串行接口介绍
- 格式:ppt
- 大小:1.75 MB
- 文档页数:29
pci 串行口PCI 串行口:简介、使用和功能概述PCI(Peripheral Component Interconnect)串行口是一种用于连接计算机主板和外部设备的接口,它提供了一种机制来传输串行数据。
它在计算机领域中被广泛使用,特别是在通信和控制领域。
本文将介绍PCI串行口的基本原理、使用方法以及其在计算机领域中的功能。
PCI串行口的工作原理PCI串行口基于PCI总线规范设计,它是一种全面采用串行通信方式的接口。
与传统的并行通信接口不同,PCI串行口在传输数据时只使用一个线路,通过不断地将比特位按顺序发送来传输数据。
这种串行通信方式相对于并行通信方式具有更高的传输速度和更稳定的信号质量。
PCI串行口通过使用特定的协议对数据进行封装和解封装,从而实现数据的传输和接收。
PCI串行口的使用方法PCI串行口可在计算机主板上直接插入适配器卡来完成接口的扩展。
通常情况下,PCI串行口适配器卡具有一个或多个串行接口,供用户使用。
当我们需要使用PCI串行口时,我们只需将适配器卡插入计算机主板上的PCI插槽,并通过操作系统驱动程序来配置和使用串行接口。
在使用PCI串行口时,我们通常需要编写相应的软件代码来控制串行接口的工作。
这些代码可以使用专门的串行通信库来编写,库中通常包含了一些常用的串行通信函数,如发送数据、接收数据、配置串口参数等。
通过调用这些函数,我们可以实现与外部设备的串行通信。
PCI串行口的功能PCI串行口在计算机领域中具有广泛的应用和功能。
它可以用于与各种外部设备进行串行通信,如打印机、调制解调器、工业仪器等。
通过与这些设备的串行通信,计算机可以实现数据的输入、输出和控制,从而实现各种功能。
除了与外部设备的通信,PCI串行口还可以用于计算机之间的串行通信。
例如,我们可以使用PCI串行口将两台计算机连接起来,通过串行通信的方式实现数据的传输和共享。
这种方式在许多应用中都有广泛的应用,如计算机网络、文件传输等。
串行通信分为同步通信和异步通信。
串行通信接口都具有发送引脚TXD和接收引脚RXD,它们是TTL平电。
如果要利用这两个引脚与外界实行异步通信,必须将TTL电平转化为RS-232电平。
SCI是一种全双工异步串行通信接口,主要用于MCU与其他计算机或设备之间的通信,几个独立的MCU也能通过SCI实现串行通信,形成网络。
从编程角度看,先设定好波特率,通信格式,是否校验,是否允许中断等。
接着发送数据时,先检查相应的标志位是否允许发送数据,如果可以,则把数据放入SCI数据寄存器即可,剩下的工作芯片自动完成:将数据从SCI数据寄存器送到发送移位寄存器,硬件驱动将发送移位寄存器里的数据按规定发送到发送引脚TXD,供对方接收。
接收时,数据逐位从接收引脚RXD进入到接收移位寄存器,当收到一个完整字节时,芯片会自动将数据送到SCI数据寄存器,并置相应的标志位,我们就可以根据标志位的情况来读取数据了。
SCIBDH:TNP[1:0]:发送窄脉冲位。
此位的设定与SCI传送的脉冲对应关系如下表:SCIBDL:SBR[12:0]:波特率设定位当IREN=0时,SCI波特率=SCI总线时钟/(16*SBR[12:0])当IREN=1时,SCI波特率=SCI总线时钟/(32*SBR[12:1])SCICR1:控制寄存器1(当AMAP=0时有效)LOOPS:循环模式选择位。
LOOPS=0时,为正常模式。
LOOPS=1时,为自发自收模式,在此模式下,RXD引脚与SCI内部断开,内部发送数据直接作为接收的输入,用于测试。
接收器的输入由RSRC位决定。
SCISWAI:当SCISWAI=0时,SCI可以在等待模式下工作。
当SCISWAI=1时,SCI 不可以在等待模式下工作。
RSRC:当LOOPS=1时,RSRC位决定接收移位寄存器接收数据的来源。
RSRC=1,RXD引脚与SCI模块断开,SCI用TXD引脚来发送及接收。
RSRC=0时,发送器的输出作为接收器的输入。
串行口工作原理
串行口是一种用于数据传输的硬件接口,它可以将数据逐个比特地传输。
串行口工作的基本原理是将需要传输的数据按照一定的规则进行分割,并以连续的比特序列的形式进行传输。
在串行口的工作过程中,数据被分成一个个比特,然后按照事先约定好的规则,依次传输给接收端。
这个规则包括了每个比特的位宽、传输的顺序以及同步的方式等等。
通常情况下,串行口使用的是异步传输方式,也就是说,传输时不需要事先进行时钟同步,而是在数据的起始位置插入起始位和校验位来提供同步信息。
在串行口的数据传输过程中,发送端按照一定的时序将数据比特逐个发送给接收端。
接收端按照相同的时序依次接收每个比特,并通过解码、校验等操作恢复原始数据。
为了保证数据的准确性,通常还会在传输过程中加入差错检测和纠错机制,例如CRC校验等。
串行口的工作原理与并行口不同,串行口通过逐个比特的方式传输数据,相比之下,串行口在传输速率上可能会受到一定的限制。
但是串行口的传输距离相对较长,传输线路简单,而且可以灵活选择传输速率,因此在许多应用场景下得到了广泛的应用。
例如,在计算机、通信设备、工业自动化等领域中,串行口被广泛用于连接外部设备与主机进行数据交互。
电子系统设计中常用串行接口及其应用在电子系统设计中,串行接口是一种常用的通信协议,用于在多个设备之间传输数据。
与并行接口相比,串行接口只需使用一条信号线来传输数据,因此可以减少硬件复杂度、节省成本,并且具有更好的扩展性和可靠性。
下面将介绍一些常见的串行接口及其应用。
1. 串行通用总线(Serial General Purpose Interface,SGPI):SGPI是一种开放标准的串行总线接口,可以在各种应用中使用,包括计算机、通信设备、工业自动化等。
它支持高速的全双工数据传输,可以连接多个设备,并提供了可靠的错误检测和纠正机制。
SGPI还支持热插拔功能,方便设备的添加和移除。
2. 串行外设接口(Serial Peripheral Interface,SPI):SPI是一种常用的串行通信接口,常用于连接微控制器和外设设备,如存储器、传感器、显示器等。
SPI接口使用4条信号线实现全双工的数据传输:主设备输出SCLK时钟信号,从设备接收数据(MISO)、主设备发送数据(MOSI)和主设备选择从设备(SS)。
SPI接口具有高速传输、简单灵活、可靠性高等特点,适用于多种应用场景。
3. 串行高速接口(Serial Advanced Technology Attachment,SATA):SATA是一种用于连接计算机硬盘驱动器和光盘驱动器的串行接口,取代了传统的并行接口(IDE)。
SATA接口使用7条信号线进行数据传输,支持高达6 Gbps的传输速度。
SATA接口具有高速传输、抗干扰能力强、线缆长度灵活等特点,广泛应用于个人电脑、服务器等领域。
4. 通用串行总线(Universal Serial Bus,USB):USB是一种广泛应用于计算机和消费电子产品中的串行接口标准。
USB接口可以连接各种外部设备,如键盘、鼠标、打印机、摄像头等。
USB接口提供了简单易用的插拔功能,支持高速数据传输和供电能力。
USB接口还定义了各种协议和设备类别,方便不同设备的互联互通。
串口是串行接口(serial port)的简称,也称为串行通信接口或COM接口。
串口通信是指采用串行通信协议(serial communication)在一条信号线上将数据一个比特一个比特地逐位进行传输的通信模式。
串口按电气标准及协议来划分,包括RS-232-C、RS-422、RS485等。
1.串行通信在串行通信中,数据在1位宽的单条线路上进行传输,一个字节的数据要分为8次,由低位到高位按顺序一位一位的进行传送。
串行通信的数据是逐位传输的,发送方发送的每一位都具有固定的时间间隔,这就要求接收方也要按照发送方同样的时间间隔来接收每一位。
不仅如此,接收方还必须能够确定一个信息组的开始和结束。
常用的两种基本串行通信方式包括同步通信和异步通信。
1.1串行同步通信同步通信(SYNC:synchronous data communication)是指在约定的通信速率下,发送端和接收端的时钟信号频率和相位始终保持一致(同步),这样就保证了通信双方在发送和接收数据时具有完全一致的定时关系。
同步通信把许多字符组成一个信息组(信息帧),每帧的开始用同步字符来指示,一次通信只传送一帧信息。
在传输数据的同时还需要传输时钟信号,以便接收方可以用时针信号来确定每个信息位。
同步通信的优点是传送信息的位数几乎不受限制,一次通信传输的数据有几十到几千个字节,通信效率较高。
同步通信的缺点是要求在通信中始终保持精确的同步时钟,即发送时钟和接收时钟要严格的同步(常用的做法是两个设备使用同一个时钟源)。
在后续的串口通信与编程中将只讨论异步通信方式,所以在这里就不对同步通信做过多的赘述了。
1.2串行异步通信异步通信(ASYNC:asynchronous data communication),又称为起止式异步通信,是以字符为单位进行传输的,字符之间没有固定的时间间隔要求,而每个字符中的各位则以固定的时间传送。
在异步通信中,收发双方取得同步是通过在字符格式中设置起始位和停止位的方法来实现的。