白天有机酸脱羧释放CO2用于光合作用
- 格式:ppt
- 大小:10.17 MB
- 文档页数:74
离子通道:细胞膜中一类具有选择性功能的横跨膜两侧的孔道蛋白。
原初主动运转:把H+-ATP酶“泵”出H+的过程, 产生△μH+或质子动力的过程。
次级主动运转:以△μH+或质子动力作为驱动力的离子运转生理碱性盐:根系吸收阴离子多于阳离子而使介质变成碱性的盐类天线色素:大多数的叶绿素a、叶绿素b、类胡萝卜素以及藻胆素不能参与光化学反应原初反应:从光合色素分子受光激发,到引起第一个光化学反应为止的过程。
红降现象:当光的波长大于680nm时,但光合量子产额急剧下降的现象爱默生增益效应:在长波红光之外再加上较短波长的光促进光和效率的现象光合链:指定位在光合膜上的,由多个电子传递体组成的电子传递的总轨道光合磷酸化:指光下在叶绿体(或载色体)中发生的由ADP与Pi合成ATP的反应卡尔文循环:卡尔文等人探明了光合作用中从CO2到葡萄糖的一系列反应步骤,推导出一个光合碳同化的循环途径,这条途径被称为卡尔文循环C3途径:C3途径亦即卡尔文循环,由于这条光合碳同化途径中CO2固定后形成的最初产物PGA为三碳化合物,所以叫做C3途径C3植物:只具有C3途径的植物C4途径:C4途径亦称哈奇和斯莱克途径,由于这条光合碳同化途径中CO2固定后首先形成四个C的草酰乙酸由此的一个C同化途径C4植物:具有C4途径的植物景天科酸代谢途径:夜间固定CO2产生有机酸,白天有机酸脱羧释放CO2,用于光合作用,与有机酸合成日变化有关的光合碳代谢途径CAM植物:具有景天科酸代谢途径的植物。
光呼吸:指植物的绿色组织以光合作用的中间产物为底物而发生的吸收氧气、释放二氧化碳的过程,由于此过程只在光照下发生,故称为光呼吸光补偿点:当到达某一光强时,叶片的光合速率等于呼吸速率,即CO2吸收量等于CO2释放量,表观光合速率为零,这时的光强称为光补偿点。
光饱和点:当达到某一光强时,光合速率就不再增加,而呈现光饱和现象。
开始达到光合速率最大值时的光强称为光饱和点。
高考知识能力提升专题2 光合作用景天酸代谢(CAM)途径1.光合作用CAM途径基本定义景天属植物是一大类肉质植物,景天酸代谢(crassulacean acid metabolism,CAM)首先就是在这类植物中发现。
景天属植物夜间将吸收的CO2固定在苹果酸(C4)中,白天苹果酸分解释放CO2参与光合作用。
2.光合作用CAM途径过程图解3.光合作用CAM途径过程解读(1)羧化夜晚气孔开放,吸进CO2,在PEP羧激酶作用下,与PEP结合,形成草酰乙酸(OAA);(2)还原草酰乙酸(OAA)被还原氢(NADH)还原后转变为苹果酸(C4),积累于液泡中;(3)脱羧白天气孔关闭,液泡中的苹果酸便运到胞质溶胶,在NADP-苹果酸酶作用下,氧化脱羧生成丙酮酸,放出CO2。
CO2参与卡尔文循环,形成淀粉等。
丙酮酸转化生成淀粉等;(4)再生夜晚淀粉分解产生的丙糖磷酸通过糖酵解过程,形成PEP,再进一步循环。
4. C3、C4、CAM途径比较【典例2】(2021·辽宁抚顺·高三)以景天科植物为代表的多种植物,其体内具有特殊的CO2固定方式,即CAM途径又称为景天酸代谢途径。
其过程为:夜晚气孔开放,在PEP羧化酶等酶催化作用下,通过一系列反应将CO2固定于苹果酸内,储存在液泡中;白天气孔关闭,苹果酸从液泡中运出并释放CO2,为叶绿体提供光合作用的原料。
具体过程如下图所示,请据图回答下列问题:(1)此类植物夜晚吸收CO2,但并不能合成有机物,原因是________________。
(2)白天进行光合作用所需CO2的来源是_____________,CO2在卡尔文循环中首先被固定为______。
(3)白天叶肉细胞产生ATP的部位是____________。
(4)具有景天酸代谢过程的植物通过改变其代谢途径以适应特殊环境,这种特殊环境最可能是__________。
此途径可以使植物在白天__________________,从而保证其生命活动能够正常进行。
光呼吸与光抑制C4植物(C4途径)、景天科植物(CAM途径)以及蓝细菌的CO2浓缩机制))1.光呼吸光呼吸现象产生的分子机制是O2和CO2竞争Rubisco酶。
在暗反应中,Rubisco 酶能够以CO2为底物实现CO2的固定;在光下,当O2浓度高、CO2浓度低时,O2会竞争Rubisco酶,在光的驱动下将碳水化合物氧化生成CO2和水。
光呼吸是一个高耗能的反应,正常生长条件下光呼吸就可损耗掉光合产物的25%~30%。
过程如图所示:2.光抑制当光照过强,植物吸收的光能超过植物所需时,会导致光合速率下降,这种现象称为光抑制。
强光条件下,一方面因NADP+不足使电子传递给O2形成O-12;另一方面会导致还原态电子积累,形成三线态叶绿素(3chl),3chl与O2反应生成单线1O2。
O-12和1O2都非常活泼,如不及时清除,会攻击叶绿素和PSⅡ反应中心(参与光反应的色素-蛋白质复合体)的D1蛋白,从而损伤光合结构。
造成光抑制的主要原因是植物抗逆性太弱。
光照强度过大对植物形成的抗逆机制不能很好地适应,这时就会造成植物耐受能力的缺失,进而使其出现光抑制现象。
另外,如低温、高温和干旱等同时存在时,光抑制加剧。
在进行种植时,要注意植物需要光照适度,不能使植物长时间地受到过强的光照,否则容易造成光抑制,引起植物生长变形和生长缓慢等现象,影响植物的观赏效果。
另外,在营养投放时也要谨慎,以免给植物造成营养抑制。
3.C4植物(C4途径)的CO2浓缩机制(1)玉米、高粱、甘蔗都是C4植物,适于在高温、干燥和强光的条件下生长。
(2)C4植物叶肉细胞的叶绿体和维管束鞘细胞的叶绿体共同完成CO2的固定。
(3)在高温、光照强烈和干旱的条件下,绿色植物的气孔大量关闭。
这时,C4植物能够利用叶片内细胞间隙中含量很低的CO2进行光合作用。
4.景天科植物(CAM途径)的CO2浓缩机制(1)仙人掌、菠萝和许多肉质植物都进行这种类型的光合作用。
高考生物专题复习《细胞呼吸》真题练习含答案1.(2021·6月浙江月选考)需氧呼吸必须有氧的参加,此过程中氧的作用是() A.在细胞溶胶中,参与糖酵解过程B.与丙酮酸反应,生成CO2 C.进入柠檬酸循环,形成少量ATPD.电子传递链中,接受氢和电子生成H2O 【答案】D【解析】需要呼吸基础知识,氧在电子传递链(第三阶段)中,接受氢和电子生成H2O 2.(2021·1月浙江选考)苹果果实成熟到一定程度,呼吸作用突然增强,然后又突然减弱,这种现象称为呼吸跃变,呼吸跃变标志着果实进入衰老阶段。
下列叙述正确的是()A.呼吸作用增强,果实内乳酸含量上升B.呼吸作用减弱,糖酵解产生的CO2减少C.用乙烯合成抑制剂处理,可延缓呼吸跃变现象的出现D.果实贮藏在低温条件下,可使呼吸跃变提前发生【答案】C【分析】乙烯能促进果实成熟和衰老;糖酵解属于细胞呼吸第一阶段,该过程1 个葡萄糖分子被分解成2 个含3 个碳原子的化合物分子,并释放出少量能量,形成少量ATP。
【详解】A、苹果果实细胞无氧呼吸不产生乳酸,产生的是酒精和二氧化碳,A错误;\B、糖酵解属于细胞呼吸第一阶段,在糖酵解的过程中,1 个葡萄糖分子被分解成2 个含3 个碳原子的化合物分子,分解过程中释放出少量能量,形成少量ATP,故糖酵解过程中没有CO2产生,B错误;C、乙烯能促进果实成熟和衰老,因此用乙烯合成抑制剂处理,可延缓细胞衰老,从而延缓呼吸跃变现象的出现,C正确;D、果实贮藏在低温条件下,酶的活性比较低,细胞更不容易衰老,能延缓呼吸跃变现象的出现,D错误。
故选C。
3.(2021·广东高考真题)秸杆的纤维素经酶水解后可作为生产生物燃料乙醇的原料,生物兴趣小组利用自制的纤维素水解液(含5%葡萄糖)培养酵母菌并探究细胞呼吸(如图)。
下列叙述正确的是()A.培养开始时向甲瓶中加入重铬酸钾以便检测乙醇生成B.乙瓶的溶液由蓝色变成红色,表明酵母菌已产生了CO2C.用甲基绿溶液染色后可观察到酵母菌中线粒体的分布D.实验中增加甲瓶的酵母菌数量不能提高乙醇最大产量【答案】D【分析】图示为探究酵母菌进行无氧呼吸的装置示意图。
自由水—-在植物体内距离原生质胶粒较远、可自由流动的水。
束缚水—-被原生质胶体吸附不易流动的水水孔蛋白:在植物细胞质膜和液泡膜上的膜内蛋白,分子量在25~30KD,其多肽链穿越膜并形成孔道,特异的允许水分子通过,具有高效转运水分子的功能。
渗透作用:溶液中的溶剂分子通过半透膜扩散的现象。
对于水溶液而言,是指水分子从水势高处通过半透膜向水势低处扩散的现象。
水势:相同温度下一个含水的系统中一偏摩尔体积的水与一偏摩尔体积纯水之间的化学势差称为水势。
把纯水的水势定义为零,溶液的水势值则是负值。
水的偏摩尔体积:在恒温恒压下,向一足够大的某一溶液中加入1mol物质,引起体系体积的变化量;也可以说是在恒温恒压下,1mol某组分在体系中所体现出来的体积。
渗透势:溶液中固溶质颗粒的存在而引起的水势降低的值。
压力势:植物细胞中由于静水质的存在而引起的水势增加的值。
衬质势:由于衬质(表面能吸附水分的物质,如纤维素、蛋白质、淀粉等)的存在而使体系水势降低的数值。
根压:植物根系生理活动由于水势梯度引起水分进入中柱后产生的压力,促使液流从根部上升。
蒸腾作用:水分通过植物体表面(主要是叶片)以气体状态从体内散失到体外蒸腾速率:植物在一定时间内单位叶面积蒸腾的水量。
蒸腾比率:光合作用同化每摩尔CO2所需蒸腾散失的水的摩尔数。
内聚力学说:以水分具有较大的内聚力足以抵抗张力,保证由叶至根水柱不断来解释水分上升原因的学说。
水分临界期:植物在生命周期中,对缺水最敏感、最易受害的时期。
离子通道:是细胞膜中由通道蛋白构成的孔道,控制离子通过细胞膜。
载体运输. 膜运输蛋白的特定部位与某种物质结合,然后变构,将物质运到膜的另一侧后释放,又恢复原来构象。
单向运输载体:能催化分子或离子单方向地顺着电化学势梯度跨质膜运输。
同向运输器:指运输器与质膜外的H结合的同时,又与另一分子或离子结合,同一方向运输。
反向运输器:指运输器与质膜外侧的H结合的同时,又与质膜内侧的分子或离子结合,两者朝相反的方向运输。
参考答案:一. 填空题1. CO2,H2 O2. 20~100(或200 ),40~60,10~50 (或100 )3. 卟啉,水,叶醇,脂5. -CH3,CHO6. 长光,短光7. 光,温度,水分,矿质营养8. 原初反应,电子传递与光合磷酸化,碳素同化作用9. 光,暗,光能向活跃化学能,活跃化学能向稳定化学能10. 表观光合速率,呼吸速率11. 100 ,外,P 700 ,175 ,内,P 68012. 原初反应,电子传递与光合磷酸化,碳素同化作用13. 光能的吸收,传递,光能转变成电能,类囊体膜14. 原初反应15. 非环式光合磷酸化,环式光合磷酸化,假环式光合磷酸化,非环式光合磷酸化16. C3,C4,PEP,PEP 羧化酶,草酰乙酸,叶肉,RuBP,RuBP羧化酶,3 –磷酸甘油酸,叶肉17. H2O18. 卡尔文,同位素示踪,纸谱色层分析19. 反应中心色素分子,原初电子供体,原初电子受体20. P 700,P 68021. 700nm ,680nm22. 2,3,12,1823. ATP,NADPH24. H2O,NADP+25.原初反应,电子传递与光合磷酸化,ATP,NADPH,O2,类囊体膜26. RuBP 羧化酶,NADP –磷酸甘油醛脱氢酶,FBP 磷酸酯酶,SBP 磷酸酯酶,Ru5P 激酶27. CAM,C3,夜间气孔张开,夜间有机酸含量高28. 50 μmol/mol 左右,0~5 μm ol/mol,PEP 羧化酶对CO2的亲和能力强29. CO2,液泡,CO230. 叶肉,维管束鞘31. PEP,CO2,OAA,RuBP,CO2,PGA32. 乙醇酸,葡萄糖,叶绿体,过氧化体,线粒体,线粒体33. 乙醇酸,RuBP 加氧34. RuBP 羧化酶-加氧酶(Rubisco),羧化,加氧35. 叶绿体,叶绿体,过氧化体,叶绿体,线粒体36. 卡尔文,米切尔,爱默生,明希37. C3,C4,CAM代谢途径,C3,糖38. 小麦,大豆,棉花,玉米,甘蔗,高粱39. CO2 /O2比值高,CO2 /O2比值低40. 光照,温度,水分,CO2,矿质营养41. 光反应不能利用全部光能,暗反应跟不上42. H2O 被氧化到O2水平,CO2被还原到糖的水平,同时伴有光能的吸收、转换与贮存43. 反应中心,聚光(天线)44. 叶绿体,细胞质45. 维管素鞘,叶肉46. 胡萝卜素、叶黄素、叶绿素a 、叶绿素b47. 褐色、去镁叶绿素、翠绿色、铜代叶绿素48. 保护叶绿素不被破坏49. 流速、体积50. 气体流速、叶室温度、叶面积51. 光合速率、呼吸速率、光呼吸速率、光补偿点、光饱和点、或CO2 补偿点、CO2饱和点、表观量子产额)52. 苯、胡萝卜素、叶黄素、乙醇、皂化的叶绿素a 、皂化的叶绿素b53. 密闭式、气封式、夹心式54. 红,绿四、选择题1(4)2(3)3(2)4(4)5(2)6(2)7.(1)8.(4)9.(1)10.(3)11.(3)12.(3)13.(2)14.(3)15.(3)16.(1)17.(3)18.(1)19.(1)20.(1)21.(2)22.(3)23.(3)五、是非题1. ×2. √3. ×4. √5. ×6. ×7. ×8. ×9. × 10. √ 11. √ 12. √ 13. √ 14. × 15. × 16. × 17. × 18. × 19. × 20. √ 21. × 22. × 23. × 24. × 25. × 26. × 27. √ 28. √六问答:1. 答:光合色素分子的激发态电子,未被电子受体所接受,其电子从第一单线态回到基态时所发射的光称荧光。
浅析不同波长的光对植物光合作用的影响作者:王羽鹏来源:《活力》2015年第09期植物中叶绿体主要激素是叶绿素和类胡萝卜素,分别主要吸收红光区和蓝紫光区进行光合作用。
具体光合作用过程及其原理:对于绿色植物来说,在阳光充足的白天,它们将利用阳光的能量来进行光合作用,以获得生长发育必需的养分。
叶绿体在阳光的作用下,把经由气孔进入叶子内部的二氧化碳和由根部吸收的水转变成为葡萄糖,同时释放氧气。
光合作用可分为光反应和暗反应:(一)光反应条件:光,色素,光反应酶场所:囊状结构薄膜上影响因素:光强度,水分供给叶绿素a,b的吸收峰过程:叶绿体膜上的两套光合作用系统:光合作用系统一和光合作用系统二,在光照的情况下,分别吸收680nm和700nm波长的光子,作为能量,将从水分子光解光程中得到电子不断传递,最后传递给辅酶NADP。
而水光解所得的氢离子则因为顺浓度差通过类囊体膜上的蛋白质复合体从类囊体内向外移动到基质,势能降低,其间的势能用于合成ATP,以供暗反应所用。
而此时势能已降低的氢离子则被氢载体NADP带走。
一分子NADP可携带两个氢离子。
这个NADPH+H离子则在暗反应里面充当还原剂的作用。
(二)暗反应(碳反应)条件:无光也可,暗反应酶场所:叶绿体基质影响因素:温度,二氧化碳浓度过程:不同的植物,暗反应的过程不一样,而且叶片的解剖结构也不相同。
这是植物对环境的适应的结果。
暗反应可分为C3、C4和CAM三种类型。
(三)光暗反映的有关化学方程式H20→2H+ 1/2O2(水的光解)NADP+ + 2e- + H+ → NADPH(递氢)ADP+Pi→ATP (递能)CO2+C5化合物→C3化合物(二氧化碳的固定)C3化合物→(CH2O)+ C5化合物(有机物的生成或称为C3的还原)ATP→ADP+PI(耗能)能量转化过程:光能→不稳定的化学能(能量储存在ATP的高能磷酸键)→稳定的化学能(糖类即淀粉的合成)(一)光合色素和电子传递链组分1.光合色素。
光合碳同化途径
光合碳同化途径主要包含三种类型,即C3途径、C4途径和CAM 途径。
C3途径(也称为卡尔文循环)是最基本的碳固定途径,其过程包括羧化、还原和更新三个阶段。
在羧化阶段,CO2的受体是RuBP,它通过RuBP羧化酶将CO2转化为PGA(磷酸甘油酸)。
在还原阶段,消耗同化力将碳固定为糖类。
在更新阶段,形成新的RuBP。
C4途径包括羧化、转变、脱羧和再生四个阶段。
在羧化阶段,CO2的受体是PEP(磷酸烯醇式丙酮酸),它通过PEP羧化酶将CO2转化为OAA(氧乙酰丙酸)。
在转变阶段,OAA被转变为其他的有机酸,例如苹果酸或天冬氨酸。
在脱羧阶段,这些有机酸释放CO2并通过卡尔文循环被还原为糖类。
在再生阶段,PEP的再生完成。
CAM途径是一种在干旱和半干旱地区常见的光合作用类型,其特点是夜间吸收CO2并固定为有机酸,然后在白天脱羧释放CO2并通过卡尔文循环被还原为糖类。
以上信息仅供参考,如需获取更多详细信息,建议查阅植物学相关书籍或文献。
《植物生理学》第四章植物的光合作用复习题及答案一、名词解释1.光合作用(photosynthesis):通常是指绿色植物吸收光能,把二氧化碳和水合成有机物,同时释放氧气的过程。
从广义上讲,光合作用是光养生物利用光能把二氧化碳合成有机物的过程。
2. 光合午休现象:指植物的光合速率在中午前后下降的现象。
引起光合"午休"的主要因素是大气干旱和土壤干旱。
另外,中午及午后的强光、高温、低CO2浓度等条件也会使光合速率在中午或午后降低。
3.希尔反应(Hill reaction):希尔(Robert.Hill)发现在分离的叶绿体(实际是被膜破裂的叶绿体)悬浮液中加入适当的电子受体(如草酸铁),照光时可使水分解而释放氧气,这个反应称为希尔反应(Hill reaction) 。
其中的电子受体被称为希尔氧化剂(Hill oxidant)。
4. 荧光(fluorescence)和磷光(phosphorescence)现象:激发态的叶绿素分子回到基态时,可以光子形式释放能量。
处在第一单线态的叶绿素分子回至基态时所发出的光称为荧光,而处在三线态的叶绿素分子回至基态时所发出的光称为磷光。
5. 天线色素(antenna pigment):又称聚(集)光色素(light harvesting pigment),指在光合作用中起吸收和传递光能作用的色素分子,它们本身没有光化学活性。
6. 光合色素:指参与光合作用中光能的吸收、传递和原初反应的各种色素。
包括叶绿素、类胡萝卜素、藻胆素。
可分为聚光色素与作用中心色素两类。
7. 光合作用中心:指在叶绿素或载色体中,进行光合作用原初反应的最基本色素蛋白结构,至少包括一个光能转换色素分子、一个原初电子受体和一个原初电子供体。
8. 光合单位(photosynthetic unit):最初是指释放1个O2分子所需要的叶绿素数目,测定值为2500chl/O 2。
若以吸收1个光量子计算,光合单位为300个叶绿素分子;若以传递1个电子计算,光合单位为600个叶绿素分子。
景天科植物A有一个很特殊的CO2同化方式:夜间气孔开放,吸收的CO2生成苹果酸储存在液泡中(如图一所示);白天气孔关闭,液泡中的苹果酸经脱羧作用释放CO2用于光合作用(如图二所示)。
十字花科植物B的CO2同化过程如图三所示,请回答下列问题:
(1)在叶绿体中,吸收光能的色素分布在_______的薄膜上;可以用_______提取叶绿体中的色素;研磨时,加入CaCO3的目的是________。
(2)植物A夜晚能吸收CO2,却不能合成(CH2O)的原因是__________;白天植物A进行光合作用所需的CO2的来源有_________。
(3)在上午10:00点时,突然降低环境中CO2浓度后的一小段时间内,植物A和植物B细胞中C3含量的变化分别是______________。
(4)植物A气孔开闭的特点与其生活环境是相适应的,推测植物A生活环境最可能是_____________。
(5)将植物B放入密闭的玻璃罩内,置于室外进行培养,用CO2浓度测定仪测得了该玻璃罩内CO2浓度的变化情况,绘成下图的曲线。
其中A~B段CO2相对含量升高是因为________,影响B~D段CO2相对含量下降的主要环境因素是___________,在一天当中,植物B有机物积累量最多是在曲线的_______点。
(1)类囊体无水乙醇防止研磨时色素分子被破坏
(2)没有光照,光反应不能正常进行,无法为暗反应提供所需的ATP、[H]苹果酸经脱羧作用释放的和呼吸作用产生的
(3)植物A基本不变,植物B下降
(4)炎热干旱
(5)植物的细胞呼吸速率大于光合作用速率光照强度F。