层次分析法及Excel求解实验
- 格式:ppt
- 大小:629.00 KB
- 文档页数:48
江苏科技信息February 2012表2判断矩阵摘要:文章介绍了层次分析法确定评价指标权重的过程和计算方法,建立的Excel 计算模板操作简单,方便推广,具有较强的实用性。
关键词:决策分析法;层次分析法;权重;Excel ;计算模板作者简介:曹茂林,扬州市环境监测中心站,高级工程师;研究方向:环境监测技术与环境科技管理。
■曹茂林层次分析法确定评价指标权重及Excel 计算层次分析法(Analytic hierarchy process ,简称AHP 法)是美国运筹学家T.L.Saaty 等人在20世纪70年代中期提出了一种定性和定量相结合的,系统性、层次化的多目标决策分析方法。
在环境科研实践中,AHP 法广泛应用于生态安全[1]、环境规划[2]、区域承载力[3]、化学品环境性能评价[4]等众多领域。
AHP 法的核心是将决策者的经验判断定量化,增强了决策依据的准确性,在目标结构较为复杂且缺乏统计数据的情况下更为实用。
应用AHP 法确定评价指标的权重,就是在建立有序递阶的指标体系的基础上,通过比较同一层次各指标的相对重要性来综合计算指标的权重系数。
具体步骤如下:1.构造判断矩阵同一层次内n 个指标相对重要性的判断由若干位专家完成。
依据心理学研究得出的“人区分信息等级的极限能力为7±2”的结论,AHP 法在对指标的相对重要性进行评判时,引入了九分位的比例标度,见表1。
判断矩阵A 中各元素a ij 为i 行指标相对j 列指标进行重要性两两比较的值。
显然,在判断矩阵A 中,a ij >0,a ii =1,a ij =1/a ji (其中i ,j=1,2,…,n )。
因此,判断矩阵A 是一个正交矩阵,左上至右下对角线位置上的元素为1,其两侧对称位置上的元素互为倒数。
每次判断时,只需要作n(n-1)/2次比较即可。
表2是一个7阶判断矩阵,本文以此为例介绍应用Excel 计算指标权重并进行一致性检验的方法。
用电子表格(Excel)实现层次分析法(AHP)的简捷计算先锋(华南农业大学林学院,广东广州510640)摘要:传统的层次分析法算法具有构造判断矩阵不容易、计算繁多重复且易出错、一致性调整比较麻烦等缺点。
层次分析法Excel 算法利用常用的办公软件电子表格(Excel)的运算功能,设置简明易懂的计算表格和步骤,使得判断矩阵的构造、层次单排序和层次总排序的计算以及一致性检验和检验之后对判断矩阵的调整变得十分简单。
从而可以为层次分析法的学习、应用、推广和改进探讨提供方便。
关键词:层次分析法Excel1 层次分析法(AHP)的应用难点层次分析法(Analytical Hierarchy Process,简称AHP)是美国匹兹堡大学教授A.L.Saaty ,于20 世纪70 年代提出的一种系统分析方法,它综合了定性与定量分析,模拟人的决策思维过程,具有思路清晰、方法简便、适用面广、系统性强等特点,是分析多目标、多因素、多准则的复杂大系统的有力工具。
层次分析法的基本原理简单说就是用下一层次因素的相对排序来求得上一层次因素的相对排序。
应用层次分析法解决问题的思路是:首先把要解决的问题分出系列层次,即根据问题的性质和要达到的目标将问题分解为不同的组成因素,按照因素之间的相互影响和隶属关系将各层次各因素聚类组合,形成一个递阶的有序的层次结构模型;然后对模型中每一层次每一因素的相对重要性,依据人们对客观现实的判断给予定量表示(也可以先进行定性判断,再予赋值量化),再利用数学方法确定每一层次全部因素相对重要性次序的权值;最后通过综合计算各层因素相对重要性的权值,得到最低层(方案层)相对于较高层(分目标或准则层)和最高层(总目标)的相对重要性次序的组合权值,以此进行进行方案排序,作为评价和选择方案的依据。
层次分析法在多个领域得到广泛应用,但在应用中也是确实存在着不少难点。
1.1 构造一个合适的判断矩阵不容易建立层次结构模型和构造判断矩阵是层次分析法的主要基本工作,构造判断矩阵是关键之关键。
层次分析法(AnalytioHieacrrhyProcess,AHP),是一种定性与定量相结合的多目标决策方法,在许多工程领域都有应用。
利用层次分析法进行风险识别的基本思路是:把复杂的风险问题分解为各个组成因素,将这些因素按支配关系分组形成有序的递阶层次结构,通过两两比较判断的方式确定每一层次中各因素相对于上一层或最高层总目标的相对重要性,并加以排序,从而判断出系统主要风险模式和风险因素。
AHP体现了人们的决策思维的基本特征,即分解、判断、综合。
对于AHP的进一步定义、优缺点就不多说了,网上有很多的介绍。
今天主要探讨一下如何用Excel来进行层次分析法的核心步骤——判断矩阵特征值与特征向量的计算。
首先,来看一下计算方法。
这种计算方法来自同济大学巩春领博士的学位论文《大跨度斜拉桥施工风险分析与对策研究》。
数据分析你最喜欢的软件是哪个?可以说我最喜欢的是是Excel么~好多事情都可以用这个随处可以找到的方便快捷的工具完成,还可以与更多的人分享源文件,简直是人生一大快事。
AHP有很多计算工具,比如matlab(这个我也做了,稍后完善一下也分享出来),还有其他各种小软件。
不喜欢黑箱软件,不能调整算法,还是先研究一下excel的实现吧。
上面的系列公式,正好适合用excel做。
第一步,输入判断矩阵,拉出列和继续地,根据上面的公式,先后按次序作出归一化后的矩阵、求行和、求归一化后的权重、计算矩阵乘积、矩阵对应元素与权重向量元素求商,最后得到最大特征值——话说这也是普通矩阵得到最大特征值的一种方式。
这里要介绍一个Excel命令:MMULT:求矩阵相乘矩阵相乘,矩阵A乘以矩阵B=矩阵C,需要用命令指定两个矩阵,和一个结果矩阵的位置。
MMULT(array1,array2)函数介绍:返回两个数组的矩阵乘积。
结果矩阵的行数与数组array1的行数相同,矩阵的列数与数组array2的列数相同。
语法MMULT(array1,array2)Array1, array2是要进行矩阵乘法运算的两个数组。
层次分析法中用方根法计算权重在Excel中的具体操作层次分析法中判断矩阵用方根法计算权重在Excel 中的具体操作Exce A B C D E F G H I J K L M Nl 表1总目子目子目子目子目M几何平均权重W AW AW/Wλ =(1/n)*CI=(λRI( 需要查CR=CI/RIij i i ii标标 1标 2标 3标 4数∑ {(AW i )/W i }-n)/(n-1)表 )2子目=B2*C2=GEOMEAN=MMULT=(K2-1)n=10标 11342*D2*E2(B2:E2)=G2/G6(B2:E2,H2:H5)=I2/H2=J6/n/(n-1)3子目=B3*C3=GEOMEAN=MMULT n=20标21/311/21/2*D3*E3(B3:E3)=G3/G6(B3:E3,H2:H5)=I3/H3 4子目=B4*C4=GEOMEAN=MMULT n=30.58标31/4212*D4*E4(B4:E4)=G4/G6(B4:E4,H2:H5)=I4/H45子目=B5*C5=GEOMEAN=MMULT n=40.90.0814694标41/221/21*D5*E5(B5:E5)=G5/G6(B5:E5,H2:H5)=I5/H5 6总和=SUM=SUM n=5 1.12(F2:F5)(J2:J5)树种经济社会生态技术按行相开 M ij的权重 W i AW i矩阵乘积( AW i)/W iλ 最大特征CI 一般性RI 平均随机选择效益效益效益要求乘n 次方根指标一致性指标0.0733225经济0.4820 4.2199675208效益134224 2.21336452 2.070547 4.295277社会0.08330.1170n=10效益1/311/21/2330.537285160.478166 4.086325生态0.2177n=20效益1/421211920.938617 4.309704技术0.1831n=30.58要求1/221/211/20.84089640.7670944.188564总和 4.59154516.87987n=40.9CR随机一致性比率当CR<0.10 时,判断矩阵具有可以接受的一致性。
用电子表格(Excel)实现层次分析法(AHP)的简捷计算准则层对目标层判断树种选择经济效益社会效益生态效益技术要求按行相乘开N次方权重W1经济效益134224 2.2133638390.482052062社会效益1/311/21/20.0833330.5372849660.117016155生态效益1/4212110.217791604技术要求1/221/211/20.8408964150.1831401794.591545221方案层对经济效益判断经济效益松树杉木桉树按行相乘开N次方权重W1AW1松树121/60.3333330.6933610.1428228040.429782771杉木1/211/90.0555560.3815710.0785984180.236518574桉树69154 3.7797630.778578777 2.3429013694.854696方案层对社会效益判断社会效益松树杉木桉树按行相乘开N次方权重W1AW1松树11/21/50.10.4641590.1220201920.366511392杉木211/30.6666670.873580.2296507940.68980085桉树53115 2.4662120.648329014 1.9473823573.803951方案层对生态效益判断生态效益松树杉木桉树按行相乘开N次方权重W1AW1松树1236 1.8171210.527836133 1.611811805杉木1/213 1.5 1.1447140.332515928 1.015377811桉树1/31/310.1111110.480750.1396479390.4264319593.442585方案层对技术要求判断技术要求松树杉木桉树按行相乘开N次方权重W1AW1松树11/23 1.5 1.1447140.3196182640.964702114杉木214820.558424543 1.685489843桉树1/31/410.0833330.436790.1219571930.368102753.581504层次总排序计算四准则ai经济效益 社会效益生态效益技术要求aibin三方案bin0.4820520.1170160.2177920.18314松树0.1428230.122020.5278360.3196180.0688480.0142783340.114958278杉木0.0785980.3325160.3325160.5584250.0378890.0389097350.072419177桉树0.7785790.6483290.1396480.1219570.3753160.0758649680.030414149层次总排序一致性检验CIi0.0046010.0018470.0268110.009147CI=∑aiCIi RI=∑aiRIi RIi0.51490.51490.51490.51490.009948670.5149 CRi0.0089360.0035880.052070.017765AW1AW1/W1CI=(入-n)/(n-1)CR=CI/RI 2.070547 4.2952770.073322510.89310.082099 0.478166 4.0863250.938617 4.3097040.767094 4.1885644.219968AW1/W1CI=(入-n)/(n-1)CR=CI/RI3.0092030.0046010.51490.0089364083.0092033.0092033.009203AW1/W1CI=(入-n)/(n-1)CR=CI/RI3.0036950.0018470.51490.0035876853.0036953.0036953.003695AW1/W1CI=(入-n)/(n-1)CR=CI/RI3.0536220.0268110.51490.0520698933.0536223.0536223.053622AW1/W1CI=(入-n)/(n-1)CR=CI/RI3.0182950.0091470.51490.0177653013.0182953.0182953.018295总排序Σaibin 0.0585350.251487 0.102270.251487 0.0223350.50393 CR=CI/RI0.019322。
层次分析法(AHP)【例A—1】某厂拟引进一台新设备,希望设备功能强、价格低、维修容易,现有三种型号设备可供选择,通过分析,建立层次结构模型如下图所示,具体计算参见Excel文件:AHP.xls。
一、明确问题。
二、递阶层次结构的建立。
最高层次:目标层中间层:准则层最低层:方案层或措施层三、建立两两比较的判断矩阵。
判断矩阵表示针对上一层次某单元(元素),本层次与其它单元之间相对重要性的比较。
在本例中,分别对准则层的功能强、价格低、易维护建立甲、乙、丙两两比较的判断矩阵,以及对目标层有影响的功能强、价格低、易维护建立三项准则的两两比较判断矩阵。
需要注意的是:为了保证应用层次分析法得到的结论合理化,还应检验判断矩阵的一致性。
四、层次单排序。
使用的方法有:和积法和方根法。
在AHP.XLS文件中,我们建立了这两种计算方法。
下面我们使用和积法。
我们将判断矩阵的具体数据录入EXCEL的AHP.XLS文件的和积法表格对应空格中(方根法只需要将判断矩阵的具体数据录入到方根法表格对应空格中)。
数据录入完毕后,该表格将自动进行判断矩阵的归一化,计算判断矩阵的最大特征根,以及分析判断矩阵的一致性。
得到的结果如下图:五、层次总排序。
利用层次单排序的计算结果,综合出对更上一层次的优劣顺序。
就是层次总排序。
在第四步中,录入数据完成后,EXCEL自动形成下表,即AHP.xls文件的和积法1表格(若用方根法,则自动形成方根法1表格):六、在具体决策时,我们可以根据总的排序结果,取最大值的方案为优先考虑方案。
若判断矩阵超过三维,可以利用EXCEL的复制功能,扩大对应的数据录入项目和计算项目,不需要重新定义公式,就可以得出结果。