过15622=+yx内的一点P(2,-1)的弦,恰被P 点平分,则这条弦所在的直线方程是( ) A .5x -3y -13=0 B .5x +3y -13=0 C .5x -3y +13=0 D .5x +3y +13=03.2的椭圆称为“优美椭圆”.设22221(0)x y a b ab+=>>是优美椭圆,F 、A 分别是它的左焦点和右顶点,B 是它的短轴的一个顶点,则F B A ∠=( )A. 60B. 75C.90D.120 4.椭圆22221(0)x y a b ab+=>>的四个顶点A ,B ,C ,D 构成的四边形为菱形,若菱形ABCD的内切圆恰好过焦点,则椭圆的离心率是( )A 2B 8.2D 45.已知A ,B 是椭圆()012222>>=+b a by ax 长轴的两个顶点,N M ,是椭圆上关于x 轴对称的两点,直线BN AM ,的斜率分别为12,k k ,且021≠k k ,若21k k +的最小值为1,则椭圆的离心率为( )A .12B .2C .23 D .326. P 、Q 是141622=+yx上两点,O 为原点,OP 、OQ 斜率之积为41-,则22OQ OP+为( )A . 4 B. 20 C. 64 D. 不确定 7.椭圆13422=+yx上有n 个不同的点,,,,21n P P P 椭圆的右焦点为F , 数列{}F P n 是公差大于1001的等差数列, 则n 的最大值是( )A .198B .199C .200D .201 8.椭圆的两个焦点三等分它的准线间的距离,则椭圆的离心率为( ) A .23 B .33 C .36 D .669.设O 为坐标原点,12,F F 是椭圆22221(0)x y a b ab+=>>的左、右焦点,若在椭圆上存在点P 满足123F PF π∠=,且||2O P =,则该椭圆的离心率为( )A.12B.142D.210.如图,椭圆的中心在坐标原点O ,顶点分别是1A ,2A ,1B ,2B ,焦点为1F ,2F ,延长11B F 与22A B 交于 P 点,若12B PA Ð为钝角,则此椭圆的离心率的取值范围为( )A. (0,14+ ) B .(14,1) C. (0, 12- ) D.( 12,1)11.椭圆22221(0)x y a b ab+=>>的中心、右焦点、右顶点及在准线与x 轴的交点依次为O 、F 、G 、H ,则FG O H的最大值为( )A .12B .13C .14D .不确定12.若直线4:1=+ny mx l 和圆4:221=+y x C 无公共点,则过点),(n m P 的直线2l 与椭圆149:222=+yxC 的公共点的个数为( )A .至多一个B .2个C .1个D . 0个 13.已知F 1、F 2为椭圆2212516xy+=的左、右焦点,若M 为椭圆上一点,且△MF 1F 2的内切圆的周长等于3π,则满足条件的点M 有( )个.A.0B.1C.2D.414.B 1、B 2是椭圆短轴的两端点,O 为椭圆中心,过左焦点F 1作长轴的垂线交椭圆于点P ,若12F B 是|1O F |和|12B B |的等比中项,则12||PF O B 的值________.15.若点P 在以F 1,F 2为焦点的椭圆上,PF 2⊥F 1F 2,123tan 4PF F ∠=,则椭圆离心率为_______.16.已知非零实数a 、b 、c 成等差数列,直线0ax by c ++=与曲线2221(0)9x ym m+=>恒有公共点,则实数m 的取值范围为___________________.17.已知AB 是过椭圆x 225+y 216=1左焦点F 1的弦,且22||||12AF BF +=,其中2F 是椭圆的右焦点,则弦AB 的长是 .18.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆 离心率的取值范围是 .19.已知以)0,2(1-F 、)0,2(2F 为焦点的椭圆与直线043=++y x 有且只有一个交点,则椭圆的长轴长为__________.20.已知正方形ABCD 的四个顶点在椭圆12222=+by ax ()0>>b a 上,x AB //轴,AD 过左焦点F ,则该椭圆的离心率为 . 21.若椭圆1C :2222111x y a b +=(110a b >>)和椭圆2C :2222221xy a b +=(220a b >>)的焦点相同且12a a >.给出如下四个结论: ①椭圆1C 和椭圆2C 一定没有公共点;②1122a b a b >;③22221212a a b b -=-; ④1212a a b b -<-.其中,所有正确结论的序号是 . 22.已知椭圆()012222>>=+b a by ax 的右焦点为2F (3,0),离心率为23=e 。
椭圆综合测试题含答案题目一已知椭圆的长轴长为12cm,短轴长为8cm。
求椭圆的周长和面积。
解答一椭圆的周长计算公式为:周长= π * (a + b)其中,a和b分别表示椭圆的长轴和短轴长。
将已知数据代入公式进行计算:周长= π * (12 + 8)≈ 3.1416 * 20≈ 62.832cm椭圆的面积计算公式为:面积= π * a * b将已知数据代入公式进行计算:面积= π * 12 * 8≈ 3.1416 * 96≈ 301.592cm²因此,椭圆的周长约为62.832cm,面积约为301.592cm²。
题目二已知椭圆的焦点到准线的距离为3cm,椭圆的长轴长为10cm。
求椭圆的短轴长。
解答二根据椭圆的定义,焦点到准线的距离与长轴、短轴的关系满足以下公式:c² = a² - b²其中,c表示焦点到准线的距离,a和b分别表示椭圆的长轴和短轴长。
将已知数据代入公式进行计算:3² = 10² - b²9 = 100 - b²b² = 100 - 9b² = 91b ≈ √91b ≈ 9.54cm因此,椭圆的短轴长约为9.54cm。
题目三已知椭圆的长轴长为16cm,短轴长为12cm。
求椭圆的离心率和焦距。
解答三根据椭圆的定义,离心率的计算公式为:离心率 = c / a其中,c表示焦点到准线的距离,a表示椭圆的长轴长。
焦距的计算公式为:焦距= √(a² - b²)将已知数据代入公式进行计算:离心率 = c / a = 0.8焦距= √(16² - 12²)= √(256 - 144)= √112≈ 10.583cm因此,椭圆的离心率约为0.8,焦距约为10.583cm。
以上就是关于椭圆综合测试题的解答,希望对您有所帮助!。
一、选择题(每小题只有一个正确答案,每题6分共36分)1. 椭圆221259x y +=的焦距为。
( ) A . 5 B. 3 C. 4 D 82.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为 ( )A .221412x y -= B. 221124x y -= C. 221106x y -= D 221610x y -= 3.双曲线22134x y -=的两条准线间的距离等于 ( ) A .67 B. 37 C. 185 D 1654.椭圆22143x y +=上一点P 到左焦点的距离为3,则P 到y 轴的距离为 ( ) A . 1 B. 2 C. 3 D 45.双曲线的渐进线方程为230x y ±=,(0,5)F -为双曲线的一个焦点,则双曲线的方程为。
( )A .22149y x -= B. 22194x y -= C. 2213131100225y x -= D 2213131225100y x -= 6.设12,F F 是双曲线22221x y a b-=的左、右焦点,若双曲线上存在点A ,使1290F AF ︒∠=且123AF AF =,则双曲线的离心率为 ( )A .52B. 102C. 152 D 57.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( )A .y 2=±4B .y 2=±8xC .y 2=4xD .y 2=8x8.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )A .2B .3 C.115D.37169.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2=4x 上一动点P 到直线l 1和直线l 2的距离之和的最小值是( )10.抛物线y 2=4x 的焦点为F ,准线为l ,经过F 且斜率为3的直线与抛物线在x 轴上方的部分相交于点A ,AK ⊥l ,垂足为K ,则△AKF 的面积是( )A .4B .3 3C .4 3D .8二.填空题。
椭圆测试题一、选择题:(本大题共12小题,每小题5分,共60分) 1、离心率为32,长轴长为6的椭圆的标准方程是( ) (A )22195x y += (B )22195x y +=或22159x y += (C )2213620x y += (D )2213620x y +=或2212036x y += 2、动点P 到两个定点1F (- 4,0)、2F (4,0)的距离之和为8,则P 点的轨迹为( )A.椭圆B.线段12F FC.直线12F F D .不能确定3、已知椭圆的标准方程22110y x +=,则椭圆的焦点坐标为( )A.(B.(0,C.(0,3)±D.(3,0)±4、已知椭圆22159x y +=上一点P 到椭圆的一焦点的距离为3,则P 到另一焦点的距离是( )A.3B.2C.3D.6 5、如果22212x y a a +=+表示焦点在x 轴上的椭圆,则实数a 的取值范围为( ) A.(2,)-+∞ B.()()2,12,--⋃+∞ C.(,1)(2,)-∞-⋃+∞ D.任意实数R6、关于曲线的对称性的论述正确的是( )A.方程220x xy y ++=的曲线关于X 轴对称 B.方程330x y +=的曲线关于Y 轴对称 C.方程2210x xy y -+=的曲线关于原点对称 D.方程338x y -=的曲线关于原点对称7、方程 22221x y ka kb +=(a >b >0,k >0且k ≠1)与方程22221x y a b+=(a >b >0)表示的椭圆( ). A.有相同的离心率B.有共同的焦点C.有等长的短轴.长轴D.有相同的顶点.8、已知椭圆2222:1(0)x y C a b a b+=>>的离心率为2,过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =( )(A )1 (B (C (D )29、若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )A.54 B.53 C. 52 D. 51 10、若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP 的最大值为( )A .2B .3C .6D .811、椭圆()222210x y a a b+=>b >的右焦点为F ,其右准线与x 轴的交点为A .在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是( )(A )(0,2] (B )(0,12] (C )1,1) (D )[12,1)12 若直线y x b =+与曲线3y =b 的取值范围是( )A.[1-1+B.[1C.[-1,1+D.[1-二、填空题:(本大题共5小题,共20分.)13 若一个椭圆长轴的长度.短轴的长度和焦距成等差数列,则该椭圆的离心率是14 椭圆2214924x y +=上一点P 与椭圆两焦点F 1, F 2的连线的夹角为直角,则Rt △PF 1F 2的面积为 . 15 已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D , 且D F F B 2=,则C 的离心率为 .16 已知椭圆22:12x c y +=的两焦点为12,F F ,点00(,)P x y 满足2200012x y <+<,则|1PF |+2PF |的取值范围为三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(10分)已知点M 在椭圆221259x y +=上,M 'P 垂直于椭圆焦点所在的直线,垂足为'P ,并且M 为线段P 'P 的中点,求P 点的轨迹方程.18.(12分)椭圆221(045)45x y m m+=<<的焦点分别是1F 和2F ,已知椭圆的离心率e =O 作直线与椭圆交于A ,B 两点,O 为原点,若2ABF 的面积是20,求:(1)m 的值(2)直线AB 的方程19(12分)设1F ,2F 分别为椭圆2222:1x y C a b+=(0)a b >>的左、右焦点,过2F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60,1F 到直线l 的距离为(Ⅰ)求椭圆C 的焦距;(Ⅱ)如果222AF F B =,求椭圆C 的方程.20(12分)设椭圆C :22221(0)x y a b a b+=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60o ,2AF FB =.(I) 求椭圆C 的离心率; (II) 如果|AB|=154,求椭圆C 的方程.21(12分)在平面直角坐标系xOy 中,点B 与点A (-1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于13-. (Ⅰ)求动点P 的轨迹方程;(Ⅱ)设直线AP 和BP 分别与直线x=3交于点M,N ,问:是否存在点P 使得△PAB 与△PMN 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由。
椭圆综合题:求最值和参数取值范围一.题型示例:1.(全国二21).(本小题满分12分)设椭圆中心在坐标原点,(20)(0A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点.(Ⅰ)若6ED DF = ,求k 的值;(Ⅱ)求四边形AEBF 面积的最大值.2.(12广东20.)(本小题满分14分) 在平面直角坐标系xOy 中,已知椭圆C 1:22221(0)x y a b a b +=>>的离心率23e =,且椭圆C 上的点到Q (0,2)的距离的最大值为3.(1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点M (m,n )使得直线l :mx+ny=1与圆O :x 2+y 2=1相交于不同的两点A 、B ,且△OAB 的面积最大?若存在,求出点M 的坐标及相对应的△OAB 的面积;若不存在,请说明理由。
3.如图所示,已知圆,8)1(:22=++y x C 定点A (1,0),M为圆上一动点,点P 在AM 上,点N 在CM 上,且满足0,2=⋅=AM NP AP AM ,点N 的轨迹为曲线E 。
(1)求曲线E 的方程;(2)若过定点F (0,2)的直线交曲线E 于不同的两点G 、H(点G 在点F 、H 之间),且满足λλ求,FH FG =的取值范围。
4.(09福建卷21)(本小题满分12分)如图、椭圆22221(0)x y a b a b+= 的一个焦点是F (1,0),O 为坐标原点. (Ⅰ)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程;(Ⅱ)设过点F 的直线l 交椭圆于A 、B 两点.若直线l 绕点F 任意转动,恒有222OA OB AB + ,求a 的取值范围.规律总结:a.最值问题可用几何法和代数法:Ⅰ.条件和结论能明显体现几何特征和意义,则利用图形性质解决;Ⅱ.挖掘条件和结论间的函数关系,建立起目标函数,再求其最值.b.求参数取值范围:Ⅰ.不等式(组)求解法:根据题义,结合图形列出所讨论的参数的各项约束条件,通过解不等式(组)得出参数取值范围;Ⅱ.函数值域求解法:另选一个适当的参数(注意其范围)作为自变量来表示所讨论参数,通过求该函数的值域求得取值范围.二.强化训练:1.已知某椭圆的焦点是()()124,04,0F F -、,过点2F 并垂直于x 轴的直线与椭圆的一个交点为B ,且1210FB F B +=。
专题三 直线与椭圆综合1.(12分)已知椭圆2222:1(0)x y C a b b a +=>>椭圆C 的长轴长为4. (1)求椭圆C 的方程;(2)已知直线:l y kx =C 交于A ,B 两点,是否存在实数k 使得以线段AB 为直径的圆恰好经过坐标原点O ?若存在,求出k 的值;若不存在,请说明理由.2.(本小题满分14分) 已知椭圆G 的离心率为,其短轴的两个端点分别为A (0,1),B(0,-1).(Ⅰ)求椭圆G 的方程;(Ⅱ)若,C D 是椭圆G 上关于y 轴对称的两个不同点,直线,AC BD 与x 轴分别交于点,M N .判断以MN 为直径的圆是否过点A ,并说明理由.3.(本小题满分12分)已知直线l : 323-=x y 过椭圆C :2221x a b2y +=(a >b>0)的右焦点,且椭圆的离心率为3(Ⅰ)求椭圆C 的方程;(Ⅱ)过点D (0,1)的直线与椭圆C 交于点A ,B ,求△AOB 的面积的最大值.4.已知椭圆2222:1x y C a b+=(a>b>0)的两个焦点分别为12,F F ,离心率为12,过1F 的直线l 与椭圆C 交于M ,N 两点,且2MNF ∆的周长为8.(Ⅰ)求椭圆C 的方程;(Ⅱ)过原点O 的两条互相垂直的射线与椭圆C 分别交于A,B 两点,证明:点O 到直线AB 的距离为定值,并求出这个定值.5.已知椭圆的中心为原点,焦点在x 轴上,离心率为,且经过点(4,1)M ,直线:l y x m =+交椭圆于异于M 的不同两点,A B .直线MA MB x 、与轴分别交于点E F 、.(1)求椭圆标准方程;(2)求m 的取值范围;(3)证明MEF ∆是等腰三角形.6.已知椭圆C 的中心在坐标原点,焦点在x 轴上,离心率为12,椭圆C 上的点到焦点距离的最大值为3.(Ⅰ)求椭圆C 的标准方程; (Ⅱ)若过点(0,)P m 的直线l 与椭圆C 交于不同的两点,A B ,且3AP PB =,求实数m 的取值范围.7.(本小题满分13分)已知点P (一1,32)是椭圆E :22221(0)x y a b a b+=>>上一点F 1,F 2分别是椭圆E 的左、右焦点,O 是坐标原点,PF 1⊥x 轴.(1)求椭圆E 的方程;(2)设A ,B 是椭圆E 上两个动点,满足:(04,2)PA PB PO λλλ+=<<≠且,求直线AB 的斜率8.已知椭圆E :()22221 0, 0x ya b a b +=>>的离心率 e =,并且经过定点1)2P (1)求椭圆 E 的方程;(2)问是否存在直线y=-x+m ,使直线与椭圆交于 A, B 两点,满足OA OB ⊥,若存在求 m 值,若不存在说明理由.9.椭圆2222:1(0)x y C a b a b+=>>过点3(1,)2A ,离心率为12,左、右焦点分别为12,F F ,过1F 的直线交椭圆于,A B 两点.(1)求椭圆C 的方程;(2)当2F AB ∆的面积为7时,求直线的方程.10.已知椭圆2222:1(0)x y C a b a b +=>>经过点(2, 1)A ,离心率为2,过点(3, 0)B 的直线l 与椭圆C 交于不同的两点,M N .(1)求椭圆C 的方程;(2)求BM BN ⋅的取值范围.11.(满分14分)如图在平面直角坐标系xoy 中,12,F F 分别是椭圆22221(0)x y a b a b +=>>的左右焦点,顶点B 的坐标是(0,)b ,连接2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接1FC .(1)若点C 的坐标为41(,)33,且2BF =,求椭圆的方程; (2)若1FC AB ⊥,求椭圆离心率e 的值. 12.已知椭圆)0(1:2222>>=+b a by a x C 过点)3,2(A ,且离心率21=e . (1)求椭圆C 的标准方程;(2)是否存在过点)4,0(-B 的直线l 交椭圆于不同的两点M 、N ,且满足167OM ON ⋅=(其中点O 为坐标原点),若存在,求出直线l 的方程,若不存在,请说明理由.13.已知椭圆22221(0)x y a b a b +=>>的离心率为e =12), (1)求椭圆的方程;(2)设直线:(0,0)l y kx m k m =+≠>与椭圆交于P ,Q 两点,且以PQ 为对角线的菱形的一顶点为(-1,0),求:△OPQ 面积的最大值及此时直线的方程.参考答案1.(1)2214y x +=;(2)存在实数2k =±使得以线段AB 为直径的圆恰好经过坐标原点O .【解析】试题分析:本题主要考查椭圆的标准方程及其几何性质、直线与椭圆的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用椭圆的离心率和长轴长列出方程,解出a 和c 的值,再利用222a b c =+计算b 的值,从而得到椭圆的标准方程;第二问,将直线与椭圆联立,消参,利用韦达定理,得到12x x +、12x x ,由于以线段AB 为直径的圆恰好经过坐标原点O ,所以0OA OB ∙=,即12120x x y y +=,代入12x x 和12y y ,解出k 的值.试题解析:(1)设椭圆的焦半距为c,则由题设,得22a c a=⎧⎪⎨=⎪⎩解得2a c =⎧⎪⎨=⎪⎩222431b a c =-=-=, 故所求椭圆C 的方程为2214y x +=. (2)存在实数k 使得以线段AB 为直径的圆恰好经过坐标原点O .理由如下:设点11(,)A x y ,22(,)B x y , 则⎪⎩⎪⎨⎧=++=14322x y kx y并整理,得22(4)10k x ++-=.(*)则12x x +=,12214x x k =-+. 因为以线段AB 为直径的圆恰好经过坐标原点O ,所以0OA OB ⋅=,即12120x x y y +=.又2121212()3y y k x x x x =++,()()033121212=++++∴x x k x x k 于是2222163044k k k k +--+=++,解得k = 经检验知:此时(*)式的Δ>0,符合题意.所以当2k =±时,以线段AB 为直径的圆恰好经过坐标原点O . 考点:椭圆的标准方程及其几何性质、直线与椭圆的位置关系.2.(Ⅰ)2212x y +=;(Ⅱ)以MN 为直径的圆不过A 点. 【解析】试题分析:(Ⅰ)由已知条件设椭圆G 的方程为:()22211y x a a +=,>由c a =可得222,1a b ==由此能求出椭圆的标准方程.(Ⅱ)设11C x y (,),且10x ≠,则11D x y -(,),由已知条件推导出202011x AM AN y -=+-⋅,()220021x y -=,由此能求出以线段MN 为直径的圆不过点A .试题解析:(Ⅰ)设椭圆G 的方程为:()22211y x a a +=,>,所以,1b =,2c a =,222a c =,∴21c =,∴222,1a b ==, ∴椭圆方程为2212x y += (Ⅱ)设00(,)C x y ,则00(,)D x y -,001AC y k x -=,001BD y k x +=-, 000011:1,:1,y y AC y x BD y x x x -+=+=-- 令0y =,则0000,,11M N x x x x y y -==-+ ∴0000(,1),(,1)11x x AM AN y y =-=---+,∴2001(1)(1)xAM ANy y-⋅=+-+=2200211x yy--+-∵2212xy+=∴22012xy-=,∴22212xAM ANx-⋅==-,∴AM与AN不垂直,∴以MN为直径的圆不过A点.考点:椭圆的性质、直线与圆锥曲线的位置关系3.(Ⅰ)221 62x y+=;【解析】试题分析:(Ⅰ)通过分析可知直线l与x轴的交点为(2,0),得2c=,又cea==,得a=2222b a c=-=,可得,22=b即可求得椭圆方程为22162x y+=;(Ⅱ)可设直线AB方程为1y kx=+,设1122(,),(,)A x yB x y,故1112AOB AOD BODS S S OD x x∆∆∆=+=-=,为此可联立221162y kxx y=+⎧⎪⎨+=⎪⎩,整理得22(31)630k x kx++-=,利用韦达定理,求出12122263,3131kx x x xk k-+==++,可得AOBS∆==令21,31tk=+则AOBS∆==1=t,即0k=时,AOBS∆试题解析:(Ⅰ)∵a b>,∴椭圆的焦点为直线l与x轴的交点,∵直线l与x轴的交点为(2,0),∴椭圆的焦点为(2,0),∴2c=, 1分又∵3c e a ==,∴a =2222b a c =-= 3分 ∴椭圆方程为22162x y +=. 4分 (Ⅱ) 直线AB 的斜率显然存在,设直线AB 方程为1y kx =+设1122(,),(,)A x y B x y ,由221162y kx x y =+⎧⎪⎨+=⎪⎩,得22(31)630k x kx ++-=, 显然0∆>,12122263,3131k x x x x k k-+==++ 6分 1212AOB AOD BODS S S OD x x∆∆∆=+=-=分====分令2,31t k =+则(]0,1t∈, AOB S ∆==1t ∴=,即0k =时,AOB S ∆分考点:1、椭圆的标准方程;2、直线与曲线相交问题.4.(Ⅰ)22143x y +=;. 【解析】试题分析:(Ⅰ)由2MNF ∆的周长为8,得4a=8,由12e =得222222314a c e ab a --===,从而可求得b ;(Ⅱ)分情况进行讨论:由题意,当直线AB 的斜率不存在,此时可设0000A x x B x x -(,),(,),再由A 、B 在椭圆上可求0x ,此时易求点O 到直线AB 的距离;当直线AB 的斜率存在时,设直线AB 的方程为y=kx+m ,代入椭圆方程消掉y 得x 的二次方程,知0∆>,由OA ⊥OB ,得12120x x y y +=,即12120x x kx m kx m +++=()(),整理后代入韦达定理即可得m ,k 关系式,由点到直线的距离公式可求得点O 到直线AB 的距离,综合两种情况可得结论,注意检验0∆>.试题解析:(Ⅰ)由题意知,4a=8,所以a=2,因为12e =,所以222222314a c e ab a --===,23b ∴=.所以椭圆C 的方程22143x y +=; (Ⅱ)由题意,当直线AB 的斜率不存在,此时可设0000A x x B x x -(,),(,).又A ,B 两点在椭圆C 上,222000121437x x x ∴+=,=所以点O 到直线AB的距离7d = 当直线AB 的斜率存在时,设直线AB 的方程为y=kx+m .22143x y kx m y ⎧⎪⎨+=⎩+⎪=,消去y 得2223484120k x kmx m +++-=(). 由已知0∆>,设1122A x y B x y (,),(,).212122284343412km m x x x x k k -+-++=,=, ()()221212121212120010OA OB x x y y x x kx m kx m k x x km x x m ⊥∴+=∴+++=∴++++,.()(),=.()22222222284123431071142m k k k m k m m k -∴+++-+∴=+=.(),满足0∆>.所以点O 到直线AB的距离7d =为定值. 考点:椭圆标准方程,直线与圆锥曲线的位置关系5.(1)221205x y +=;(2)(5,3)(3,5)---;(3)详见解析. 【解析】 试题分析:(1,得224a b = ,由经过点(4,1)M ,得221611a b +=,联立求,a b 即可;(2)本题考查直线和椭圆位置关系,要注意判别式的隐含条件,联立椭圆方程和直线方程,利用0∆>和直线不经过点(4,1)M ,得关于m 的不等式,解不等式得m 的取值范围;(3)由数形结合可知,要证明MEF ∆是等腰三角形,只需证明120k k +=,表示两条直线的斜率,利用韦达定理设而不求,可证明120k k +=.试题解析:(1)设椭圆的方程为22221,x y a b+=因为e =,所以224a b =, 又因为椭圆过点(4,1)M ,所以221611a b+=,解得225,20b a ==,故椭圆标准方程为 221205x y += 4分 (2)将y x m =+代入221205x y +=并整理得22584200,x mx m ++-= 令 2(8)m ∆=220(420)0m -->,解得 55m -<<.又由题设知直线不过M (4,1),所以41m +≠,3m ≠-,所以m 的取值范围是(5,3)(3,5)---. 8分(3)设直线,MA MB 的斜率分别为1k 和2k ,要证明MEF ∆是等腰三角形,只要证明120k k +=即可.设11(,)A x y ,22(,)B x y ,由(2)知1285m x x +=-,2124205m x x -=.则1212121144y y k k x x --+=+-- 122112(1)(4)(1)(4)(4)(4)y x y x x x --+--=--.1221(1)(4)(1)(4)y x y x --+-- 1221(1)(4)(1)(4)x m x x m x =+--++--=122x x +12(5)()8(1)m x x m -+--22(420)8(5)8(1)55m m m m --=--- =0, 120k k ∴+=, 所以MEF ∆是等腰三角形. 14分考点:1、椭圆标准方程;2、直线和椭圆位置关系;3、韦达定理.6.(Ⅰ)22143x y +=;(Ⅱ)3([,3). 【解析】试题分析:(Ⅰ)椭圆C 上的点到焦点距离的最大值为3a c +=,且离心率为12,结合222a b c =+,求得,a b 的值,进而求椭圆方程;(Ⅱ)直线和圆锥曲线位置关系问题,往往会将直线方程和圆锥曲线方程联立,根据其位置关系注意判别式符号的隐含条件,同时要善于利用韦达定理对交点设而不求。
椭圆相关的综合题基础训练:1.一广告气球被一束平行光线投射到水平面上,形成一个离心率为2的椭圆,则这束光线与水平面的入射角大小为________2.已知1F 、2F 是椭圆1:2222=+by a x C (a >b >0)的两个焦点,P 为椭圆C 上一点,且21PF PF ⊥.若21F PF ∆的面积为9,则b =____________3.已知21F F 、为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于A 、B 两点,若1222=+B F A F ,则AB =_________4.椭圆21)0,0(12222=>>=+e b a b y a x 的离心率,右焦点F (c,0),方程02=-+c bx ax 的两个根分别为x 1,x 2,则点P (x 1,x 2)在与圆222=+y x 的位置关系是 .5.若直线l :与圆没有公共点,则过点的直线与椭圆的公共点个数为 .6.椭圆122=+by ax 与直线x y -=1交于A 、B 两点,过原点与线段AB 中点的直线的斜率为ba则,23=________ 4mx ny +=22:4O x y +=(,)m n 22194x y +=典型例题:如图,已知12,F F 是椭圆2222:1x y C a b+= (0)a b >>的左、右焦点,点P 在椭圆C 上,线段2PF 与圆222x y b +=相切于点Q ,且点Q 为线段2PF 的中点,则椭圆C 的离心率为如图,P 是椭圆192522=+y x 上的一点,是椭圆的左焦点,且)(21OF OP OQ +=,4||=则点P 到该椭圆左准线的距离为 .3.如图,已知椭圆C:2221(2x y a a +=>的左右焦点分别为F 1、F 2,点B 为椭圆与y 轴的正半轴的交点,点P 在第一象限内且在椭圆上,且PF 2与x 轴垂直,51=∙F ,(Ⅰ)求椭圆C 的方程;(Ⅱ)设点B 关于直线m x y L +-=:的 对称点E (异于点B )在椭圆C 上,求m 的值。
椭圆专题总结一、直线与椭圆问题的常规解题方法:1.设直线与方程; (提醒:①设直线时分斜率存在与不-存在;②设为y=kx+b 与x=my+n 的区别)2.设交点坐标;(提醒:之所以要设是因为不去求出它,即“设而不求”)3.联立方程组;4.消元韦达定理;(提醒:抛物线时经常是把抛物线方程代入直线方程反而简单)5.根据条件重转化;常有以下类型:①“以弦AB 为直径的圆过点0”(提醒:需讨论K 是否存在) ②“点在圆内、圆上、圆外问题”⇔“直角、锐角、钝角问题” ⇔“向量的数量积大于、等于、小于0问题” ⇔12120x x y y +>>0;③“等角、角平分、角互补问题” ⇔斜率关系(120K K +=或12K K =); ④“共线问题”(如:AQ QB λ= ⇔数的角度:坐标表示法;形的角度:距离转化法); (如:A 、O 、B 三点共线⇔直线OA 与OB 斜率相等); ⑤“点、线对称问题” ⇔坐标与斜率关系;⑥“弦长、面积问题”⇔转化为坐标与弦长公式问题(提醒:注意两个面积公式 的 合理选择); 6.化简与计算; 7.细节问题不忽略;①判别式是否已经考虑;②抛物线、双曲线问题中二次项系数是否会出现0. 二、基本解题思想:1、“常规求值”问题:需要找等式,“求范围”问题需要找不等式;2、“是否存在”问题:当作存在去求,若不存在则计算时自然会无解;3、证明定值问题的方法:⑴常把变动的元素用参数表示出来,然后证明计算结果与参数无 关;⑵也可先在特殊条件下求出定值,再给出一般的证明。
4、处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求 出定点;⑵也可先取参数的特殊值探求定点,然后给出证明,5、求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、 三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决;6、转化思想:有些题思路易成,但难以实施。
这就要优化方法,才能使计算具有可行性,关键是积累“转化”的经验;椭圆中的定值、定点问题一、常见基本题型:在几何问题中,有些几何量和参数无关,这就构成定值问题,解决这类问题常通过取参数和特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角式,证明该式是恒定的。
(1)直线恒过定点问题1、已知点00(,)P x y 是椭圆22:12x E y +=上任意一点,直线l 的方程为0012x xy y +=,直线0l 过P 点与直线l 垂直,点M (-1,0)关于直线0l 的对称点为N ,直线PN 恒过一定点G ,求点G 的坐标。
2、已知椭圆两焦点1F 、2F 在y 轴上,短轴长为22,离心率为22,P 是椭圆在第一象限弧上一点,且121PF PF ⋅=,过P 作关于直线F 1P 对称的两条直线PA 、PB 分别交椭圆于A 、B 两点。
求:(1)求P 点坐标;(2)求证直线AB 的斜率为定值;3、已知动直线(1)y k x =+与椭圆22:1553x y C +=相交于A 、B 两点,已知点7(,0)3M -, 求证:MA MB ⋅为定值.4、 在平面直角坐标系xOy 中,已知椭圆22:13x C y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E , 射线OE 交椭圆C 于点G ,交直线3x =-于点(3,)D m -.(Ⅰ)求22m k +的最小值;(Ⅱ)若2OG OD =?OE求证:直线l 过定点;椭圆中的取值范围问题一、常见基本题型:对于求曲线方程中参数范围问题,应根据题设条件及曲线的几何性质构造参数满足的不等式,通过解不等式求得参数的范围;或建立关于参数的目标函数,转化为函数的值域来解.(1)从直线和二次曲线的位置关系出发,利用判别式的符号,确定参数的取值范围。
5、已知直线l 与y 轴交于点(0,)P m ,与椭圆22:21C x y +=交于相异两点A 、B ,且3AP PB =,求m 的取值范围.(2)利用题中其他变量的范围,借助于方程产生参变量的函数表达式,确定参数的取值范围. 6、已知点(4, 0)M ,(1, 0)N ,若动点P 满足6||MN MP PN ⋅=.(Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)设过点N 的直线l 交轨迹C 于A ,B 两点,若181275NA NB -⋅-≤≤,求直线l 的斜率的取值范围.(3)利用基本不等式求参数的取值范围7、已知点Q 为椭圆E :221182x y +=上的一动点,点A 的坐标为(3,1),求AP AQ ⋅的取值范围.8.已知椭圆的一个顶点为(0,1)A -,焦点在x 轴上.若右焦点到直线220x y -+=的距离为 3. 求:(1)求椭圆的方程(2)设直线(0)y kx m k =+≠与椭圆相交于不同的两点,M N .当||||AM AN =时,求m 的取值范围.9.如图所示,已知圆M A y x C ),0,1(,8)1(:22定点=++为圆上一动点,点P 在AM 上,点N 在CM 上,且满足N AM NP AP AM 点,0,2=⋅=的轨迹为曲线E . (I )求曲线E 的方程;(II )若过定点F (0,2)的直线交曲线E 于不同的两点,G H (点G 在点,F H 之间),且满足FH FG λ=, 求λ的取值范围.10、.已知椭圆E 的中心在坐标原点O ,两个焦点分别为)0,1(-A 、)0,1(B ,一个顶点为)0,2(H .求:(1)求椭圆E 的标准方程;(2)对于x 轴上的点)0,(t P ,椭圆E 上存在点M ,使得MH MP ⊥求t 的取值范围.11.已知椭圆2222:1x y C a b+=(0)a b >>的离心率为22,以原点为圆心,椭圆的短半轴长为半径的圆与直线20x y -+=相切.(Ⅰ)求椭圆C 的方程;(Ⅱ)若过点M (2,0)的直线与椭圆C 相交于两点,A B ,设P 为椭圆上一点,且满足OP t OB OA =+(O 为坐标原点),当PB PA -<253时,求实数t 取值范围. 椭圆中的最值问题一、常见基本题型:(1)利用基本不等式求最值,12、已知椭圆两焦点1F 、2F 在y 轴上,短轴长为22,离心率为22,P 是椭圆在第一象限弧上一点,且121PF PF ⋅=,过P 作关于直线F 1P 对称的两条直线PA 、PB 分别交 椭圆于A 、B 两点,求△PAB 面积的最大值。
(2)利用函数求最值,13.如图,DP x ⊥轴,点M 在DP 的延长线上,且||2||DM DP =.当点P 在圆221x y += 上运动时。
(I )求点M 的轨迹C 的方程;(Ⅱ)过点22(0,)1T t y +=作圆x 的切线l 交曲线 C 于A ,B 两点,求△AOB 面积S 的最大值和相应的点T 的坐标。
14、已知椭圆22:14x G y +=.过点(,0)m 作圆221x y +=的切线l 交椭圆G 于A,B 两点.将|AB|表示为m 的函数,并求|AB|的最大值.思维拓展训练1、已知A 、B 、C 是椭圆)0(1:2222>>=+b a by a x m 上的三点,其中点A 的坐标为)0,32(,BC 过椭圆m 的中心,且||2||,0AC BC BC AC ==•.(1)求椭圆m 的方程;(2)过点),0(t M 的直线l (斜率存在时)与椭圆m 交于两点P ,Q ,设D 为椭圆m 与y 轴负半轴的交点,且||||DQ DP =.求实数t 的取值范围.2.已知圆M :222()()x m y n r -+-=及定点(1,0)N ,点P 是圆M 上的动点,点Q 在NP上,点G 在MP 上,且满足NP =2NQ ,GQ ·NP =0. (1)若1,0,4m n r =-==,求点G 的轨迹C 的方程;(2)若动圆M 和(1)中所求轨迹C 相交于不同两点,A B ,是否存在一组正实数,,m n r , 使得直线MN 垂直平分线段AB ,若存在,求出这组正实数;若不存在,说明理由. 3、已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线:l y kx m =+与椭圆C 相交于A ,B 两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.4.如图,已知椭圆的中心在原点,焦点在x 轴上,长轴长是短轴长的2倍且经过点M (2,1),平行于OM 的直线l 在y 轴上的截距为m (m ≠0),l 交椭圆于A 、B 两个不同点。
(1)求椭圆的方程; (2)求m 的取值范围;(3)求证直线MA 、MB 与x 轴始终围成一个等腰三角形.参考答案1、解:直线0l 的方程为0000()2()x y y y x x -=-,即000020y x x y x y --= 设)0,1(-M 关于直线0l 的对称点N 的坐标为(,)N m n则0000001212022x nm y x n m y x y ⎧=-⎪+⎪⎨-⎪⋅--=⎪⎩,解得320002043200002002344424482(4)x x x m x x x x x n y x ⎧+--=⎪-⎪⎨+--⎪=⎪-⎩∴ 直线PN 的斜率为4320000032000042882(34)n y x x x x k m x y x x -++--==---+ 从而直线PN 的方程为: 432000000320004288()2(34)x x x x y y x x y x x ++---=---+ 即3200043200002(34)14288y x x x y x x x x --+=+++-- 从而直线PN 恒过定点(1,0)G2、解:(1)设椭圆方程为22221y x a b +=,由题意可得2,a b c ===22142y x +=则12(0,F F ,设0000(,)(0,0)P x y x y >>则100200(,2),(,),PF x y PF x y =--=-221200(2)1PF PF x y ∴⋅=--=点00(,)P x y 在曲线上,则2200 1.24x y += 220042y x -∴=从而22004(2)12y y ---=,得0y =P 的坐标为。
(2)由(1)知1//PF x 轴,直线PA 、PB 斜率互为相反数,设PB 斜率为(0)k k >,则PB的直线方程为:(1)y k x =-由22(1)124y k x x y ⎧=-⎪⎨+=⎪⎩得222(2)2))40k x k k x k +++-=设(,),B B B x y则2222(2122B k k k x k k---=-=++同理可得2222A k x k +-=+,则22A B x x k-=+ 所以直线AB的斜率A BAB A By y k x x -==-3、解: 将(1)y k x =+代入221553x y +=中 得2222(13)6350k x k x k +++-=4222364(31)(35)48200k k k k ∴∆=-+-=+>,2122631k x x k +=-+,21223531k x x k -=+所以112212127777(,)(,)()()3333MA MB x y x y x x y y ⋅=++=+++ 4222316549319k k k k ---=+++49=。