2019年广东省中考数学信息卷四解析版
- 格式:docx
- 大小:619.33 KB
- 文档页数:32
广东省佛山市2019年中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是符合题目要求的)2.(3分)(2019•佛山)一个几何体的展开图如图,这个几何体是()=1y=7.(3分)(2019•佛山)据佛山日报2019年4月4日报道,佛山市今年拟投入70亿元人民22若、若10.(3分)(2019•佛山)把24个边长为1的小正方体木块拼成一个长方体(要全部用完),二、填空题(本大题共5小题,每小题3分,共15分.)11.(3分)(2019•佛山)如图,线段的长度大约是 2.3(或2.4)厘米(精确到0.1厘米).12.(3分)(2019•佛山)计算:(a3)2•a3=a9.13.(3分)(2019•佛山)不等式组的解集是x<﹣6.,由14.(3分)(2019•佛山)如图是一副三角板叠放的示意图,则∠α=75°.15.(3分)(2019•佛山)如图,AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为O.以点C为圆心,BC为半径作弧AB,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是﹣2.OE=2解答:=π×﹣=2故答案为:﹣三、解答题(写出必要的解题步骤,另有要求的按要求作答,16~20题,每小题6分,21~23题,每小题6分,24题10分,25题11分,共75分)16.(6分)(2019•佛山)计算:÷2﹣1+•[2+(﹣)3].÷).17.(6分)(2019•佛山)解分式方程:=.18.(6分)(2019•佛山)一个不透明的袋里装有两个白球和三个红球,它们除颜色外其他都一样,(1)求“从袋中任意摸出一个球,摸出的一个球是白球”的概率;(2)直接写出“从袋中同时任意摸出两个球,摸出的两个球都是红球”的概率.;P=.19.(6分)(2019•佛山)如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.ABAB=××==3cm20.(6分)(2019•佛山)函数y=2x+1的图象经过哪几个象限?(要求:不能直接写出答案,要有解题过程;注:“图象经过某象限”是指“图象上至少有一点在某象限内”.)(2)那一组数据比较稳定?=))﹣22.(8分)(2019•佛山)现有不等式的性质:①在不等式的两边都加上(或减去)同一个整式,不等号的方向不变;②在不等式的两边都乘以同一个数(或整式),乘的数(或整式)为正时不等号的方向不变,乘的数(或整式)为负时不等式的方向改变.请解决以下两个问题:(1)利用性质①比较2a与a的大小(a≠0);(2)利用性质②比较2a与a的大小(a≠0).23.(8分)(2019•佛山)利用二次函数的图象估计一元二次方程x2﹣2x﹣1=0的近似根(精确到0.1).=124.(10分)(2019•佛山)(1)证明三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半;[要求根据图1写出已知、求证、证明;在证明过程中,至少有两处写出推理依据(“已知”除外)](2)如图2,在▱ABCD中,对角线焦点为O,A1、B1、C1、D1分别是OA、OB、OC、OD 的中点,A2、B2、C2、D2分别是OA1、OB1、OC1、OD1的中点,…,以此类推.若ABCD的周长为1,直接用算式表示各四边形的周长之和l;(3)借助图形3反映的规律,猜猜l可能是多少?BCAB BC CD×,=×=,++)由图可知,+++++25.(11分)(2019•佛山)我们把“按照某种理想化的要求(或实际可能应用的标准)来反映或概括的表现某一类或一种事物关系结构的数学形式”看作是一个数学中的一个“模式”(我国著名数学家徐利治).如图是一个典型的图形模式,用它可测底部可能达不到的建筑物的高度,用它可测河宽,用它可解决数学中的一些问题.等等.(1)如图,若B1B=30米,∠B1=22°,∠ABC=30°,求AC(精确到1);(参考数据:sin22°≈0.37,cos22°≈0.92,tan22°≈0.40,≈1.73)(2)如图2,若∠ABC=30°,B1B=AB,计算tan15°的值(保留准确值);(3)直接写出tan7.5°的值.(注:若出现双重根式,则无需化简)ABC==C=﹣AB=x xC=x+x;BC=a C=2a+a=)==2)C=。
2019年广东省初中学业水平考试数学(含答案)说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.﹣2的绝对值是A .2B .﹣2C .21 D .±2 2.某网店2019年母亲节这天的营业额为221 000元,将数221 000用科学记数法表示为A .2.21×106B .2.21×105C .221×103D .0.221×1063.如图,由4个相同正方体组合而成的几何体,它的左视图是4.下列计算正确的是A .b 6÷b 3=b 2B .b 3·b 3=b 9C .a 2+a 2=2a 2D .(a 3)3=a 65.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是6.数据3、3、5、8、11的中位数是A .3B .4C .5D .67.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A .a>bB .|a|<|b|C .a+b>0D .ba <08.化简24的结果是A .﹣4B .4C .±4D .29.已知x 1、x 2是一元二次方程了x 2﹣2x=0的两个实数根,下列结论错误的是A .x 1≠x 2B .x 12﹣2x 1=0C .x 1+x 2=2D .x 1·x 2=210.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:①△ANH ≌△GNF ;②∠AFN=∠HFG ;③FN=2NK ;④S △AFN :S △ADM =1:4.其中正确的结论有A .1个B .2个C .3个D .4个二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算20190+(31)﹣1=____________. 12.如图,已知a ∥b ,∠l=75°,则∠2 =________.13.一个多边形的内角和是1080°,这个多边形的边数是_________.14.已知x=2y+3,则代数式4x ﹣8y+9的值是___________.15.如图,某校教学楼AC 与实验楼BD 的水平间距CD=315米,在实验楼的顶部B 点测得教学楼顶部A 点的仰角是30°,底部C 点的俯角是45°,则教学楼AC 的高度是_________________米(结果保留根号).16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是_____________________(结果用含a 、b 代数式表示).三、解答题(一)(本大题3小题,每小题6分,共18分)17.解不等式组:18.先化简,再求值:4-x x -x 2-x 1-2-x x 22÷⎪⎭⎫ ⎝⎛ ,其中x=2. 19.如图,在△ABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在△ABC 内,求作∠ADE .使∠ADE=∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若DB AD =2,求ECAE 的值.四、解答题(二)(本大题3小题,毎小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A、B、C、D四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x =________,y =_______,扇形图中表示C的圆心角的度数为_______度;(2)甲、乙、丙是A等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,己知每个篮球的价格为70元,毎个足球的价格为80元.(1)若购买这两类球的总金额为4600元,篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,最多可购买多少个篮球?22.在如图所示的网格中,每个正方形的连长为1,每个小正方形的顶点叫格点,△ABC 的三个顶点均在格点上,以点A 为圆心的⌒EF 与BC 相切于点D ,分别交AB 、AC 于点E 、F .(1)求△ABC 三边的长;(2)求图中由线段EB 、BC 、CF 及⌒FE 所围成的阴影部分的面积.五、解答题(三)(本大题3小题,毎小题7分,共21分)23.如图,一次函数y=k 1x+b 的图象与反比例函数y=xk 2的图象相交于A 、B 两点,其中点A 的坐标为(﹣1,4),点B 的坐标为(4,n ).(1)根据函数图象,直接写出满足k 1x+b>xk 2的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP :S △BOP =1 : 2,求点P 的坐标.24.如题24-1图,在△ABC 中,AB=AC ,⊙O 是△ABC 的外接圆,过点C 作∠BCD=∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF=AC ,连接AF .(1)求证:ED=EC ;(2)求证:AF 是⊙O 的切线;(3)如题24-2图,若点G 是△ACD 的内心,BC ·BE=25,求BG 的长.25.如题25-1图,在平面直角坐标系中,抛物线y=837 -x 433x 832 与x 轴交于点A 、B(点A 在点B 右侧),点D 为抛物线的顶点.点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如题25-2图,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM⊥ x 轴,点M 为垂足,使得△PAM 与△DD 1A 相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答....这样的点P 共有几个?解析卷1.﹣2的绝对值是A .2B .﹣2C .D .±2 【答案】A【解析】正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.【考点】绝对值2.某网店2019年母亲节这天的营业额为221 000元,将数221 000用科学记数法表示为A .2.21×106B .2.21×105C .221×103D .0.221×106【答案】B【解析】a ×10n 形式,其中0≤|a|<10.【考点】科学记数法213.如图,由4个相同正方体组合而成的几何体,它的左视图是【答案】A【解析】从左边看,得出左视图.【考点】简单组合体的三视图4.下列计算正确的是A.b6÷b3=b2 B.b3·b3=b9 C.a2+a2=2a2 D.(a3)3=a6【答案】C【解析】合并同类项:字母部分不变,系数相加减.【考点】同底数幂的乘除,合并同类项,幂的乘方5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是【答案】C【解析】轴对称与中心对称的概念.【考点】轴对称与中心对称6.数据3、3、5、8、11的中位数是A .3B .4C .5D .6【答案】C【解析】按顺序排列,中间的数或者中间两个数的平均数.【考点】中位数的概念7.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是A .a>bB .|a|<|b|C .a+b>0D .<0【答案】D【解析】a 是负数,b 是正数,异号两数相乘或相除都得负.【考点】数与代数式的大小比较,数轴的认识8.化简的结果是A .﹣4B .4C .±4D .2【答案】B【解析】公式.【考点】二次根式9.已知x 1、x 2是一元二次方程了x 2﹣2x=0的两个实数根,下列结论错误的是A .x 1≠x 2B .x 12﹣2x 1=0 C .x 1+x 2=2 D .x 1·x 2=2【答案】Db a24a a 2【解析】因式分解x (x-2)=0,解得两个根分别为0和2,代入选项排除法.【考点】一元二次方程的解的概念和计算10.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:①△ANH ≌△GNF ;②∠AFN=∠HFG ;③FN=2NK ;④S △AFN :S △ADM =1:4.其中正确的结论有A .1个B .2个C .3个D .4个【答案】C【解析】AH=GF=2,∠ANH=∠GNF ,∠AHN=∠GFN ,△ANH ≌△GNF (AAS ),①正确;由①得AN=GN=1,∵NG ⊥FG ,NA 不垂直于AF ,∴FN 不是∠AFG 的角平分线,∴∠AFN ≠∠HFG ,②错误;由△AKH ∽△MKF ,且AH:MF=1:3,∴KH:KF=1:3,又∵FN=HN ,∴K 为NH 的中点,即FN=2NK ,③正确;S △AFN =AN ·FG=1,S △ADM =DM ·AD=4,∴S △AFN :S △ADM =1:4,④正确. 【考点】正方形的性质,平行线的应用,角平分线的性质,全等三角形,相似三角形,三角形的面积二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算20190+()﹣1=____________. 【答案】4212131【解析】1+3=4【考点】零指数幂和负指数幂的运算12.如图,已知a ∥b ,∠l=75°,则∠2 =________.【答案】105°【解析】180°-75°=105°.【考点】平行线的性质13.一个多边形的内角和是1080°,这个多边形的边数是_________.【答案】8【解析】(n-2)×180°=1080°,解得n=8.【考点】n 边形的内角和=(n-2)×180°14.已知x=2y+3,则代数式4x ﹣8y+9的值是___________.【答案】21【解析】由已知条件得x-2y=3,原式=4(x-2y )+9=12+9=21.【考点】代数式的整体思想15.如图,某校教学楼AC 与实验楼BD 的水平间距CD=米,在实验楼的顶部B 点测得教学楼顶部A 点的仰角是30°,底部C 点的俯角是45°,则教学楼AC 的高度是_________________米(结果保留根号).315【答案】15+15【解析】AC=CD ·tan30°+CD ·tan45°=15+15.【考点】解直角三角形,特殊三角函数值16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是_____________________(结果用含a 、b 代数式表示).【答案】a+8b【解析】每个接触部分的相扣长度为(a-b ),则下方空余部分的长度为a-2(a-b )=2b-a ,3个拼出来的图形有1段空余长度,总长度=2a+(2b-a )=a+2b ;5个拼出来的图形有2段空余长度,总长度=3a+2(2b-a )=a+4b ;7个拼出来的图形有3段空余长度,总长度=4a+3(2b-a )=a+6b ;9个拼出来的图形有4段空余长度,总长度=5a+4(2b-a )=a+8b.【考点】规律探究题型三、解答题(一)(本大题3小题,每小题6分,共18分)3317.解不等式组:【答案】解:由①得x >3,由②得x >1,∴原不等式组的解集为x >3.【考点】解一元一次不等式组18.先化简,再求值: ,其中x=.【答案】解:原式==×=当x=,原式===1+.【考点】分式的化简求值,包括通分、约分、因式分解、二次根式计算 19.如图,在△ABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在△ABC 内,求作∠ADE .使∠ADE=∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若=2,求的值.4-x x-x 2-x 1-2-x x22÷⎪⎭⎫⎝⎛22-x 1-x 4-x x-x 22÷2-x 1-x ()()()1-x x 2-x 2x +x 2x +2222+2222+2DB ADEC AE【答案】解:(1)如图所示,∠ADE 为所求.(2)∵∠ADE=∠B∴DE ∥BC∴= ∵=2 ∴=2 【考点】尺规作图之作一个角等于已知角,平行线分线段成比例四、解答题(二)(本大题3小题,毎小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将EC AE DB AD DB AD EC AE测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x =________,y =_______,扇形图中表示C 的圆心角的度数为_______度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.【答案】解:(1)y=10÷25%=40,x=40-24-10-2=4,C 的圆心角=360°×=36° (2)画树状图如下:一共有6种可能结果,每种结果出现的可能性相同,其中同时抽到甲、乙的结果有2种404∴P (甲乙)== 答:同时抽到甲、乙两名学生的概率为. 【考点】数据收集与分析,概率的计算21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,己知每个篮球的价格为70元,毎个足球的价格为80元.(1)若购买这两类球的总金额为4600元,篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,最多可购买多少个篮球?【答案】解:(1)设购买篮球x 个,则足球(60-x )个.由题意得70x+80(60-x )=4600,解得x=20则60-x=60-20=40.答:篮球买了20个,足球买了40个.(2)设购买了篮球y 个.由题意得 70y ≤80(60-x ),解得y ≤32答:最多可购买篮球32个.【考点】一元一次方程的应用,一元一次不等式的应用22.在如图所示的网格中,每个正方形的连长为1,每个小正方形的顶点叫格点,△ABC 的623131三个顶点均在格点上,以点A 为圆心的⌒EF 与BC 相切于点D ,分别交AB 、AC 于点E 、F .(1)求△ABC 三边的长;(2)求图中由线段EB 、BC 、CF 及⌒FE 所围成的阴影部分的面积.【答案】解:(1)由题意可知,AB==,AC==,BC==(2)连接AD由(1)可知,AB2+AC2=BC2,AB=AC∴∠BAC=90°,且△ABC 是等腰直角三角形∵以点A 为圆心的⌒EF 与BC 相切于点D∴AD ⊥BC∴AD=BC= (或用等面积法AB ·AC=BC ·AD 求出AD 长度)∵S 阴影=S △ABC -S 扇形EAFS △ABC =××=202262+1022262+1022284+54215221102102S 扇形EAF ==5π ∴S 阴影=20-5π【考点】勾股定理及其逆定理,阴影面积的计算包括三角形和扇形的面积公式五、解答题(三)(本大题3小题,毎小题7分,共21分)23.如图,一次函数y=k 1x+b 的图象与反比例函数y=的图象相交于A 、B 两点,其中点A 的坐标为(﹣1,4),点B 的坐标为(4,n ).(1)根据函数图象,直接写出满足k 1x+b>的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP :S △BOP =1 : 2,求点P 的坐标.【答案】解:(1)x <-1或0<x <4(2)∵反比例函数y=图象过点A (﹣1,4) ()25241π xk 2xk2xk 2∴4=,解得k 2=﹣4∴反比例函数表达式为∵反比例函数图象过点B (4,n )∴n==﹣1,∴B (4,﹣1)∵一次函数y=k 1x+b 图象过A (﹣1,4)和B (4,﹣1) ∴,解得 ∴一次函数表达式为y=﹣x+3(3)∵P 在线段AB 上,设P 点坐标为(a ,﹣a+3)∴△AOP 和△BOP 的高相同∵S △AOP :S △BOP =1 : 2∴AP : BP=1 : 2过点B 作BC ∥x 轴,过点A 、P 分别作AM ⊥BC ,PN ⊥BC 交于点M 、N∵AM ⊥BC ,PN ⊥BC1-k 2x 4-y =x 4-y =44-⎩⎨⎧+=+=b k 41-b -k 411⎩⎨⎧==3b1-k1∴ ∵MN=a+1,BN=4-a∴,解得a= ∴-a+3= ∴点P 坐标为(,) (或用两点之间的距离公式AP=,BP=,由解得a 1=,a 2=-6舍去) 【考点】一次函数和反比例函数的数形结合,会比较函数之间的大小关系,会求函数的解析式,同高的三角形的面积比与底边比的关系24.如题24-1图,在△ABC 中,AB=AC ,⊙O 是△ABC 的外接圆,过点C 作∠BCD=∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF=AC ,连接AF .(1)求证:ED=EC ;(2)求证:AF 是⊙O 的切线;(3)如题24-2图,若点G 是△ACD 的内心,BC ·BE=25,求BG 的长.BNMN BP AP =21a -41a =+32373237()()224-3a -1a +++()()223-a 1-a -4++21BP AP =32【答案】(1)证明:∵AB=AC∴∠B==∠ACB∵∠BCD=∠ACB∴∠B=∠BCD∵⌒AC=⌒AC∴∠B=∠D∴∠BCD=∠D∴ED=EC(2)证明:连接AO并延长交⊙O于点G,连接CG 由(1)得∠B=∠BCD∴AB∥DF∵AB=AC,CF=AC∴AB=CF∴四边形ABCF是平行四边形∴∠CAF=∠ACB∵AG为直径∴∠ACG=90°,即∠G+∠GAC=90°∵∠G=∠B,∠B=∠ACB∴∠ACB+∠GAC=90°∴∠CAF+∠GAC=90°即∠OAF=90°∵点A在⊙O上∴AF是⊙O的切线(3)解:连接AG∵∠BCD=∠ACB ,∠BCD=∠1∴∠1=∠ACB∵∠B=∠B∴△ABE ∽△CBA∴ ∵BC ·BE=25∴AB 2=25∴AB=5∵点G 是△ACD 的内心∴∠2=∠3∵∠BGA=∠3+∠BCA=∠3+∠BCD=∠3+∠1=∠3+∠2=∠BAG∴BG=AB=5【考点】圆的综合应用,等弧等弦等角的转换,切线的证明,垂径定理的逆应用,内心的概念,相似三角形的应用,外角的应用,等量代换的意识 25.如题25-1图,在平面直角坐标系中,抛物线y=与x 轴交于点A 、B(点A 在点B 右侧),点D 为抛物线的顶点.点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;BCAB AB BE =837 -x 433x 832+(3)如题25-2图,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM⊥ x 轴,点M 为垂足,使得△PAM 与△DD 1A 相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答....这样的点P 共有几个?【答案】(1)解:由y==得点D 坐标为(﹣3,) 令y=0得x 1=﹣7,x 2=1∴点A 坐标为(﹣7,0),点B 坐标为(1,0)(2)证明:837 -x 433x 832+()32-3x 83+32过点D 作DG⊥y 轴交于点G ,设点C 坐标为(0,m )∴∠DGC=∠FOC=90°,∠DCG=∠FCO∴△DGC∽△FOC∴ 由题意得CA=CF ,CD=CE ,∠DCA=∠ECF,OA=1,DG=3,CG=m+∵CO⊥FA ∴FO=OA=1∴,解得m= (或先设直线CD 的函数解析式为y=kx+b ,用D 、F 两点坐标求出y=x+,再求出点C 的坐标)∴点C 坐标为(0,) ∴CD=CE==6∵tan∠CFO== ∴∠CFO=60°∴△FCA 是等边三角形∴∠CFO=∠ECF∴EC∥BA∵BF=BO-FO=6∴CE=BFCOCG FO DG =32m32m 13+=3333()223233++FOCO 3∴四边形BFCE 是平行四边形(3)解:①设点P 坐标为(m ,),且点P 不与点A 、B 、D 重合.若△PAM 与△DD 1A 相似,因为都是直角三角形,则必有一个锐角相等.由(1)得AD 1=4,DD 1=(A )当P 在点A 右侧时,m >1 (a )当△PAM∽△DAD 1,则∠PAM=∠DAD 1,此时P 、A 、D 三点共线,这种情况不存在 (b )当△PAM∽△ADD 1,则∠PAM=∠ADD 1,此时 ∴,解得m 1=(舍去),m 2=1(舍去),这种不存在 (B )当P 在线段AB 之间时,﹣7<m <1(a )当△PAM∽△DAD 1,则∠PAM=∠DAD 1,此时P 与D 重合,这种情况不存在(b )当△PAM∽△ADD 1,则∠PAM=∠ADD 1,此时 ∴,解得m 1=,m 2=1(舍去) (C )当P 在点B 左侧时,m <﹣7(a )当△PAM∽△DAD 1,则∠PAM=∠DAD 1,此时 ∴﹣,解得m 1=﹣11,m 2=1(舍去) 837-m 433m 832+3211DD AD AM PM =3241-m 837-m 433m 832=+35-11DD AD AM PM =3241-m 837-m 433m 832=+35-11AD DD AM PM =3241-m 837-m 433m 832=+432(b )当△PAM∽△ADD 1,则∠PAM=∠ADD 1,此时 ∴﹣,解得m 1=,m 2=1(舍去) 综上所述,点P 的横坐标为,﹣11,,三个任选一个进行求解即可. ②一共存在三个点P ,使得△PAM 与△DD 1A 相似.【考点】二次函数的综合应用,旋转的性质,相似三角形的的应用,等边三角形的性质,平行四边形的证明,平面直角坐标的灵活应用,动点问题,分类讨论思想11DD AD AM PM =3241-m 837-m 433m 832=+337-35-337-。
广东中考数学试卷一(时间:100分钟,满分120分)一、选择题(本大题共5小题,每小题3分,共15分;在每小题给出的四个选项中,只有一个是正确的)1.27的立方根是( ) A .3 B .3- C .9 D .9-2.5月31日,参观上海世博会的游客约为505 000人.505 000用科学记数法表示为( )A .505×103B .5.05×103C .5.05×104D .5.05×105 3.下列计算正确的是( )A .a 4+a 2=a 6B .2a ·4a =8aC .a 5÷a 2=a 3D .(a 2)3=a 54.方程组⎩⎪⎨⎪⎧x +y =3x -y =-1的解是( )A.⎩⎪⎨⎪⎧ x =1y =2B.⎩⎪⎨⎪⎧ x =1y =-2C.⎩⎪⎨⎪⎧ x =2y =1D.⎩⎪⎨⎪⎧x =0y =-1 5.一个几何体的三视图如图所示.那么这个几何体是( )二、填空题(本大题共5小题,每小题4分,共20分)6.若x 、y 为实数,且x +3+|y -2|=0,则x +y = .7.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为24,则OH 的长等于 .8.一组数据1,6,x,5,9的平均数是5,那么这组数据的中位数是 .9.双曲线y =2k -1x的图象经过第二、四象限,则k 的取值范围是 .10.如图,观察每一个图中黑色正六边形的排列规律,则第10个图中黑色正六边形有 个.三、解答题(本大题共5小题,每小题6分,共30分) 11.计算:(-2 011)0+⎝⎛⎭⎫22-1+||2-2-2cos60°.12.解方程:x +4x x -1=3x -1.13.先化简,再求值:⎝ ⎛⎭⎪⎫a -1a 2-4a +4-a +2a 2-2a ÷⎝⎛⎭⎫4a -1,其中a =2- 3.14.如图,已知二次函数y =-12x 2+bx +c 的图象经过A (2,0),B (0,-6)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x 轴交于点C ,连接BA 、BC ,求△ABC 的面积.15.某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长AB =6 m , ∠ABC =45°,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D 处,使∠ADC =30°(如图所示).(1)求调整后楼梯AD 的长; (2)求BD 的长(结果保留根号).四、解答题(本大题共4小题,每小题7分,共28分)16.日本福岛出现核电站事故后,我国国家海洋局高度关注事态发展,紧急调集海上巡逻的海检船,在相关海域进行现场监测与海水采样,针对核泄漏在极端情况下对海洋环境的影响及时开展分析评估.如图,上午9时,海检船位于A 处,观测到某港口城市P 位于海检船的北偏西67.5°方向,海检船以21海里/时的速度向正北方向行驶,下午2时海检船到达B 处,这时观察到城市P 位于海检船的南偏西36.9°方向,求此时海检船所在B 处与城市P 的距离?⎝⎛参考数据:sin 36.90≈35,tan 36.90≈34,⎭⎫sin 67.50≈1213,tan 67.50≈12517.2011年6月4日,李娜获得法网公开赛的冠军,圆了中国人的网球梦,也在国内掀起一股网球热.某市准备为青少年举行一次网球知识讲座,小明和妹妹都是网球球迷,要求爸爸去买门票,但爸爸只买回一张门票,那么谁去就成了问题,小明想到一个办法:他拿出一个装有质地、大小相同的2x个红球与3x个白球的袋子,让爸爸摸出一个球,如果摸出的是红球,妹妹去听讲座,如果摸出的是白球,小明去听讲座.(1)爸爸说这个办法不公平,请你用概率的知识解释原因;(2)若爸爸从袋中取出3个白球,再用小明提出的办法来确定谁去听讲座,请问摸球的结果是对小明有利还是对妹妹有利,说明理由.18.绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.(1)王灿有几种方案安排甲、乙两种货车可一次性地将水果运到销售地?(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?19.已知:如图,在Rt △ABC 中,∠C =90°,∠BAC 的角平分线AD 交BC 边于D .(1)以AB 边上一点O 为圆心,过A 、D 两点作⊙O (不写作法,保留作图痕迹),再判断直线BC 与⊙O 的位置关系,并说明理由;(2)若(1)中的⊙O 与AB 边的另一个交点为E ,AB =6,BD =2 3,求线段BD 、BE 与劣弧DE 所围成的图形面积(结果保留根号和π).五、解答题(本大题共3小题,每小题9分,共27分)20.对于任何实数,我们规定符号⎪⎪⎪ a c ⎪⎪⎪b d 的意义是⎪⎪⎪ a c⎪⎪⎪b d =ad -bc . (1)按照这个规定请你计算⎪⎪⎪ 57⎪⎪⎪68的值;(2)按照这个规定请你计算:当x 2-3x +1=0时,⎪⎪⎪⎪⎪⎪x +1x -23xx -1的值.21.已知:如图,在△ABC 中,BC =AC ,以BC 为直径的⊙O 与边AB 相交于点D ,DE ⊥AC ,垂足为点E .(1)求证:点D 是AB 的中点;(2)判断DE 与⊙O 的位置关系,并证明你的结论;(3)若⊙O 的直径为18,cos B =13,求DE 的长.22.如图,已知二次函数y =-x 2+bx +c 的图象经过A (-2,-1),B (0,7)两点.(1)求该抛物线的解析式及对称轴; (2)当x 为何值时,y >0?(3)在x 轴上方作平行于x 轴的直线l ,与抛物线交于C 、D 两点(点C 在对称轴的左侧),过点C 、D 作x 轴的垂线,垂足分别为F 、E .当矩形CDEF 为正方形时,求C 点的坐标.广东中考数学试卷一参考答案一、选择题1. A2. D3. C4. A5. C 二、填空题6. -17. 38. 59. k <12 10. 100三、解答题11.解:原式=1+2+2-2-1=212.解:方程两边同乘最简公分母x (x -1),得x +4=3x ,解得x =2. 经检验:x =2是原方程的根. ∴原方程的解为x =2. 13.解:原式=⎣⎢⎡⎦⎥⎤a -1a -22-a +2a a -2÷4-aa=aa -1-a -2a +2a a -22·a4-a=1a -22.当a =2-3时,原式=13.14.解:(1)把A (2,0),B (0,-6)代入y =-12x 2+bx +c ,得⎩⎪⎨⎪⎧ -2+2b +c =0c =-6,解得⎩⎪⎨⎪⎧b =4c =-6. ∴这个二次函数的解析式为y =-12x 2+4x -6.(2)∵该抛物线对称轴为直线x =-42×⎝⎛⎭⎫-12=4,∴点C 的坐标为(4,0),∴AC =OC -OA =4-2=2, ∴S △ABC =12×AC ×OB =12×2×6=6.15.解:(1)已知AB =6 m ,∠ABC =45°, ∴AC =BC =AB ·sin45°=6×22=3 2,∵∠ADC =30°,∴AD =2AC =6 2. 答:调整后楼梯AD 的长为6 2m. (2)CD =AD ·cos30°=6 2×32=3 6,∴BD =CD -BC =3 6-3 2. 答:BD 的长为(3 6-3 2)m.16.解:如图,过点P 作PC ⊥AB ,垂足为C ,设PC =x 海里, 在Rt △APC 中,∵tan ∠A =PC AC, ∴AC =PC tan67.5°=5x12.在Rt △PCB 中,∵tan ∠B =PC BC, ∴BC =x tan36.9°=4x3.∵AC +BC =AB =21×5, ∴5x 12+4x3=21×5,解得 x =60. ∵sin ∠B =PCPB,∴PB =PC sin ∠B =60sin36.9°=60×53=100(海里).∴海检船所在B 处与城市P 的距离为100海里.17.解:(1)∵红球有2x 个,白球有3x 个,∴P (红球)=2x 2x +3x =25,P (白球)=3x 2x +3x =35,∴P (红球)< P (白球), ∴这个办法不公平.(2)取出3个白球后,红球有2x 个,白球有(3x -3)个, ∴P (红球)=2x5x -3,P (白球)=3x -35x -3,x 为正整数,∴P (红球)- P (白球) =3-x5x -3.①当x <3时,则P (红球)> P (白球), ∴对小妹有利.②当x =3时,则P (红球)= P (白球), ∴对小妹、小明是公平的.③当x >3时,则P (红球)< P (白球),∴对小明有利.18.解:(1)设安排甲种货车x 辆,则安排乙种货车(8-x )辆,依题意得⎩⎪⎨⎪⎧4x +28-x ≥20x +28-x ≥12, 解此不等式组得2≤x ≤4. ∵x 是正整数,∴x 可取的值为2,3,4.甲种货车 乙种货车 方案一 2辆 6辆 方案二 3辆 5辆 方案三4辆4辆(2)方案一所需运费为300×2+240×6=2 040元; 方案二所需运费为300×3+240×5=2 100元; 方案三所需运费为300×4+240×4=2 160元.∴王灿应选择方案一运费最少,最少运费是2 040元. 19.解:(1)如图 (需保留线段AD 中垂线的痕迹).直线BC 与⊙O 相切.理由如下:连接OD ,∵OA =OD ,∴∠OAD =∠ODA . ∵AD 平分∠BAC ,∴∠OAD =∠DAC . ∴∠ODA =∠DAC . ∴OD ∥AC . ∵∠C =90°,∴∠ODB =90°,即OD ⊥BC . 又∵直线BC 过半径OD 的外端, ∴BC 为⊙O 的切线.(2)设OA =OD =r ,在Rt △BDO 中,OD 2+BD 2=OB 2, ∴r 2+(2 3)2=(6-r )2,解得r =2. ∵tan ∠BOD =BDOD =3,∴∠BOD =60°.∴S 扇形ODE =60π·22360=23π.∴所求图形面积为S △BOD -S 扇形ODE =2 3-23π.20.解:(1)⎪⎪⎪ 57⎪⎪⎪68=5×8-6×7=-2. (2)⎪⎪⎪ x +1x -2⎪⎪⎪3x x -1=()x +1()x -1-3x ()x -2 =x 2-1-3x 2+6x =-2x 2+6x -1. 又∵x 2-3x +1=0, ∴x 2-3x =-1,原式=-2(x 2-3x )-1=-2×(-1)-1=1. 21.(1)证明:如图,连接CD ,则CD ⊥AB ,又∵AC =BC ,∴AD =BD , 即点D 是AB 的中点. (2)解:DE 是⊙O 的切线.理由是:连接OD ,则DO 是△ABC 的中位线, ∴DO ∥AC . 又∵DE ⊥AC , ∴DE ⊥DO ,又∵OD 是⊙O 的半径, ∴DE 是⊙O 的切线.(3)∵AC =BC ,∴∠B =∠A ,∴cos ∠B =cos ∠A =13.∵cos ∠B =BD BC =13,BC =18,∴BD =6,∴AD =6. ∵cos ∠A =AE AD =13,∴AE =2.在Rt △AED 中,DE =AD 2-AE 2=4 2.22.解:(1)把A (-2,-1),B (0,7)两点的坐标代入 y =-x 2+bx +c ,得⎩⎪⎨⎪⎧ -4-2b +c =-1c =7,解得⎩⎪⎨⎪⎧b =2c =7. 所以,该抛物线的解析式为y =-x 2+2x +7,又因为y =-x 2+2x +7=-(x -1)2+8,所以对称轴为直线x =1. (2)当函数值y =0时,-x 2+2x +7=0的解为x =1±2 2,结合图象,容易知道1-2 2<x <1+2 2时,y >0.(3)当矩形CDEF 为正方形时,设C 点的坐标为(m ,n ), 则n =-m 2+2m +7,即CF =-m 2+2m +7. 因为C 、D 两点的纵坐标相等,所以C 、D 两点关于对称轴x =1对称, 设点D 的横坐标为p ,则1-m =p -1,所以p =2-m ,所以CD =(2-m )-m =2-2m . 因为CD =CF ,所以2-2m =-m 2+2m +7, 整理,得m 2-4m -5=0,解得m =-1或5. 因为点C 在对称轴的左侧,所以m 只能取-1. 当m =-1时,n =-m 2+2m +7=-(-1)2+2×(-1)+7=4. 于是,点C 的坐标为(-1,4).广东中考数学试卷二考试用时100分钟,满分为120分一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.-2的倒数是( )A .2B .-2C .21D .21-2.据中新社北京2010年12月8日电,2010年中国粮食总产量达到546 400 000吨,用科学记数法表示为( )A .5.464×107吨B .5.464×108吨C .5.464×109吨D .5.464×1010吨3.将左下图中的箭头缩小到原来的21,得到的图形是( )4.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( ) A .51 B .31 C .85 D .835.正八边形的每个内角为( )A .120ºB .135ºC .140ºD .144º二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上. 6.已知反比例函数xky =的图象经过(1,-2),则=k ____________. 7.使2-x 在实数范围内有意义的x 的取值范围是______ _____. 8.按下面程序计算:输入3=x ,则输出的答案是_______________.9.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C .若∠A =40º,则∠C =_____.10.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE ,它的面积为1;取△ABC 和△DEF 各边中点,连接成正六角星形A 1F 1B 1D 1C 1E 1,如图(2)中阴影部分;取△A 1B 1C 1和△D 1E 1F 1各边中点,连接成正六角星形A 2F 2B 2D 2C 2E 2,如图(3)中阴影部分;A .B .D .题3图题9图 B C O A如此下去…,则正六角星形A 4F 4B 4D 4C 4E 4的面积为_________________.三、解答题(一)(本大题5小题,每小题6分,共30分) 11.计算:20245sin 18)12011(-︒+-.12.解不等式组:⎩⎨⎧-≤-->+128,312x x x ,并把解集在数轴上表示出来.13.已知:如图,E ,F 在AC 上,AD //CB 且AD =求证:AE =CF .题13图 B C D A F E题14图题10图(1) E题10图(2) 题10图(3)14.如图,在平面直角坐标系中,点P 的坐标为(-4,0),⊙P 的半径为2,将⊙P 沿x 轴向右平移4个单位长度得⊙P 1.(1)画出⊙P 1,并直接判断⊙P 与⊙P 1的位置关系;(2)设⊙P 1与x 轴正半轴,y 轴正半轴的交点分别为A ,B ,求劣弧AB 与弦AB 围成的图形的面积(结果保留π).15.已知抛物线c x x y ++=221与x 轴没有交点. (1)求c 的取值范围;(2)试确定直线1+=cx y 经过的象限,并说明理由.四、解答题(二)(本大题4小题,每小题7分,共28分)16.某品牌瓶装饮料每箱价格26元.某商店对该瓶装饮料进行“买一送三”促销活动,若整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元.问该品牌饮料一箱有多少瓶? 17.如图,小明家在A 处,门前有一口池塘,隔着池塘有一条公路l ,AB 是A 到l 的小路. 现新修一条路AC 到公路l . 小明测量出∠ACD =30º,∠ABD =45º,BC =50m . 请你帮小明计算他家到公路l 的距离AD 的长度(精确到0.1m ;参考数据:414.12≈,732.13≈).18.李老师为了解班里学生的作息时间表,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题: (1)此次调查的总体是什么? (2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?19.如图,直角梯形纸片ABCD 中,AD //BC ,∠A =90º,∠C =30º.折叠纸片使BC 经过点D ,点C 落在点E 处,BF 是折痕,且BF =CF =8. (1)求∠BDF 的度数; (2)求AB 的长.五、解答题(三)(本大题3小题,每小题9分,共27分)20.如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36…………………………题19图 B C E D A F(1)表中第8行的最后一个数是______________,它是自然数_____________的平方,第8行共有____________个数;(2)用含n 的代数式表示:第n 行的第一个数是___________________,最后一个数是________________,第n 行共有_______________个数;(3)求第n 行各数之和.21.如图(1),△ABC 与△EFD 为等腰直角三角形,AC 与DE 重合,AB =AC =EF =9,∠BAC =∠DEF =90º,固定△ABC ,将△DEF 绕点A 顺时针旋转,当DF 边与AB 边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE ,DF (或它们的延长线)分别交BC (或它的延长线) 于G ,H 点,如图(2)(1)问:始终与△AGC(2)设CG =x ,BH =y ,求y 关于x 的函数关系式(只要求根据图(2)的情形说明理由) (3)问:当x 为何值时,△AGH 是等腰三角形.22.如图,抛物线1417452++-=x y 与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C (3,0).(1)求直线AB 的函数关系式;(2)动点P 在线段OC轴,交直线AB 于点M ,交抛物线于点N . 设点P 求s 与t 的函数关系式,并写出t 的取值范围;(3)设在(2)的条件下(不考虑点P 与点O 何值时,四边形BCMN 请说明理由.题21图(1) BH F A (D ) G C EC (E ) B F A (D ) 题21图(2)广东中考数学试卷二参考答案一、1-5、DBACB 二、6、-27、___ x ≥2__8、___12__9、__25º__ 10、2561 三、11、原式=-6 12、x ≥3 13、由△ADF ≌△CB E ,得AF =C E ,故得:AE=CF 14、(1)⊙P 与⊙P 1外切。
{来源}2019年广东省中考数学试卷 {适用范围:3. 九年级}{标题}2019年广东省中考数学试卷考试时间:100分钟 满分:120分{题型:1-选择题}一、选择题:本大题共10 小题,每小题 3 分,合计30分.{题目}1.(2019年广东第1题)-2的绝对值是 A.2 B.-2 C.21D.2{答案}A{解析}本题考查了绝对值的性质,根据绝对值的性质,-2的绝对值是2,因此本题选A . {分值}3{章节:[1-1-2-4]绝对值 } {考点:绝对值的性质} {类别:常考题} {难度:1-最简单}{题目}2.(2019年广东第2题)某网店2019年母亲节这天的营业额为221 000元,将数221 000用科学记数法表示为A.2.21×106B.2.21×105C.221×103D.0.221×106{答案}B{解析}本题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.因此本题选B . {分值}3{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法} {类别:常考题} {难度:1-最简单}{题目}3.(2019年广东第3题)如图,由4个相同正方体组合而成的几何体,它的左视图是{答案}A{解析}本题考查了三视图的知识,理解左视图是从物体的左边看得到的视图是解题的关键了,因此本题选A . {分值}3{章节: :[1-29-2]三视图} {考点:简单组合体的三视图} {类别:常考题} {难度:1-最简单}{题目}4.(2019年广东第4题)下列计算正确的是主视方向 A B C DA.b 6÷b 3=b 2B.b 3·b 3=b 9C.a 2+a 2=2a 2D.(a 3)3=a 6{答案}C{解析}本题考查整式的运算,根据同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;合并同类项法则,幂的乘方,底数不变指数相乘;对各选项分析判断后利用排除法求解. 本题选C{分值}3{章节:[1-15-2-3]整数指数幂}{考点:同底数幂的除法}{考点:同底数幂的乘法}{考点:合并同类项}{考点:幂的乘方} {类别:常考题} {难度:2-简单}{题目}5.(2019年广东第题)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是{答案}C{解析}本题考查了中心对称图形,轴对称图形,根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,以及中心对称图形的定义分别判断即可得出答案.因此本题选C . {分值}3{章节:[1-23-2-2]中心对称图形}{考点:轴对称图形}{考点:中心对称图形} {类别:常考题} {难度:1-最简单}{题目}6.(2019年广东第6题)数据3、3、5、8、11的中位数是A.3B.4C.5D.6{答案}C{解析}本题考查了中位数的定义,根据中位数的定义可知中位数是5,因此本题选C . {分值}3{章节:[1-20-1-2]中位数和众数} {考点:中位数} {类别:常考题} {难度:1-最简单}{题目}7.(2019年广东第7题)实教a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是 A.a>bB.|a|<|b|C. a+b>0D.ba <0A B C D{答案}D{解析}本题考查了实数与数轴,实数的大小比较,通过数轴可知a<b,|a|>|b|,a+b<0,因此本题选D.{分值}3{章节:[1-6-3]实数}{考点:实数与数轴}{考点:实数与绝对值、相反数}{考点:实数的大小比较}{类别:常考题}{难度:3-中等难度}{题目}8.(2019年广东第8题)化简24的结果是A.-4B.4C.D.2{答案}B42 ,因此本题选B.{解析}本题考查了二次根式的化简,根据二次根式的性质化简可得4{分值}3{章节:[1-16-1]二次根式}{考点:二次根式的定义}{类别:常考题}{难度:2-简单}{题目}9.(2019年广东第9题)已知x1、x2是一元二次方程了x2-2x=0的两个实数根,下列结论错误..的是A.x1≠x2B.x12-2x1=0C.x1+x2=2D.x1·x2=2{答案}D{解析}本题考查了一元二次方程根及根与系数的关系,根据一元二次方程根与系数的关系可得x1+x2=2,x1·x2=0,因此本题选D.{分值}3{章节:[1-21-3] 一元二次方程根与系数的关系}{考点:根与系数关系}{类别:常考题}{难度:2-简单}{题目}10.(2019年广东第10题)如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM、AF,H为AD的中点,连接FH分别与AB、AM交于点N、K.S △则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④AFN:S△ADM =1:4.其中正确的结论有 A.1个 B.2个C.3个D.4个{答案}C{解析}本题考查了正方形的性质、全等三角形的性质和判定、相似三角形的性质和判定、对顶角、内错角,根据正方形的性质、中点性质及对顶角易证:①△ANH≌△GNF,若②∠AFN=∠HFG,因为∠HFG=∠AHF,所以∠AFN=∠AHF,所以AF=AH,又因为AG=AH=2,则AG=AF=FG=2,而△AGF是等腰直角三角形,所以结论不成立;根据正方形的性质、中点性质及对顶角易证:△AHK∽△MFK,31==KF HK MF AH ,易得③FN=2NK ;因为S △AFN 2FGAN ⋅=,S △ADM=2DM AD ⋅,AN=1,FG=DM=2,AD=4,得④S △AFN :S △ADM =1:4.因此本题选C{分值}3{章节:[1-18-2-3] 正方形}{考点:全等三角形的性质}{考点:全等三角形的判定ASA,AAS}{考点:相似三角形的性质} {考点:相似三角形的判定(两角相等)}{考点:正方形的性质} {类别:易错题} {难度:3-中等难度}{题型:2-填空题}二、填空题:本大题共6小题,每小题4分,合计24分.{题目}11.(2019年广东第11题)计算10120193-⎛⎫+= ⎪⎝⎭.{答案}4{解析}本题考查了整式的乘法中的零指数幂和负指数幂,根据任何不为零的数的零次方等于1和-1次方等于底数的倒数可得原式134=+=. {分值}4{章节: [1-15-2-3]整数指数幂}{考点: 零次幂}{考点:同底数幂的除法} {类别:常考题} {难度:1-最简单}{题目}12.(2019年广东第12题)如图,已知a//b ,∠l=75°,则∠2 = .{答案}105°{解析}本题考查了对顶角相等和平行线的性质,根据a//b ,则∠1的对顶角与∠2互补,因此∠2=180°-∠1=105°. {分值}4{章节:[1-5-3]平行线的性质}{考点:相交}{考点:两直线平行同旁内角互补} {类别:常考题} {难度:2-简单}{题目}13.(2019年广东第13题)一个多边形的内角和是1080°,这个多边形的边数是 .{答案}8{解析}本题考查了多边形的内角和求解公式,根据多边形内角和公式()21801080n -=g ,可求得8n =,因此边数为8.{分值}4{章节:[1-11-3]多边形及其内角和} {考点:多边形的内角和} {类别:常考题} {难度:2-简单}{题目}14.(2019年广东第14题)已知x=2y+3,则代数式4x-8y+9的值是 .{答案}21{解析}本题考查了等式的性质和代数式求值,先通过23x y =+可得23x y -=,再通过等式的性质,两边同时乘以4得:()4212x y -=,即4812x y -=,48912921x y -+=+=. {分值}4{章节:[1-3-1-2]等式的性质}{考点:等式的性质}{考点:代数式求值} {类别:整体代入思想方法}{类别:常考题} {难度:3-中等难度}{题目}15.(2019年广东第15题)如图,某校教学楼AC 与实验楼BD 的水平间距CD=153米,在实验楼顶部B 点测得教学楼顶部A 点的仰角是30°,底部C 点的俯角是45°,则教学楼AC 的高度是 米(结果保留根号)。
2019年广东省中考数学试题(Word版含解析)2019年广东省初中学业水平考试数学说明:1.全卷共4页,满分为120分,考试用时为100分钟.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号.用2B铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.﹣2的绝对值是A.2 B.﹣2 C.D.±2【答案】A【解析】正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.【考点】绝对值2.某网店2019年母亲节这天的营业额为221 000元,将数221 000用科学记数法表示为A.2.21×106B.2.21×105 C.221×103 D.0.221×106【答案】B【解析】a×10n形式,其中0≤|a|<10.【考点】科学记数法3.如图,由4个相同正方体组合而成的几何体,它的左视图是【答案】A【解析】从左边看,得出左视图.【考点】简单组合体的三视图4.下列计算正确的是A.b6÷b3=b2B.b3·b3=b9C.a2+a2=2a2D.(a3)3=a6【答案】C【解析】合并同类项:字母部分不变,系数相加减.【考点】同底数幂的乘除,合并同类项,幂的乘方5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是【答案】C【解析】轴对称与中心对称的概念.【考点】轴对称与中心对称6.数据3、3、5、8、11的中位数是A.3 B.4 C.5 D.6【答案】C【解析】按顺序排列,中间的数或者中间两个数的平均数.【考点】中位数的概念7.实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是A.a>b B.|a| < |b| C.a+b>0 D.<0【答案】D【解析】a是负数,b是正数,异号两数相乘或相除都得负.【考点】数与代数式的大小比较,数轴的认识8.化简的结果是A.﹣4 B.4 C.±4 D.2【答案】B【解析】公式.【考点】二次根式9.已知x1、x2是一元二次方程了x2﹣2x=0的两个实数根,下列结论错误的是A.x1≠x2B.x12﹣2x1=0 C.x1+x2=2 D.x1·x2=2【答案】D【解析】因式分解x(x-2)=0,解得两个根分别为0和2,代入选项排除法.【考点】一元二次方程的解的概念和计算10.如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM、AF,H为AD的中点,连接FH分别与AB、AM交于点N、K.则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④S△AFN : S△ADM =1 : 4.其中正确的结论有A.1个B.2个C.3个D.4个【答案】C【解析】AH=GF=2,∠ANH=∠GNF,∠AHN=∠GFN,△ANH≌△GNF(AAS),①正确;由①得AN=GN=1,∵NG⊥FG,NA不垂直于AF,∴FN不是∠AFG的角平分线,∴∠AFN≠∠HFG,②错误;由△AKH∽△MKF,且AH:MF=1:3,∴KH:KF=1:3,又∵FN=HN,∴K为NH的中点,即FN=2NK,③正确;S△AFN =AN·FG=1,S△ADM =DM·AD=4,∴S△AFN : S△ADM =1 : 4,④正确.【考点】正方形的性质,平行线的应用,角平分线的性质,全等三角形,相似三角形,三角形的面积二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算20190+()﹣1=____________.【答案】4【解析】1+3=4【考点】零指数幂和负指数幂的运算12.如图,已知a∥b,∠l=75°,则∠2 =________.【答案】105°【解析】180°-75°=105°.【考点】平行线的性质13.一个多边形的内角和是1080°,这个多边形的边数是_________.【答案】8【解析】(n-2)×180°=1080°,解得n=8.【考点】n边形的内角和=(n-2)×180°14.已知x=2y+3,则代数式4x﹣8y+9的值是___________.【答案】21【解析】由已知条件得x-2y=3,原式=4(x-2y)+9=12+9=21.【考点】代数式的整体思想15.如图,某校教学楼AC与实验楼BD的水平间距CD=米,在实验楼的顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是_________________米(结果保留根号).【答案】15+15【解析】AC=CD·tan30°+CD·tan45°=15+15.【考点】解直角三角形,特殊三角函数值16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是_____________________(结果用含a、b代数式表示).【答案】a+8b【解析】每个接触部分的相扣长度为(a-b),则下方空余部分的长度为a-2(a-b)=2b-a,3个拼出来的图形有1段空余长度,总长度=2a+(2b-a)=a+2b;5个拼出来的图形有2段空余长度,总长度=3a+2(2b-a)=a+4b;7个拼出来的图形有3段空余长度,总长度=4a+3(2b-a)=a+6b;9个拼出来的图形有4段空余长度,总长度=5a+4(2b-a)=a+8b. 【考点】规律探究题型三、解答题(一)(本大题3小题,每小题6分,共18分)17.解不等式组:【答案】解:由①得x>3,由②得x>1,∴原不等式组的解集为x>3.【考点】解一元一次不等式组18.先化简,再求值:,其中x=.【答案】解:原式==×=当x=,原式===1+.【考点】分式的化简求值,包括通分、约分、因式分解、二次根式计算19.如图,在△ABC中,点D是AB边上的一点.(1)请用尺规作图法,在△ABC内,求作∠ADE.使∠ADE=∠B,DE交AC于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若=2,求的值.【答案】解:(1)如图所示,∠ADE为所求.(2)∵∠ADE=∠B∴DE∥BC∴=∵=2∴=2【考点】尺规作图之作一个角等于已知角,平行线分线段成比例四、解答题(二)(本大题3小题,毎小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A、B、C、D四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x =________,y =_______,扇形图中表示C的圆心角的度数为_______度;(2)甲、乙、丙是A等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.【答案】解:(1)y=10÷25%=40,x=40-24-10-2=4,C的圆心角=360°×=36°(2)画树状图如下:一共有6种可能结果,每种结果出现的可能性相同,其中同时抽到甲、乙的结果有2种∴P(甲乙)==答:同时抽到甲、乙两名学生的概率为.【考点】数据收集与分析,概率的计算21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,己知每个篮球的价格为70元,毎个足球的价格为80元.(1)若购买这两类球的总金额为4600元,篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,最多可购买多少个篮球?【答案】解:(1)设购买篮球x个,则足球(60-x)个.由题意得70x+80(60-x)=4600,解得x=20则60-x=60-20=40.答:篮球买了20个,足球买了40个.(2)设购买了篮球y个.由题意得70y≤80(60-x),解得y≤32答:最多可购买篮球32个.【考点】一元一次方程的应用,一元一次不等式的应用22.在如图所示的网格中,每个正方形的连长为1,每个小正方形的顶点叫格点,△ABC 的三个顶点均在格点上,以点A 为圆心的⌒EF 与BC 相切于点D ,分别交AB 、AC 于点E 、F .(1)求△ABC 三边的长;(2)求图中由线段EB 、BC 、CF 及⌒FE 所围成的阴影部分的面积.【答案】解:(1)由题意可知,AB==,AC==,BC==(2)连接AD由(1)可知,AB2+AC2=BC2,AB=AC∴∠BAC=90°,且△ABC 是等腰直角三角形∵以点A 为圆心的⌒EF 与BC 相切于点D∴AD ⊥BC∴AD=BC= (或用等面积法AB ·AC=BC ·AD 求出AD 长度)∵S 阴影=S △ABC -S 扇形EAFS △ABC =××=20S 扇形EAF ==5π∴S 阴影=20-5π【考点】勾股定理及其逆定理,阴影面积的计算包括三角形和扇形的面积公式五、解答题(三)(本大题3小题,毎小题7分,共21分)23.如图,一次函数y=k 1x+b 的图象与反比例函数y=的图象相交于A 、B 两点,其中点A 的坐标为(﹣1,4),点B 的坐标为(4,n ).(1)根据函数图象,直接写出满足k 1x+b>的x 的取值范围;(2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP : S △BOP =1 : 2,求点P 的坐标.【答案】解:(1)x <-1或0<x <4(2)∵反比例函数y=图象过点A (﹣1,4)∴4=,解得k 2=﹣4∴反比例函数表达式为∵反比例函数图象过点B (4,n )∴n==﹣1,∴B (4,﹣1)∵一次函数y=k 1x+b 图象过A (﹣1,4)和B (4,﹣1)∴,解得∴一次函数表达式为y=﹣x+3(3)∵P 在线段AB 上,设P 点坐标为(a ,﹣a+3)∴△AOP和△BOP的高相同∵S△AOP : S△BOP =1 : 2∴AP : BP=1 : 2过点B作BC∥x轴,过点A、P分别作AM⊥BC,PN⊥BC交于点M、N∵AM⊥BC,PN⊥BC∴∵MN=a+1,BN=4-a∴,解得a=∴-a+3=∴点P坐标为(,)(或用两点之间的距离公式AP=,BP=,由解得a1=,a2=-6舍去)【考点】一次函数和反比例函数的数形结合,会比较函数之间的大小关系,会求函数的解析式,同高的三角形的面积比与底边比的关系24.如题24-1图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过点C作∠BCD=∠ACB交⊙O于点D,连接AD交BC于点E,延长DC至点F,使CF=AC,连接AF.(1)求证:ED=EC;(2)求证:AF是⊙O的切线;(3)如题24-2图,若点G是△ACD的内心,BC·BE=25,求BG的长.【答案】(1)证明:∵AB=AC∴∠B==∠ACB∵∠BCD=∠ACB∴∠B=∠BCD∵⌒AC=⌒AC∴∠B=∠D∴∠BCD=∠D∴ED=EC(2)证明:连接AO并延长交⊙O于点G,连接CG 由(1)得∠B=∠BCD∴AB∥DF∵AB=AC,CF=AC∴AB=CF∴四边形ABCF是平行四边形∴∠CAF=∠ACB∵AG为直径∴∠ACG=90°,即∠G+∠GAC=90°∵∠G=∠B,∠B=∠ACB∴∠ACB+∠GAC=90°∴∠CAF+∠GAC=90°即∠OAF=90°∵点A在⊙O上∴AF是⊙O的切线(3)解:连接AG∵∠BCD=∠ACB,∠BCD=∠1∴∠1=∠ACB∵∠B=∠B∴△ABE∽△CBA∴∵BC·BE=25∴AB2=25∴AB=5∵点G是△ACD的内心∴∠2=∠3∵∠BGA=∠3+∠BCA=∠3+∠BCD=∠3+∠1=∠3+∠2=∠BAG∴BG=AB=5【考点】圆的综合应用,等弧等弦等角的转换,切线的证明,垂径定理的逆应用,内心的概念,相似三角形的应用,外角的应用,等量代换的意识25.如题25-1图,在平面直角坐标系中,抛物线y=与x轴交于点A、B(点A在点B右侧),点D 为抛物线的顶点.点C在y轴的正半轴上,CD交x轴于点F,△CAD绕点C顺时针旋转得到△CFE,点A恰好旋转到点F,连接BE.(1)求点A、B、D的坐标;(2)求证:四边形BFCE是平行四边形;(3)如题25-2图,过顶点D作DD1⊥x 轴于点D1,点P是抛物线上一动点,过点P作PM ⊥ x轴,点M为垂足,使得△PAM与△DD1A相似(不含全等).①求出一个满足以上条件的点P的横坐标;②直接回答....这样的点P共有几个?【答案】(1)解:由y==得点D坐标为(﹣3,)令y=0得x1=﹣7,x2=1∴点A坐标为(﹣7,0),点B坐标为(1,0)(2)证明:过点D作DG⊥y轴交于点G,设点C坐标为(0,m)∴∠DGC=∠FOC=90°,∠DCG=∠FCO∴△DGC∽△FOC∴由题意得CA=CF,CD=CE,∠DCA=∠ECF,OA=1,DG=3,CG=m+∵CO⊥FA∴FO=OA=1∴,解得m=(或先设直线CD的函数解析式为y=kx+b,用D、F两点坐标求出y=x+,再求出点C的坐标)∴点C坐标为(0,)∴CD=CE==6∵tan∠CFO==∴∠CFO=60°∴△FCA是等边三角形∴∠CFO=∠ECF∴EC∥BA∵BF=BO-FO=6∴CE=BF∴四边形BFCE是平行四边形(3)解:①设点P坐标为(m,),且点P不与点A、B、D重合.若△PAM与△DD1A相似,因为都是直角三角形,则必有一个锐角相等.由(1)得AD1=4,DD1=(A)当P在点A右侧时,m>1(a)当△PAM∽△DAD1,则∠PAM=∠DAD1,此时P、A、D三点共线,这种情况不存在(b)当△PAM∽△ADD1,则∠PAM=∠ADD1,此时∴,解得m1=(舍去),m2=1(舍去),这种不存在(B)当P在线段AB之间时,﹣7<m<1(a)当△PAM∽△DAD1,则∠PAM=∠DAD1,此时P与D重合,这种情况不存在(b)当△PAM∽△ADD1,则∠PAM=∠ADD1,此时∴,解得m1=,m2=1(舍去)(C)当P在点B左侧时,m<﹣7(a)当△PAM∽△DAD1,则∠PAM=∠DAD1,此时∴﹣,解得m1=﹣11,m2=1(舍去)(b)当△PAM∽△ADD1,则∠PAM=∠ADD1,此时∴﹣,解得m1=,m2=1(舍去)综上所述,点P的横坐标为,﹣11,,三个任选一个进行求解即可.②一共存在三个点P,使得△PAM与△DD1A相似.【考点】二次函数的综合应用,旋转的性质,相似三角形的的应用,等边三角形的性质,平行四边形的证明,平面直角坐标的灵活应用,动点问题,分类讨论思想广东省2019年初中历史学业水平考试试题(word含答案解析)2019年广东省初中学业水平考试历史试题一、单项选择题(本大题25小题,每小题3分,共75分。
2019年广东省初中毕业生学业考试数 学一、选择题 1.2-=A.2B.2-C.12D.12-【答案】A.【解析】由绝对值的意义可得,答案为A 。
2. 据国家统计局网站2019年12月4日发布消息,2019年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为A.61.357310⨯B.71.357310⨯C.81.357310⨯D.91.357310⨯ 【答案】B.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 13 573 000=71.357310⨯;3. 一组数据2,6,5,2,4,则这组数据的中位数是A.2B.4C.5D.6 【答案】B.【解析】由小到大排列,得:2,2,4,5,6,所以,中位数为4,选B 。
4. 如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是A.75°B.55°C.40°D.35° 【答案】C.【解析】两直线平行,同位角相等,三角形的一个外角等于与它不相邻的两个内角之和,所以, 75°=∠2+∠3,所以,∠3=40°,选C 。
5. 下列所述图形中,既是中心对称图形,又是轴对称图形的是A.矩形B.平行四边形C.正五边形D.正三角形 【答案】A.【解析】平行四边形只是中心对称图形,正五边形、正三角形只是轴对称图形,只有矩形符合。
6.2(4)x -=A.28x -B.28xC.216x -D.216x【答案】D.【解析】原式=22-4x ()=216x 7. 在0,2,0(3)-,5-这四个数中,最大的数是A.0B.2C.0(3)-D.5-【答案】B.【解析】(-3)0=1,所以,最大的数为2,选B 。
8. 若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是A.2a ≥B.2a ≤C.2a >D.2a <【答案】C.【解析】△=1-4(94a -+)>0,即1+4a -9>0,所以,2a >9. 如题9图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为A.6B.7C.8D.9【答案】D.【解析】显然弧长为BC +CD 的长,即为6,半径为3,则16392S =⨯⨯=扇形.10. 如题10图,已知正△ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设 △EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是【答案】D.【解析】根据题意,有AE=BF=CG ,且正三角形ABC 的边长为2, 故BE=CF=AG=2-x ;故△AEG 、△BEF 、△CFG 三个三角形全等. 在△AEG 中,AE=x ,AG=2-x , 则S△AEG=12AE×AG×sinA= 34x (2-x );故y=S△ABC-3S△AEG=3-3⨯34x (2-x )=34(3x 2 -6x+4). 故可得其图象为二次函数,且开口向上,选D 。
广东省广州市2019年中考数学试卷(解析版)一、选择题(共10小题,每小题3分,满分30分)1.(3分)|﹣6|=()A.﹣6 B.6 C.﹣D.2.(3分)广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处.到今年底各区完成碧道试点建设的长度分别为(单位:千米):5,5.2,5,5,5,6.4,6,5,6.68,48.4,6.3,这组数据的众数是()A.5 B.5.2 C.6 D.6.43.(3分)如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m4.(3分)下列运算正确的是()A.﹣3﹣2=﹣1 B.3×(﹣)2=﹣C.x3•x5=x15D.•=a5.(3分)平面内,⊙O的半径为1,点P到O的距离为2,过点P可作⊙O的切线条数为()A.0条B.1条C.2条D.无数条6.(3分)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.=B.=C.=D.=7.(3分)如图,▱ABCD中,AB=2,AD=4,对角线AC,BD相交于点O,且E,F,G,H分别是AO,BO,CO,DO的中点,则下列说法正确的是()A.EH=HGB.四边形EFGH是平行四边形C.AC⊥BDD.△ABO的面积是△EFO的面积的2倍8.(3分)若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y3<y2<y1B.y2<y1<y3C.y1<y3<y2D.y1<y2<y3 9.(3分)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A.4B.4C.10 D.810.(3分)关于x的一元二次方程x2﹣(k﹣1)x﹣k+2=0有两个实数根x1,x2,若(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3,则k的值()A.0或2 B.﹣2或2 C.﹣2 D.2二、填空题(共6小题,每小题3分,满分18分)11.(3分)如图,点A,B,C在直线l上,PB⊥l,P A=6cm,PB=5cm,PC=7cm,则点P到直线l的距离是cm.12.(3分)代数式有意义时,x应满足的条件是.13.(3分)分解因式:x2y+2xy+y=.14.(3分)一副三角板如图放置,将三角板ADE绕点A逆时针旋转α(0°<α<90°),使得三角板ADE的一边所在的直线与BC垂直,则α的度数为.15.(3分)如图放置的一个圆锥,它的主视图是直角边长为2的等腰直角三角形,则该圆锥侧面展开扇形的弧长为.(结果保留π)16.(3分)如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45°,点F在射线AM上,且AF=BE,CF与AD相交于点G,连接EC,EF,EG,则下列结论:①∠ECF=45°;②△AEG的周长为(1+)a;③BE2+DG2=EG2;④△EAF的面积的最大值a2.其中正确的结论是.(填写所有正确结论的序号)三、解答题(共9小题,满分102分)17.(9分)解方程组:.18.(9分)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:△ADE≌CFE.19.(10分)已知P=﹣(a≠±b)(1)化简P;(2)若点(a,b)在一次函数y=x﹣的图象上,求P的值.20.(10分)某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.频数分布表组别时间/小时频数/人数A组0≤t<1 2B组1≤t<2 mC组2≤t<3 10D组3≤t<4 12E组4≤t<5 7F组t≥5 4请根据图表中的信息解答下列问题:(1)求频数分布表中m的值;(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率:从F组中随机选取2名学生,恰好都是女生.21.(12分)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G 基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.22.(12分)如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(﹣1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=的图象相交于A,P两点.(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.23.(12分)如图,⊙O的直径AB=10,弦AC=8,连接BC.(1)尺规作图:作弦CD,使CD=BC(点D不与B重合),连接AD;(保留作图痕迹,不写作法)(2)在(1)所作的图中,求四边形ABCD的周长.24.(14分)如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF∥AB;(2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1﹣S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.25.(14分)已知抛物线G:y=mx2﹣2mx﹣3有最低点.(1)求二次函数y=mx2﹣2mx﹣3的最小值(用含m的式子表示);(2)将抛物线G向右平移m个单位得到抛物线G1.经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P 的纵坐标的取值范围.广东省广州市2019年中考数学试卷(解析版)一、选择题(共10小题,每小题3分,满分30分)1.(3分)|﹣6|=()A.﹣6 B.6 C.﹣D.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣6的绝对值是|﹣6|=6.故选:B.【点评】本题考查了绝对值的性质,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处.到今年底各区完成碧道试点建设的长度分别为(单位:千米):5,5.2,5,5,5,6.4,6,5,6.68,48.4,6.3,这组数据的众数是()A.5 B.5.2 C.6 D.6.4【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:5出现的次数最多,是5次,所以这组数据的众数为5故选:A.【点评】本题主要考查众数的定义,是需要熟练掌握的概念.3.(3分)如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m【分析】根据题目中的条件和图形,利用锐角三角函数即可求得AC的长,本题得以解决.【解答】解:∵∠BCA=90°,tan∠BAC=,BC=30m,∴tan∠BAC=,解得,AC=75,故选:A.【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用数形结合的思想解答.4.(3分)下列运算正确的是()A.﹣3﹣2=﹣1 B.3×(﹣)2=﹣C.x3•x5=x15D.•=a【分析】直接利用有理数混合运算法则、同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、﹣3﹣2=﹣5,故此选项错误;B、3×(﹣)2=,故此选项错误;C、x3•x5=x8,故此选项错误;D、•=a,正确.故选:D.【点评】此题主要考查了有理数混合运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.5.(3分)平面内,⊙O的半径为1,点P到O的距离为2,过点P可作⊙O的切线条数为()A.0条B.1条C.2条D.无数条【分析】先确定点与圆的位置关系,再根据切线的定义即可直接得出答案.【解答】解:∵⊙O的半径为1,点P到圆心O的距离为2,∴d>r,∴点P与⊙O的位置关系是:P在⊙O外,∵过圆外一点可以作圆的2条切线,故选:C.【点评】此题主要考查了对点与圆的位置关系,切线的定义,切线就是与圆有且只有1个公共点的直线,理解定义是关键.6.(3分)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.=B.=C.=D.=【分析】设甲每小时做x个零件,根据甲做120个所用的时间与乙做150个所用的时间相等得出方程解答即可.【解答】解:设甲每小时做x个零件,可得:,故选:D.【点评】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.7.(3分)如图,▱ABCD中,AB=2,AD=4,对角线AC,BD相交于点O,且E,F,G,H分别是AO,BO,CO,DO的中点,则下列说法正确的是()A.EH=HGB.四边形EFGH是平行四边形C.AC⊥BDD.△ABO的面积是△EFO的面积的2倍【分析】根据题意和图形,可以判断各个选项中的结论是否成立,本题得以解决.【解答】解:∵E,F,G,H分别是AO,BO,CO,DO的中点,在▱ABCD中,AB=2,AD=4,∴EH=AD=2,HG=AB=1,∴EH≠HG,故选项A错误;∵E,F,G,H分别是AO,BO,CO,DO的中点,∴EH=,∴四边形EFGH是平行四边形,故选项B正确;由题目中的条件,无法判断AC和BD是否垂直,故选项C错误;∵点E、F分别为OA和OB的中点,∴EF=,EF∥AB,∴△OEF∽△OAB,∴,即△ABO的面积是△EFO的面积的4倍,故选项D错误,故选:B.【点评】本题考查平行四边形的面积、三角形的相似、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.8.(3分)若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=的图象上,则y1,y2,y3的大小关系是()A.y3<y2<y1B.y2<y1<y3C.y1<y3<y2D.y1<y2<y3【分析】根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.【解答】解:∵点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=的图象上,∴y1==﹣6,y2==3,y3==2,又∵﹣6<2<3,∴y1<y3<y2.故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y3的值是解题的关键.9.(3分)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A.4B.4C.10 D.8【分析】连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB==4,再由勾股定理求出AC即可.【解答】解:连接AE,如图:∵EF是AC的垂直平分线,∴OA=OC,AE=CE,∵四边形ABCD是矩形,∴∠B=90°,AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE=5,∴AE=CE=5,BC=BE+CE=3+5=8,∴AB===4,∴AC===4;故选:A.【点评】本题考查矩形的性质、线段的垂直平分线的性质、全等三角形的判定与性质、勾股定理等知识,熟练掌握矩形的性质和勾股定理,证明三角形全等是解题的关键.10.(3分)关于x的一元二次方程x2﹣(k﹣1)x﹣k+2=0有两个实数根x1,x2,若(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3,则k的值()A.0或2 B.﹣2或2 C.﹣2 D.2【分析】由根与系数的关系可得出x1+x2=k﹣1,x1x2=﹣k+2,结合(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3可求出k的值,根据方程的系数结合根的判别式△≥0可得出关于k的一元二次不等式,解之即可得出k的取值范围,进而可确定k的值,此题得解.【解答】解:∵关于x的一元二次方程x2﹣(k﹣1)x﹣k+2=0的两个实数根为x1,x2,∴x1+x2=k﹣1,x1x2=﹣k+2.∵(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3,即(x1+x2)2﹣2x1x2﹣4=﹣3,∴(k﹣1)2+2k﹣4﹣4=﹣3,解得:k=±2.∵关于x的一元二次方程x2﹣(k﹣1)x﹣k+2=0有实数根,∴△=[﹣(k﹣1)]2﹣4×1×(﹣k+2)≥0,解得:k≥2﹣1或k≤﹣2﹣1,∴k=2.故选:D.【点评】本题考查了根的判别式以及根与系数的关系,利用根与系数的关系结合(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3,求出k的值是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)如图,点A,B,C在直线l上,PB⊥l,P A=6cm,PB=5cm,PC=7cm,则点P到直线l的距离是5cm.【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度,可得答案.【解答】解:∵PB⊥l,PB=5cm,∴P到l的距离是垂线段PB的长度5cm,故答案为:5.【点评】本题考查了点到直线的距离,点到直线的距离是直线外的点到这条直线的垂线段的长度.12.(3分)代数式有意义时,x应满足的条件是x>8.【分析】直接利用分式、二次根式的定义求出x的取值范围.【解答】解:代数式有意义时,x﹣8>0,解得:x>8.故答案为:x>8.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.13.(3分)分解因式:x2y+2xy+y=y(x+1)2.【分析】首先提取公因式y,再利用完全平方进行二次分解即可.【解答】解:原式=y(x2+2x+1)=y(x+1)2,故答案为:y(x+1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)一副三角板如图放置,将三角板ADE绕点A逆时针旋转α(0°<α<90°),使得三角板ADE的一边所在的直线与BC垂直,则α的度数为15°或45°.【分析】分情况讨论:①DE⊥BC;②AD⊥BC.【解答】解:分情况讨论:①当DE⊥BC时,∠BAD=75°,∴α=90°﹣∠BAD=15°;②当AD⊥BC时,∠BAD=45°,即α=45°.故答案为:15°或45°【点评】本题主要考查了垂直的定义,旋转的定义以及一副三角板的各个角的度数,理清定义是解答本题的关键.15.(3分)如图放置的一个圆锥,它的主视图是直角边长为2的等腰直角三角形,则该圆锥侧面展开扇形的弧长为.(结果保留π)【分析】根据圆锥侧面展开扇形的弧长=底面圆的周长即可解决问题.【解答】解:∵某圆锥的主视图是一个腰长为2的等腰直角三角形,∴斜边长为2,则底面圆的周长为2π,∴该圆锥侧面展开扇形的弧长为2π,故答案为2π.【点评】本题考查三视图,圆锥等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(3分)如图,正方形ABCD的边长为a,点E在边AB上运动(不与点A,B重合),∠DAM=45°,点F在射线AM上,且AF=BE,CF与AD相交于点G,连接EC,EF,EG,则下列结论:①∠ECF=45°;②△AEG的周长为(1+)a;③BE2+DG2=EG2;④△EAF的面积的最大值a2.其中正确的结论是①④.(填写所有正确结论的序号)【分析】①正确.如图1中,在BC上截取BH=BE,连接EH.证明△F AE≌△EHC(SAS),即可解决问题.②③错误.如图2中,延长AD到H,使得DH=BE,则△CBE≌△CDH(SAS),再证明△GCE≌△GCH(SAS),即可解决问题.④正确.设BE=x,则AE=a﹣x,AF=x,构建二次函数,利用二次函数的性质解决最值问题.【解答】解:如图1中,在BC上截取BH=BE,连接EH.∵BE=BH,∠EBH=90°,∴EH=BE,∵AF=BE,∴AF=EH,∵∠DAM=∠EHB=45°,∠BAD=90°,∴∠F AE=∠EHC=135°,∵BA=BC,BE=BH,∴AE=HC,∴△F AE≌△EHC(SAS),∴EF=EC,∠AEF=∠ECH,∵∠ECH+∠CEB=90°,∴∠AEF+∠CEB=90°,∴∠FEC=90°,∴∠ECF=∠EFC=45°,故①正确,如图2中,延长AD到H,使得DH=BE,则△CBE≌△CDH(SAS),∴∠ECB=∠DCH,∴∠ECH=∠BCD=90°,∴∠ECG=∠GCH=45°,∵CG=CG,CE=CH,∴△GCE≌△GCH(SAS),∴EG=GH,∵GH=DG+DH,DH=BE,∴EG=BE+DG,故③错误,∴△AEG的周长=AE+EG+AG=AG+GH=AD+DH+AE=AE+EB+AD=AB+AD=2a,故②错误,设BE=x,则AE=a﹣x,AF=x,∴S△AEF=•(a﹣x)×x=﹣x2+ax=﹣(x2﹣ax+a2﹣a2)=﹣(x﹣a)2+a2,∵﹣<0,∴x=a时,△AEF的面积的最大值为a2.故④正确,故答案为①④.【点评】本题考查正方形的性质,全等三角形的判定和性质,二次函数的应用等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考填空题中的压轴题.三、解答题(共9小题,满分102分)17.(9分)解方程组:.【分析】运用加减消元解答即可.【解答】解:,②﹣①得,4y=2,解得y=2,把y=2代入①得,x﹣2=1,解得x=3,故原方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(9分)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,求证:△ADE≌CFE.【分析】利用AAS证明:△ADE≌CFE.【解答】证明:∵FC∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE与△CFE中:∵,∴△ADE≌△CFE(AAS).【点评】本题考查了三角形全等的判定,熟练掌握三角形全等的判定方法是关键,三角形全等的判定方法有:AAS,SSS,SAS.19.(10分)已知P=﹣(a≠±b)(1)化简P;(2)若点(a,b)在一次函数y=x﹣的图象上,求P的值.【分析】(1)P=﹣===;(2)将点(a,b)代入y=x﹣得到a﹣b=,再将a﹣b=代入化简后的P,即可求解;【解答】解:(1)P=﹣===;(2)∵点(a,b)在一次函数y=x﹣的图象上,∴b=a﹣,∴a﹣b=,∴P=;【点评】本题考查分式的化简,一次函数图象上点的特征;熟练掌握分式的化简,理解点与函数解析式的关系是解题的关键.20.(10分)某中学抽取了40名学生参加“平均每周课外阅读时间”的调查,由调查结果绘制了如下不完整的频数分布表和扇形统计图.频数分布表组别时间/小时频数/人数A组0≤t<1 2B组1≤t<2 mC组2≤t<3 10D组3≤t<4 12E组4≤t<5 7F组t≥5 4请根据图表中的信息解答下列问题:(1)求频数分布表中m的值;(2)求B组,C组在扇形统计图中分别对应扇形的圆心角度数,并补全扇形统计图;(3)已知F组的学生中,只有1名男生,其余都是女生,用列举法求以下事件的概率:从F组中随机选取2名学生,恰好都是女生.【分析】(1)用抽取的40人减去其他5个组的人数即可得出m的值;(2)分别用360°乘以B组,C组的人数所占的比例即可;补全扇形统计图;(3)画出树状图,即可得出结果.【解答】解:(1)m=40﹣2﹣10﹣12﹣7﹣4=5;(2)B组的圆心角=360°×=45°,C组的圆心角=360°或=90°.补全扇形统计图如图1所示:(3)画树状图如图2:共有12个等可能的结果,恰好都是女生的结果有6个,∴恰好都是女生的概率为=.【点评】此题主要考查了列表法与树状图法,以及扇形统计图、频数分布表的应用,要熟练掌握.21.(12分)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G 基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.【分析】(1)2020年全省5G基站的数量=目前广东5G基站的数量×4,即可求出结论;(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,根据2020年底及2022年底全省5G基站数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:(1)1.5×4=6(万座).答:计划到2020年底,全省5G基站的数量是6万座.(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,依题意,得:6(1+x)2=17.34,解得:x1=0.7=70%,x2=﹣2.7(舍去).答:2020年底到2022年底,全省5G基站数量的年平均增长率为70%.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.22.(12分)如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(﹣1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=的图象相交于A,P两点.(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.【分析】(1)根据点P的坐标,利用待定系数法可求出m,n的值,联立正、反比例函数解析式成方程组,通过解方程组可求出点A的坐标(利用正、反比例函数图象的对称性结合点P的坐标找出点A的坐标亦可);(2)由菱形的性质可得出AC⊥BD,AB∥CD,利用平行线的性质可得出∠DCP=∠OAE,结合AB⊥x轴可得出∠AEO=∠CPD=90°,进而即可证出△CPD∽△AEO;(3)由点A的坐标可得出AE,OE,AO的长,由相似三角形的性质可得出∠CDP=∠AOE,再利用正弦的定义即可求出sin∠CDB的值.【解答】(1)解:将点P(﹣1,2)代入y=mx,得:2=﹣m,解得:m=﹣2,∴正比例函数解析式为y=﹣2x;将点P(﹣1,2)代入y=,得:2=﹣(n﹣3),解得:n=1,∴反比例函数解析式为y=﹣.联立正、反比例函数解析式成方程组,得:,解得:,,∴点A的坐标为(1,﹣2).(2)证明:∵四边形ABCD是菱形,∴AC⊥BD,AB∥CD,∴∠DCP=∠BAP,即∠DCP=∠OAE.∵AB⊥x轴,∴∠AEO=∠CPD=90°,∴△CPD∽△AEO.(3)解:∵点A的坐标为(1,﹣2),∴AE=2,OE=1,AO==.∵△CPD∽△AEO,∴∠CDP=∠AOE,∴sin∠CDB=sin∠AOE===.【点评】本题考查了待定系数法求一次函数解析式、待定系数法反比例函数解析式、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征、菱形的性质、相似三角形的判定与性质以及解直角三角形,解题的关键是:(1)根据点的坐标,利用待定系数法求出m,n的值;(2)利用菱形的性质,找出∠DCP=∠OAE,∠AEO=∠CPD=90°;(3)利用相似三角形的性质,找出∠CDP=∠AOE.23.(12分)如图,⊙O的直径AB=10,弦AC=8,连接BC.(1)尺规作图:作弦CD,使CD=BC(点D不与B重合),连接AD;(保留作图痕迹,不写作法)(2)在(1)所作的图中,求四边形ABCD的周长.【分析】(1)以C为圆心,CB为半径画弧,交⊙O于D,线段CD即为所求.(2)连接BD,OC交于点E,设OE=x,构建方程求出x即可解决问题.【解答】解:(1)如图,线段CD即为所求.(2)连接BD,OC交于点E,设OE=x.∵AB是直径,∴∠ACB=90°,∴BC===6,∵BC=CD,∴=,∴OC⊥BD于E.∴BE=DE,∵BE2=BC2﹣EC2=OB2﹣OE2,∴62﹣(5﹣x)2=52﹣x2,解得x=,∵BE=DE,BO=OA,∴AD=2OE=,∴四边形ABCD的周长=6+6+10+=.【点评】本题考查作图﹣复杂作图,圆周角定理,解直角三角形等知识,解题的关键是学会利用参数,构建方程解决问题.24.(14分)如图,等边△ABC中,AB=6,点D在BC上,BD=4,点E为边AC上一动点(不与点C重合),△CDE关于DE的轴对称图形为△FDE.(1)当点F在AC上时,求证:DF∥AB;(2)设△ACD的面积为S1,△ABF的面积为S2,记S=S1﹣S2,S是否存在最大值?若存在,求出S的最大值;若不存在,请说明理由;(3)当B,F,E三点共线时.求AE的长.【分析】(1)由折叠的性质和等边三角形的性质可得∠DFC=∠A,可证DF∥AB;(2)过点D作DM⊥AB交AB于点M,由题意可得点F在以D为圆心,DF为半径的圆上,由△ACD的面积为S1的值是定值,则当点F在DM上时,S△ABF最小时,S最大;(3)过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,由勾股定理可求BG的长,通过证明△BGD∽△BHE,可求EC的长,即可求AE的长.【解答】解:(1)∵△ABC是等边三角形∴∠A=∠B=∠C=60°由折叠可知:DF=DC,且点F在AC上∴∠DFC=∠C=60°∴∠DFC=∠A∴DF∥AB;(2)存在,过点D作DM⊥AB交AB于点M,∵AB=BC=6,BD=4,∴CD=2∴DF=2,∴点F在以D为圆心,DF为半径的圆上,∴当点F在DM上时,S△ABF最小,∵BD=4,DM⊥AB,∠ABC=60°∴MD=2∴S△ABF的最小值=×6×(2﹣2)=6﹣6∴S最大值=×2×3﹣(6﹣6)=﹣3+6(3)如图,过点D作DG⊥EF于点G,过点E作EH⊥CD于点H,∵△CDE关于DE的轴对称图形为△FDE∴DF=DC=2,∠EFD=∠C=60°∵GD⊥EF,∠EFD=60°∴FG=1,DG=FG=∵BD2=BG2+DG2,∴16=3+(BF+1)2,∴BF=﹣1∴BG=∵EH⊥BC,∠C=60°∴CH=,EH=HC=EC∵∠GBD=∠EBH,∠BGD=∠BHE=90°∴△BGD∽△BHE∴∴∴EC=﹣1∴AE=AC﹣EC=7﹣【点评】本题是三角形综合题,考查了等边三角形的性质,折叠的性质,勾股定理,相似三角形的判定和性质,添加恰当的辅助线构造相似三角形是本题的关键.25.(14分)已知抛物线G:y=mx2﹣2mx﹣3有最低点.(1)求二次函数y=mx2﹣2mx﹣3的最小值(用含m的式子表示);(2)将抛物线G向右平移m个单位得到抛物线G1.经过探究发现,随着m的变化,抛物线G1顶点的纵坐标y与横坐标x之间存在一个函数关系,求这个函数关系式,并写出自变量x的取值范围;(3)记(2)所求的函数为H,抛物线G与函数H的图象交于点P,结合图象,求点P 的纵坐标的取值范围.【分析】(1)抛物线有最低点即开口向上,m>0,用配方法或公式法求得对称轴和函数最小值.(2)写出抛物线G的顶点式,根据平移规律即得到抛物线G1的顶点式,进而得到抛物线G1顶点坐标(m+1,﹣m﹣3),即x=m+1,y=﹣m﹣3,x+y=﹣2即消去m,得到y 与x的函数关系式.再由m>0,即求得x的取值范围.(3)法一:求出抛物线恒过点B(2,﹣4),函数H图象恒过点A(2,﹣3),由图象可知两图象交点P应在点A、B之间,即点P纵坐标在A、B纵坐标之间.法二:联立函数H解析式与抛物线解析式组成方程组,整理得到用x表示m的式子.由x与m的范围讨论x的具体范围,即求得函数H对应的交点P纵坐标的范围.【解答】解:(1)∵y=mx2﹣2mx﹣3=m(x﹣1)2﹣m﹣3,抛物线有最低点∴二次函数y=mx2﹣2mx﹣3的最小值为﹣m﹣3(2)∵抛物线G:y=m(x﹣1)2﹣m﹣3∴平移后的抛物线G1:y=m(x﹣1﹣m)2﹣m﹣3∴抛物线G1顶点坐标为(m+1,﹣m﹣3)∴x=m+1,y=﹣m﹣3∴x+y=m+1﹣m﹣3=﹣2即x+y=﹣2,变形得y=﹣x﹣2∵m>0,m=x﹣1∴x﹣1>0∴x>1∴y与x的函数关系式为y=﹣x﹣2(x>1)(3)法一:如图,函数H:y=﹣x﹣2(x>1)图象为射线x=1时,y=﹣1﹣2=﹣3;x=2时,y=﹣2﹣2=﹣4∴函数H的图象恒过点B(2,﹣4)∵抛物线G:y=m(x﹣1)2﹣m﹣3x=1时,y=﹣m﹣3;x=2时,y=m﹣m﹣3=﹣3∴抛物线G恒过点A(2,﹣3)由图象可知,若抛物线与函数H的图象有交点P,则y B<y P<y A∴点P纵坐标的取值范围为﹣4<y P<﹣3法二:整理的:m(x2﹣2x)=1﹣x∵x>1,且x=2时,方程为0=﹣1不成立∴x≠2,即x2﹣2x=x(x﹣2)≠0∴m=>0∵x>1∴1﹣x<0∴x(x﹣2)<0∴x﹣2<0∴x<2即1<x<2∵y P=﹣x﹣2∴﹣4<y P<﹣3【点评】本题考查了求二次函数的最值,二次函数的平移,二次函数与一次函数的关系.解题关键是在无图的情况下运用二次函数性质解题,第(3)题结合图象解题体现数形结合的运用.。
2019年广东省初中学业水平考试数学(解析版)满分120分,考试时间100分钟.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.﹣2的绝对值是A .2B .﹣2C .21 D .±2 【答案】A【解析】正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.【考点】绝对值2.某网店2019年母亲节这天的营业额为221 000元,将数221 000用科学记数法表示为A .2.21×106B .2.21×105C .221×103D .0.221×106【答案】B【解析】a ×10n 形式,其中0≤|a|<10.【考点】科学记数法3.如图,由4个相同正方体组合而成的几何体,它的左视图是【答案】A【解析】从左边看,得出左视图.【考点】简单组合体的三视图4.下列计算正确的是A.b6÷b3=b2 B.b3·b3=b9 C.a2+a2=2a2 D.(a3)3=a6【答案】C【解析】合并同类项:字母部分不变,系数相加减.【考点】同底数幂的乘除,合并同类项,幂的乘方5.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是【答案】C【解析】轴对称与中心对称的概念.【考点】轴对称与中心对称6.数据3、3、5、8、11的中位数是A.3 B.4 C.5 D.6【答案】C【解析】按顺序排列,中间的数或者中间两个数的平均数.【考点】中位数的概念7.实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是A .a>bB .|a|<|b|C .a+b>0D .ba <0【答案】D【解析】a 是负数,b 是正数,异号两数相乘或相除都得负.【考点】数与代数式的大小比较,数轴的认识8.化简24的结果是A .﹣4B .4C .±4D .2【答案】B 【解析】公式a a 2 .【考点】二次根式9.已知x 1、x 2是一元二次方程了x 2﹣2x=0的两个实数根,下列结论错误的是A .x 1≠x 2B .x 12﹣2x 1=0C .x 1+x 2=2D .x 1·x 2=2【答案】D【解析】因式分解x (x-2)=0,解得两个根分别为0和2,代入选项排除法.【考点】一元二次方程的解的概念和计算10.如图,正方形ABCD 的边长为4,延长CB 至E 使EB=2,以EB 为边在上方作正方形EFGB ,延长FG 交DC 于M ,连接AM 、AF ,H 为AD 的中点,连接FH 分别与AB 、AM 交于点N 、K .则下列结论:①△ANH ≌△GNF ;②∠AFN=∠HFG ;③FN=2NK ;④S △AFN :S △ADM =1:4.其中正确的结论有A .1个B .2个C .3个D .4个【答案】C【解析】AH=GF=2,∠ANH=∠GNF ,∠AHN=∠GFN ,△ANH ≌△GNF (AAS ),①正确;由①得AN=GN=1,∵NG ⊥FG ,NA 不垂直于AF ,∴FN 不是∠AFG 的角平分线,∴∠AFN ≠∠HFG ,②错误;由△AKH ∽△MKF ,且AH:MF=1:3,∴KH:KF=1:3,又∵FN=HN ,∴K 为NH 的中点,即FN=2NK ,③正确;S △AFN =21AN ·FG=1,S △ADM =21DM ·AD=4,∴S △AFN :S △ADM =1:4,④正确. 【考点】正方形的性质,平行线的应用,角平分线的性质,全等三角形,相似三角形,三角形的面积二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.计算20190+(31)﹣1=____________. 【答案】4【解析】1+3=4【考点】零指数幂和负指数幂的运算12.如图,已知a ∥b ,∠l=75°,则∠2 =________.【答案】105°【解析】180°-75°=105°.【考点】平行线的性质13.一个多边形的内角和是1080°,这个多边形的边数是_________.【答案】8【解析】(n-2)×180°=1080°,解得n=8.【考点】n边形的内角和=(n-2)×180°14.已知x=2y+3,则代数式4x﹣8y+9的值是___________.【答案】21【解析】由已知条件得x-2y=3,原式=4(x-2y)+9=12+9=21.【考点】代数式的整体思想15米,在实验楼的顶部B点测得15.如图,某校教学楼AC与实验楼BD的水平间距CD=3教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是_________________米(结果保留根号).【答案】15+153【解析】AC=CD·tan30°+CD·tan45°=15+153.【考点】解直角三角形,特殊三角函数值16.如题16-1图所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按题16-2图所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(题16-1图)拼出来的图形的总长度是_____________________(结果用含a 、b 代数式表示).【答案】a+8b【解析】每个接触部分的相扣长度为(a-b ),则下方空余部分的长度为a-2(a-b )=2b-a ,3个拼出来的图形有1段空余长度,总长度=2a+(2b-a )=a+2b ;5个拼出来的图形有2段空余长度,总长度=3a+2(2b-a )=a+4b ;7个拼出来的图形有3段空余长度,总长度=4a+3(2b-a )=a+6b ;9个拼出来的图形有4段空余长度,总长度=5a+4(2b-a )=a+8b.【考点】规律探究题型三、解答题(一)(本大题3小题,每小题6分,共18分)17.解不等式组:【答案】解:由①得x >3,由②得x >1,∴原不等式组的解集为x >3.【考点】解一元一次不等式组18.先化简,再求值:4-x x -x 2-x 1-2-x x 22÷⎪⎭⎫ ⎝⎛ ,其中x=2. 【答案】解:原式=2-x 1-x 4-x x-x 22÷ =2-x 1-x ×()()()1-x x 2-x 2x + =x 2x +当x=2,原式=222+=2222+=1+2.【考点】分式的化简求值,包括通分、约分、因式分解、二次根式计算19.如图,在△ABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在△ABC 内,求作∠ADE .使∠ADE=∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若DB AD=2,求EC AE的值.【答案】解:(1)如图所示,∠ADE 为所求.(2)∵∠ADE=∠B∴DE ∥BC ∴EC AE =DBAD ∵DBAD =2 ∴EC AE =2 【考点】尺规作图之作一个角等于已知角,平行线分线段成比例四、解答题(二)(本大题3小题,毎小题7分,共21分)20.为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A 、B 、C 、D 四个等级,绘制如下不完整的统计图表,如题20图表所示,根据图表信息解答下列问题:(1)x =________,y =_______,扇形图中表示C 的圆心角的度数为_______度;(2)甲、乙、丙是A 等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲、乙两名学生的概率.【答案】解:(1)y=10÷25%=40,x=40-24-10-2=4,C 的圆心角=360°×404=36° (2)画树状图如下:一共有6种可能结果,每种结果出现的可能性相同,其中同时抽到甲、乙的结果有2种 ∴P (甲乙)=62=31 答:同时抽到甲、乙两名学生的概率为31. 【考点】数据收集与分析,概率的计算21.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,己知每个篮球的价格为70元,毎个足球的价格为80元.(1)若购买这两类球的总金额为4600元,篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,最多可购买多少个篮球?【答案】解:(1)设购买篮球x 个,则足球(60-x )个.由题意得70x+80(60-x )=4600,解得x=20则60-x=60-20=40.答:篮球买了20个,足球买了40个.(2)设购买了篮球y 个.由题意得 70y ≤80(60-x ),解得y ≤32答:最多可购买篮球32个.【考点】一元一次方程的应用,一元一次不等式的应用22.在如图所示的网格中,每个正方形的连长为1,每个小正方形的顶点叫格点,△ABC 的三个顶点均在格点上,以点A 为圆心的⌒EF 与BC 相切于点D ,分别交AB 、AC 于点E 、F .(1)求△ABC 三边的长;(2)求图中由线段EB 、BC 、CF 及⌒FE 所围成的阴影部分的面积.【答案】解:(1)由题意可知,AB=2262+=102,AC=2262+=102, BC=2284+=54(2)连接AD由(1)可知,AB2+AC2=BC2,AB=AC∴∠BAC=90°,且△ABC 是等腰直角三角形∵以点A 为圆心的⌒EF 与BC 相切于点D∴AD ⊥BC∴AD=21BC=52 (或用等面积法AB ·AC=BC ·AD 求出AD 长度) ∵S 阴影=S △ABC -S 扇形EAFS △ABC =21×102×102=20 S 扇形EAF =()25241π =5π ∴S 阴影=20-5π【考点】勾股定理及其逆定理,阴影面积的计算包括三角形和扇形的面积公式五、解答题(三)(本大题3小题,毎小题7分,共21分)23.如图,一次函数y=k 1x+b 的图象与反比例函数y=xk 2的图象相交于A 、B 两点,其中点A 的坐标为(﹣1,4),点B 的坐标为(4,n ).(1)根据函数图象,直接写出满足k 1x+b>xk 2的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP :S △BOP =1 : 2,求点P 的坐标.【答案】解:(1)x <-1或0<x <4(2)∵反比例函数y=x k 2图象过点A (﹣1,4)∴4=1-k 2,解得k 2=﹣4 ∴反比例函数表达式为x 4-y = ∵反比例函数x 4-y =图象过点B (4,n )∴n=44-=﹣1,∴B (4,﹣1)∵一次函数y=k 1x+b 图象过A (﹣1,4)和B (4,﹣1)∴⎩⎨⎧+=+=b k 41-b-k 411,解得⎩⎨⎧==3b 1-k 1∴一次函数表达式为y=﹣x+3(3)∵P 在线段AB 上,设P 点坐标为(a ,﹣a+3)∴△AOP 和△BOP 的高相同∵S △AOP :S △BOP =1 : 2∴AP : BP=1 : 2过点B 作BC ∥x 轴,过点A 、P 分别作AM ⊥BC ,PN ⊥BC 交于点M 、N∵AM ⊥BC ,PN ⊥BC ∴BNMN BP AP = ∵MN=a+1,BN=4-a ∴21a -41a =+,解得a=32 ∴-a+3=37 ∴点P 坐标为(32,37) (或用两点之间的距离公式AP=()()224-3a -1a +++,BP=()()223-a 1-a -4++,由21BP AP =解得a 1=32,a 2=-6舍去) 【考点】一次函数和反比例函数的数形结合,会比较函数之间的大小关系,会求函数的解析式,同高的三角形的面积比与底边比的关系24.如题24-1图,在△ABC 中,AB=AC ,⊙O 是△ABC 的外接圆,过点C 作∠BCD=∠ACB 交⊙O 于点D ,连接AD 交BC 于点E ,延长DC 至点F ,使CF=AC ,连接AF .(1)求证:ED=EC ; (2)求证:AF 是⊙O 的切线;(3)如题24-2图,若点G 是△ACD 的内心,BC ·BE=25,求BG 的长.【答案】(1)证明:∵AB=AC∴∠B==∠ACB∵∠BCD=∠ACB∴∠B=∠BCD∵⌒AC=⌒AC∴∠B=∠D∴∠BCD=∠D∴ED=EC(2)证明:连接AO并延长交⊙O于点G,连接CG 由(1)得∠B=∠BCD∴AB∥DF∵AB=AC,CF=AC∴AB=CF∴四边形ABCF是平行四边形∴∠CAF=∠ACB∵AG为直径∴∠ACG=90°,即∠G+∠GAC=90°∵∠G=∠B,∠B=∠ACB∴∠ACB+∠GAC=90°∴∠CAF+∠GAC=90°即∠OAF=90°∵点A在⊙O上∴AF是⊙O的切线(3)解:连接AG∵∠BCD=∠ACB ,∠BCD=∠1∴∠1=∠ACB∵∠B=∠B∴△ABE ∽△CBA ∴BCAB AB BE ∵BC ·BE=25∴AB 2=25∴AB=5∵点G 是△ACD 的内心∴∠2=∠3∵∠BGA=∠3+∠BCA=∠3+∠BCD=∠3+∠1=∠3+∠2=∠BAG∴BG=AB=5【考点】圆的综合应用,等弧等弦等角的转换,切线的证明,垂径定理的逆应用,内心的概念,相似三角形的应用,外角的应用,等量代换的意识25.如题25-1图,在平面直角坐标系中,抛物线y=837 -x 433x 832+与x 轴交于点A 、B(点A 在点B 右侧),点D 为抛物线的顶点.点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如题25-2图,过顶点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM⊥ x 轴,点M 为垂足,使得△PAM 与△DD 1A 相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答....这样的点P 共有几个?【答案】(1)解:由y=837 -x 433x 832+=()32-3x 83+得点D 坐标为(﹣3,32) 令y=0得x 1=﹣7,x 2=1∴点A 坐标为(﹣7,0),点B 坐标为(1,0)(2)证明:过点D 作DG⊥y 轴交于点G ,设点C 坐标为(0,m )∴∠DGC=∠FOC=90°,∠DCG=∠FCO∴△DGC∽△FOC ∴COCG FO DG = 由题意得CA=CF ,CD=CE ,∠DCA=∠ECF,OA=1,DG=3,CG=m+32∵CO⊥FA∴FO=OA=1 ∴m32m 13+=,解得m=3 (或先设直线CD 的函数解析式为y=kx+b ,用D 、F 两点坐标求出y=3x+3,再求出点C 的坐标)∴点C 坐标为(0,3) ∴CD=CE=()223233++=6∵tan∠CFO=FOCO =3 ∴∠CFO=60°∴△FCA 是等边三角形∴∠CFO=∠ECF∴EC∥BA∵BF=BO-FO=6∴CE=BF∴四边形BFCE 是平行四边形(3)解:①设点P 坐标为(m ,837-m 433m 832+),且点P 不与点A 、B 、D 重合.若△PAM 与△DD 1A 相似,因为都是直角三角形,则必有一个锐角相等.由(1)得AD 1=4,DD 1=32(A )当P 在点A 右侧时,m >1(a )当△PAM∽△DAD 1,则∠PAM=∠DAD 1,此时P 、A 、D 三点共线,这种情况不存在 (b )当△PAM∽△ADD 1,则∠PAM=∠ADD 1,此时11DD AD AM PM = ∴3241-m 837-m 433m 832=+,解得m 1=35-(舍去),m 2=1(舍去),这种不存在 (B )当P 在线段AB 之间时,﹣7<m <1(a )当△PAM∽△DAD 1,则∠PAM=∠DAD 1,此时P 与D 重合,这种情况不存在(b )当△PAM∽△ADD 1,则∠PAM=∠ADD 1,此时11DD AD AM PM = ∴3241-m 837-m 433m 832=+,解得m 1=35-,m 2=1(舍去)(C )当P 在点B 左侧时,m <﹣7(a )当△PAM∽△DAD 1,则∠PAM=∠DAD 1,此时11AD DD AM PM = ∴﹣3241-m 837-m 433m 832=+432,解得m 1=﹣11,m 2=1(舍去) (b )当△PAM∽△ADD 1,则∠PAM=∠ADD 1,此时11DD AD AM PM = ∴﹣3241-m 837-m 433m 832=+,解得m 1=337-,m 2=1(舍去) 综上所述,点P 的横坐标为35-,﹣11,337-,三个任选一个进行求解即可. ②一共存在三个点P ,使得△PAM 与△DD 1A 相似.【考点】二次函数的综合应用,旋转的性质,相似三角形的的应用,等边三角形的性质,平行四边形的证明,平面直角坐标的灵活应用,动点问题,分类讨论思想。
2019年广州中考数学试卷解析(含答案)广东省广州市2019年中考数学试卷(解析版)一、选择题.(2019广州)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元B.收入20元C.支出80元D.收入80元【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据题意,收入100元记作+100元,则﹣80表示支出80元.故选:C.【点评】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.如图所示的几何体左视图是()A.B.C.D.【分析】根据几何体的左视图的定义判断即可.【解答】解:如图所示的几何体左视图是A,故选A.【点评】本题考查了由几何体来判断三视图,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力.3.据统计,2019年广州地铁日均客运量均为6590000人次,将6590000用科学记数法表示为()A.6.59×104B.659×104C.65.9×105D.6.59×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将6590000用科学记数法表示为:6.59×106.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.某个密码锁的密码由三个数字组成,每个数字都是0﹣9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了锁设密码的最后那个数字,那么一次就能打开该密码的概率是()A.B.C.D.【分析】最后一个数字可能是0~9中任一个,总共有十种情况,其中开锁只有一种情况,利用概率公式进行计算即可.【解答】解:∵共有10个数字,∴一共有10种等可能的选择,∵一次能打开密码的只有1种情况,∴一次能打开该密码的概率为故选A..【点评】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.5.下列计算正确的是()A.B.xy2÷D.(xy3)2=x2y6C.2【分析】分别利用二次根式加减运算法则以及分式除法运算法则和积的乘方运算法则化简判断即可.【解答】解:A、B、xy2÷C、2+3无法化简,故此选项错误;=2xy3,故此选项错误;,无法计算,故此选项错误;D、(xy3)2=x2y6,正确.故选:D.【点评】此题主要考查了二次根式加减运算以及分式除法运算和积的乘方运算,正确掌握相关运算法则是解题关键.6.一司机驾驶汽车从甲地去乙地,他以平均80千米/小时的速度用了4个小时到达乙地,当他按原路匀速返回时.汽车的速度v千米/小时与时间t小时的函数关系是()A.v=320tB.v=C.v=20tD.v=【分析】根据路程=速度×时间,利用路程相等列出方程即可解决问题.【解答】解:由题意vt=80×4,则v=.故选B.【点评】本题考查实际问题的反比例函数、路程、速度、时间之间的关系,解题的关键是构建方程解决问题,属于中考常考题型.△7.如图,已知ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,连接CD,则CD=()A.3B.4C.4.8D.5【分析】直接利用勾股定理的逆定理得出△ABC是直角三角形,进而得出线段DE是△ABC的中位线,再利用勾股定理得出AD,再利用线段垂直平分线的性质得出DC的长.【解答】解:∵AB=10,AC=8,BC=6,∴BC2+AC2=AB2,∴△ABC是直角三角形,∵DE是AC的垂直平分线,∴AE=EC=4,DE∥BC,且线段DE是△ABC的中位线,∴DE=3,∴AD=DC=故选:D.=5.【点评】此题主要考查了勾股定理以及其逆定理和三角形中位线的性质,正确得出AD 的长是解题关键.8.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式中总是成立的是()A.ab>0B.a﹣b>0C.a2+b>0D.a+b>0【分析】首先判断a、b的符号,再一一判断即可解决问题.【解答】解:∵一次函数y=ax+b的图象经过第一、二、四象限,∴a<0,b>0,∴ab<O,故A错误,a﹣b<0,故B错误,a2+b>0,故C正确,a+b不一定大于0,故D错误.故选C.【点评】本题考查一次函数与不等式,解题的关键是学会根据函数图象的位置,确定a、b的符号,属于中考常考题型.9.对于二次函数y=﹣+x﹣4,下列说法正确的是()A.当x>0时,y随x的增大而增大C.图象的顶点坐标为(﹣2,﹣7)B.当x=2时,y有最大值﹣3D.图象与x轴有两个交点【分析】先用配方法把函数化为顶点式的形式,再根据其解析式即可求解.【解答】解:∵二次函数y=﹣又∵a=﹣<0+x﹣4可化为y=﹣(x﹣2)2﹣3,∴当x=2时,二次函数y=﹣x2+x﹣4的最大值为﹣3.故选B.【点评】本题考查了二次函数的性质,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.10.定义运算:a⋆b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b⋆b﹣a⋆a的值为()A.0B.1C.2D.与m有关【分析】由根与系数的关系可找出a+b=1,ab=m,根据新运算,找出b⋆b﹣a⋆a=b (1﹣b)﹣a(1﹣a),将其中的1替换成a+b,即可得出结论.【解答】解:∵a,b是方程x2﹣x+m=0(m<0)的两根,∴a+b=1,ab=m.∴b⋆b﹣a⋆a=b(1﹣b)﹣a(1﹣a)=b(a+b﹣b)﹣a(a+b﹣a)=ab﹣ab=0.故选A.ab=m.本题属于基础题,【点评】本题考查了根与系数的关系,解题的关键是找出a+b=1,难度不大,解决该题型题目时,根据根与系数的关系得出两根之积与两根之和是关键.二.填空题.(本大题共六小题,每小题3分,满分18分.)11.分解因式:2a2+ab=a2a+b【分析】直接把公因式a提出来即可.【解答】解:2a2+ab=a(2a+b).故答案为:a(2a+b).【点评】本题主要考查提公因式法分解因式,准确找出公因式是解题的关键.12.代数式有意义时,实数x的取值范围是x9.【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【解答】解:由题意得,9﹣x≥0,解得,x≤9,故答案为:x≤9.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.13.如图,ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm.将线段DC沿着CB △F分别落在边AB,BC上,的方向平移7cm得到线段EF,点E,则△EBF的周长为13 cm.【分析】直接利用平移的性质得出EF=DC=4cm,进而得出BE=EF=4cm,进而求出答案.【解答】解:∵将线段DC沿着CB的方向平移7cm得到线段EF,∴EF=DC=4cm,FC=7cm,∵AB=AC,BC=12cm,∴∠B=∠C,BF=5cm,∴∠B=∠BFE,∴BE=EF=4cm,∴△EBF的周长为:4+4+5=13(cm).故答案为:13.【点评】此题主要考查了平移的性质,根据题意得出BE的长是解题关键.14.分式方程的解是x=1【分析】根据解分式方程的方法可以求得分式方程本题得以解决.【解答】解:的解,记住最后要进行检验,方程两边同乘以2x(x﹣3),得x﹣3=4x解得,x=﹣1,检验:当x=﹣1时,2x(x﹣3)≠0,故原分式方程的解是x=﹣1,故答案为:x=﹣1.【点评】本题考查分式方程的解,解题的关键是明确解分式方程的解得方法,注意最后要进行检验.15.如图,以点O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点,AB=12,OP=6,则劣弧AB的长为8π.【分析】连接OA、OB,由切线的性质和垂径定理易得AP=BP=数的定义可得∠AOP=60°,利用弧长的公式可得结果.【解答】解:连接OA、OB,∵AB为小⊙O的切线,∴OP⊥AB,∴AP=BP=∵∴∠AOP=60°,=,,==8π.,由锐角三角函∴∠AOB=120°,∠OAP=30°,∴OA=2OP=12,∴劣弧AB的长为:故答案为:8π.【点评】本题主要考查了切线的性质,垂径定理和弧长公式,利用三角函数求得∠AOP=60°是解答此题的关键.16.如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形②△AED≌△GED③∠DFG=112.5°④BC+FG=1.5其中正确的结论是①②③.【分析】首先证明△ADE≌△GDE,再求出∠AEF、∠AFE、∠GEF、∠GFE的度数,推出AE=EG=FG=AF,由此可以一一判断.【解答】证明:∵四边形ABCD是正方形,∴AD=DC=BC=AB,∠DAB=∠ADC=∠DCB=∠ABC=90°,∠ADB=∠BDC=∠CAD=∠CAB=45°,∵△DHG是由△DBC旋转得到,∴DG=DC=AD,∠DGE=∠DCB=∠DAE=90°,在RT△ADE和RT△GDE中,,∴AED≌△GED,故②正确,∴∠ADE=∠EDG=22.5°,AE=EG,∴∠AED=∠AFE=67.5°,∴AE=AF,同理EG=GF,∴AE=EG=GF=FA,∴四边形AEGF是菱形,故①正确,∵∠DFG=∠GFC+∠DFC=∠BAC+∠DAC+∠ADF=112.5°,故③正确.∵AE=FG=EG=BG,BE=∴BE>AE,∴AE<,AE,∴CB+FG<1.5,故④错误.故答案为①②③.【点评】本题考查正方形的性质、全等三角形的判定和性质、菱形的判定和性质、等腰直角三角形的性质等知识,解题的关键是通过计算发现角相等,学会这种证明角相等的方法,属于中考常考题型.三、解答题17.解不等式组并在数轴上表示解集.【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.【解答】解:解不等式2x<5,得:x<,解不等式3(x+2)≥x+4,得:x≥﹣1,∴不等式组的解集为:﹣1≤x<,将不等式解集表示在数轴上如图:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求∠ABD的度数.【分析】首先证明OA=OB,再证明△ABO是等边三角形即可解决问题.【解答】解:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴AO=OB,∵AB=AO,∴AB=AO=BO,∴△ABO是等边三角形,∴∠ABD=60°.【点评】本题考查矩形的性质、等边三角形的判定和性质等知识,熟练掌握矩形的性质是解题的关键,属于基础题,中考常考题型.19.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为个小组打,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如表:小组甲乙丙研究报告918179小组展示807483答辩788590(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,哪个小组的成绩最高?【分析】(1)根据表格可以求得各小组的平均成绩,从而可以将各小组的成绩按照从大到小排列;(2)根据题意可以算出各组的加权平均数,从而可以得到哪组成绩最高.【解答】解:(1)由题意可得,甲组的平均成绩是:乙组的平均成绩是:(分),(分),丙组的平均成绩是:(分),(分),(分),(分),从高分到低分小组的排名顺序是:丙>甲>乙;(2)由题意可得,甲组的平均成绩是:乙组的平均成绩是:丙组的平均成绩是:由上可得,甲组的成绩最高.【点评】本题考查算术平均数、加权平均数、统计表,解题的关键是明确题意,找出所求问题需要的条件.20.已知A=(1)化简A;(a,b≠0且a≠b)(2)若点P(a,b)在反比例函数y=﹣的图象上,求A的值.【分析】(1)利用完全平方公式的展开式将(a+b)2展开,合并同类型、消元即可将A进行化解;(2)由点P在反比例函数图象上,即可得出ab的值,代入A化解后的分式中即可得出结论.【解答】解:(1)A=,=,=,=.(2)∵点P(a,b)在反比例函数y=﹣的图象上,∴ab=﹣5,∴A==﹣.【点评】本题考查了分式的化解求值以及反比例函数图象上点的坐标特征,解题的关键是:(1)将原分式进行化解;(2)找出ab值.本题属于基础题,难度不大,解决该题型题目时,先将原分式进行化解,再代入ab求值即可.21.如图,利用尺规,在ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取△AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)【分析】利用尺规作∠EAC=∠ACB即可,先证明四边形ABCD是平行四边形,再证明CD∥AB即可.【解答】解:图象如图所示,∵∠EAC=∠ACB,∴AD∥CB,∵AD=BC,∴四边形ABCD是平行四边形,∴AB∥CD.【点评】本题考查尺规作图、平行四边形的判定和性质等知识,解题的关键是学会利用尺规作一个角等于已知角,属于基础题,中考常考题型.22.如图,某无人机于空中A处探测到目标B,D,从无人机A上看目标B,D的俯角分别为30°,60°,此时无人机的飞行高度AC为60m,随后无人机从A处继续飞行30A′处,m到达(1)求A,B之间的距离;(2)求从无人机A′上看目标D的俯角的正切值.【分析】(1)解直角三角形即可得到结论;,CE=AA′=30(2)过A′作A′E⊥BC交BC的延长线于E,连接A′D,于是得到A′E=AC=60,在Rt△ABC中,求得DC=AC=20,然后根据三角函数的定义即可得到结论..【解答】解:(1)由题意得:∠ABD=30°,∠ADC=60°,在Rt△ABC中,AC=60m,∴AB===120(m);(2)过A′作A′E⊥BC交BC的延长线于E,连接A′D,则A′E=AC=60,CE=AA′=30,==.在Rt△ABC中,AC=60m,∠ADC=60°,∴DC=∴DE=50AC=20,,∴tan∠AA′D=tan∠A′DC=答:从无人机A′上看目标D的俯角的正切值是【点评】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,要求学生能借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.23.如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴交于点C,与直线AD交于点A(,),点D的坐标为(0,1)(1)求直线AD的解析式;(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当△BOD与△BCE相似时,求点E的坐标.【分析】(1)设直线AD的解析式为y=kx+b,用待定系数法将A(,),D(0,1)的坐标代入即可;(2)由直线AD与x轴的交点为(﹣2,0),得到OB=2,由点D的坐标为(0,1),得到OD=1,求得BC=5,根据相似三角形的性质得到到结论.或,代入数据即可得【解答】解:(1)设直线AD的解析式为y=kx+b,将A(,),D(0,1)代入得:,解得:.故直线AD的解析式为:y=x+1;(2)∵直线AD与x轴的交点为(﹣2,0),∴OB=2,∵点D的坐标为(0,1),∴OD=1,∵y=﹣x+3与x轴交于点C(3,0),∴OC=3,∴BC=5∵△BOD与△BCE相似,∴∴==或或,,,或CE=,∴BE=2,CE=∴E(2,2),或(3,).【点评】本题考查了相似三角形的性质,待定系数法求函数的解析式,正确的作出图形是解题的关键.24.已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B(1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出该最值及相对应的m值.【分析】(1)根据题意得出△=(1﹣2m)2﹣4×m×(1﹣3m)=(1﹣4m)2>0,得出1﹣4m≠0,解不等式即可;(2)y=m(x2﹣2x﹣3)+x+1,故只要x2﹣2x﹣3=0,那么y的值便与m无关,解得x=3或x=﹣1(舍去,此时y=0,在坐标轴上),故定点为(3,4);,因此(3)由|AB|=|xA﹣x B|得出|AB|=|﹣4|,由已知条件得出≤<4,得出0<|﹣4|≤|AB|最大时,||=,解方程得出m=8,或m=(舍去),即可得出结果.【解答】(1)解:当m=0时,函数为一次函数,不符合题意,舍去;当m≠0时,∵抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B,∴△=(1﹣2m)2﹣4×m×(1﹣3m)=(1﹣4m)2>0,∴1﹣4m≠0,∴m≠;=(2)证明:∵抛物线y=mx2+(1﹣2m)x+1﹣3m,∴y=m(x2﹣2x﹣3)+x+1,抛物线过定点说明在这一点y与m无关,显然当x2﹣2x﹣3=0时,y与m无关,解得:x=3或x=﹣1,当x=3时,y=4,定点坐标为(3,4);当x=﹣1时,y=0,定点坐标为(﹣1,0),∵P不在坐标轴上,∴P(3,4);=|AB|=|xA﹣x B|=(3)解:==||=|﹣4|,∵<m≤8,∴≤<4,∴﹣≤﹣4<0,,|=,∴0<|﹣4|≤∴|AB|最大时,|解得:m=8,或m=(舍去),,∴当m=8时,|AB|有最大值此时△ABP的面积最大,没有最小值,则面积最大为:|AB|yP=××4=.【点评】本题是二次函数综合题目,考查了二次函数与一元二次方程的关系,根的判别式以及最值问题等知识;本题难度较大,根据题意得出点P的坐标是解决问题的关键.上,且不与点B,D重合),25.如图,点C为△ABD的外接圆上的一动点(点C不在∠ACB=∠ABD=45°(1)求证:BD是该外接圆的直径;(2)连结CD,求证:AC=BC+CD;(△3)若ABC关于直线AB的对称图形为△ABM,连接DM,试探究DM2,AM2,BM 2三者之间满足的等量关系,并证明你的结论.【分析】(1)要证明BD是该外接圆的直径,只需要证明∠BAD是直角即可,又因为∠ABD=45°,所以需要证明∠ADB=45°;(2)在CD延长线上截取DE=BC,连接EA,只需要证明△EAF是等腰直角三角形即可得出结论;(3)过点M作MF⊥MB于点M,过点A作AF⊥MA于点A,MF与AF交于点F,证明△AMF是等腰三角形后,可得出AM=AF,MF=AM,然后再证明△ABF≌△ADM可得出BF=DM,最后根据勾股定理即可得出DM2,AM2,BM2三者之间的数量关系.【解答】解:(1)∵=,∴∠ACB=∠ADB=45°,∵∠ABD=45°,∴∠BAD=90°,∴BD是△ABD外接圆的直径;(2)在CD的延长线上截取DE=BC,连接EA,∵∠ABD=∠ADB,∴AB=AD,∵∠ADE+∠ADC=180°,∠ABC+∠ADC=180°,∴∠ABC=∠ADE,在△ABC与△ADE中,,∴△ABC≌△ADE(SAS),∴∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE=90°,∵=∴∠ACD=∠ABD=45°,∴△CAE是等腰直角三角形,∴∴AC=CE,AC=CD+DE=CD+BC;(3)过点M作MF⊥MB于点M,过点A作AF⊥MA于点A,MF与AF交于点F,连接BF,由对称性可知:∠AMB=ACB=45°,∴∠FMA=45°,∴△AMF是等腰直角三角形,∴AM=AF,MF=AM,∵∠MAF+∠MAB=∠BAD+∠MAB,∴∠FAB=∠MAD,在△ABF与△ADM中,,∴△ABF≌△ADM(SAS),∴BF=DM,在Rt△BMF中,∵BM2+MF2=BF2,∴BM2+2AM2=DM2.【点评】本题考查圆的综合问题,涉及圆周角定理,等腰三角形的性质,全等三角形的性质与判定,勾股定理等知识,综合程度较高,解决本题的关键就是构造等腰直角三角形.。
完整版)2019广东省中考数学试卷及答案2019年广东省初中学业水平考试数学本次考试共4页,满分120分,考试时间100分钟。
在答题卡上填写准考证号、姓名、考场号和座位号,使用黑色字迹的签字笔或钢笔。
用2B铅笔涂黑对应题号的标号。
选择题答案涂在答题卡上,用2B铅笔涂黑。
如需更改答案,先用橡皮擦干净,再涂上新答案。
非选择题必须使用黑色字迹的钢笔或签字笔作答,写在答题卡指定区域内。
如需更改答案,先划掉原答案,再写上新答案。
不得使用铅笔或涂改液。
不按要求作答的答案无效。
保持答题卡整洁,考试结束时将试卷和答题卡一并交回。
一、选择题(本大题10小题,每小题3分,共30分)1.求-2的绝对值。
A。
2B。
-2C。
1D。
±22.某网店2019年母亲节当天的营业额为元,将数用科学记数法表示为A。
2.21×106B。
2.21×105C。
221×103D。
0.221×1063.如图,由4个相同正方体组合而成的几何体,它的左视图是4.下列计算正确的是A。
b6÷b3=b2B。
b3×b3=b9C。
a2+a2=2a2D。
(a3) =a65.下列四个银行标志中,既是中心对称图形,又是轴对称图形的是6.数据3、3、5、8、11的中位数是A。
3B。
4C。
5D。
67.实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是A。
a>bB。
a<bC。
a+b>a-bD。
a-b<b-a8.化简42的结果是A。
-4B。
4C。
±4D。
29.已知x1、x2是一元二次方程x2-2x=0的两个实数根,下列结论错误的是A。
x1≠x2B。
x12-2x1=0C。
x1+x2=2D。
x1×x2=210.如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM、AF,H为AD的中点,连接FH分别与AB、AM交于点N、K。
2019年广东省中考试题解析(满分120分,考试时间120分钟)一、选择题(本大题共10题,每小题3分,共30) 1.(2019广东省,1,3分) ﹣2的绝对值是( ) A .2B .﹣2C .12D .±2【答案】A【解析】解:|﹣2|=2,故选:A . 【知识点】绝对值2. (2019广东省,2,3分)某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为( )A .2.21×106B .2.21×105C .221×103D .0.221×106【答案】B【解析】解:将221000用科学记数法表示为:2.21×105.故选:B . 【知识点】科学记数法—表示较大的数3. (2019广东省,3,3分)如图,由4个相同正方体组合而成的儿何体,它的左视图是( )【答案】A【解析】解:从左边看得到的是两个叠在一起的正方形,如图所示.故选:A .【知识点】简单组合体的三视图4. (2019广东省,4,3分)下列计算正确的是( ) A .b 6+b 3=b 2 B .b 3•b 3=b 9 C .a 2+a 2=2a 2 D .(a 3)3=a 6【答案】C【解析】解: b 6+b 3,无法计算,故选项A 错误; b 3•b 3=b 6,故选项B 错误; a 2+a 2=2a 2,故选项C 正确; (a 3)3=a 9,故选项D 错误.故选:C .【知识点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方5. (2019广东省,5,3分)下列四个银行标志中,既是中心对称图形,又是轴对称图形的是( )【答案】C【解析】解:A 、是轴对称图形,不是中心对称图形,故选项A 错误; B 、是轴对称图形,不是中心对称图形,故选项B 错误; C 、既是轴对称图形,也是中心对称图形,故选项C 正确; D 、是轴对称图形,不是中心对称图形,故选项D 错误. 故选:C .【知识点】轴对称图形;中心对称图形6.(2019广东省,6,3分)数据3,3,5,8,11的中位数是( ) A .3B .4C .5D .6【答案】C【解析】解:把这组数据按照从小到大的顺序排列为:3,3,5,8,11,故这组数据的中位数是5.故选:C . 【知识点】中位数7. (2019广东省,7,3分)实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A .a >bB .|a |<|b |C .a +b >0D .ab <0【答案】D【解析】解:由图可得:﹣2<a <﹣1,0<b <1,∴a <b ,故A 错误;|a |>|b |,故B 错误;a +b <0,故C 错误;a b<0,故D 正确;故选:D .【知识点】绝对值;实数与数轴8. (2019广东省,8,3分)化简√42的结果是( ) A .﹣4 B .4 C .±4 D .2【答案】B【解析】解:√42=√16=4.故选:B . 【知识点】算术平方根9.(2019广东省,9,3分)已知x1,x2是一元二次方程x2﹣2x=0的两个实数根,下列结论错误的是()A.x1≠x2B.x12﹣2x1=0C.x1+x2=2D.x1•x2=2【答案】D【解析】解:∵△=(﹣2)2﹣4×1×0=4>0,∴x1≠x2,选项A不符合题意;∵x1是一元二次方程x2﹣2x=0的实数根,∴x12﹣2x1=0,选项B不符合题意;∵x1,x2是一元二次方程x2﹣2x=0的两个实数根,∴x1+x2=2,x1•x2=0,选项C不符合题意,选项D符合题意.故选:D.【知识点】一元二次方程根与系数的关系10.(2019广东省,10,3分)如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM,AF,H为AD的中点,连接FH分别与AB,AM交于点N、K:则下列结论:①△ANH≌△GNF;②∠AFN=∠HFG;③FN=2NK;④S△AFN:S△ADM=1:4.其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C【解析】解:∵四边形EFGB是正方形,EB=2,∴FG=BE=2,∠FGB=90°,∵四边形ABCD是正方形,H为AD的中点,∴AD=4,AH=2,∠BAD=90°,∴∠HAN=∠FGN,AH=FG,∵∠ANH=∠GNF,∴△ANH≌△GNF(AAS),故①正确;∴∠AHN=∠HFG,∵AG=FG=2=AH,∴AF=√2FG=√2AH,∴∠AFH ≠∠AHF ,∴∠AFN ≠∠HFG ,故②错误; ∵△ANH ≌△GNF , ∴AN =12AG =1, ∵GM =BC =4, ∴AH AN=GM AG=2,∵∠HAN =∠AGM =90°, ∴△AHN ∽△GMA , ∴∠AHN =∠AMG , ∵AD ∥GM , ∴∠HAK =∠AMG , ∴∠AHK =∠HAK , ∴AK =HK , ∴AK =HK =NK , ∵FN =HN ,∴FN =2NK ;故③正确; ∵延长FG 交DC 于M , ∴四边形ADMG 是矩形, ∴DM =AG =2,∵S △AFN =12AN •FG =12×2×1=1,S △ADM =12AD •DM =12×4×2=4, ∴S △AFN :S △ADM =1:4故④正确, 故选:C .【知识点】全等三角形的判定与性质;正方形的性质;相似三角形的判定与性质二、填空题(本大题共6小题,每小题4分,共24分)11. (2019广东省,11,4分)计算:20190+(13)﹣1= .【答案】4【解析】解:原式=1+3=4.故答案为:4.【知识点】有理数的加法;零指数幂;负整数指数幂12.(2019广东省,12,4分)如图,已知a∥b,∠1=75°,则∠2=.【答案】105°【解析】解:∵直线L直线a,b相交,且a∥b,∠1=75°,∴∠3=∠1=75°,∴∠2=180°﹣∠3=180°﹣75°=105°.故答案为:105°【知识点】平行线的性质13.(2019广东省,13,4分)一个多边形的内角和是1080°,这个多边形的边数是.【答案】8【解析】解:设多边形边数有x条,由题意得:180(x﹣2)=1080,解得:x=8,故答案为:8.【知识点】多边形内角与外角14.(2019广东省,14,4分)已知x=2y+3,则代数式4x﹣8y+9的值是.【答案】21【解析】解:∵x=2y+3,∴x﹣2y=3,则代数式4x﹣8y+9=4(x﹣2y)+9=4×3+9=21.故答案为:21.【知识点】代数式求值;整式的加减15.(2019广东省,15,4分)如图,某校教学楼AC与实验楼BD的水平间距CD=15√3米,在实验楼顶部B点测得教学楼顶部A点的仰角是30°,底部C点的俯角是45°,则教学楼AC的高度是米(结果保留根号).【答案】(15+15√3)【解析】解:过点B作BE⊥AB于点E,在Rt△BEC中,∠CBE=45°,BE=15√3;可得CE=BE×tan45°=15√3米.在Rt△ABE中,∠ABE=30°,BE=15√3,可得AE=BE×tan30°=15米.故教学楼AC的高度是AC=15√3+15米.答:教学楼AC的高度是(15√3+15)米.【知识点】解直角三角形的应用﹣仰角俯角问题16.(2019广东省,16,4分)如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是(结果用含a,b代数式表示).【答案】a+8b【解析】解:由图可得,拼出来的图形的总长度=9a﹣8(a﹣b)=a+8b.故答案为:a+8b.【知识点】利用轴对称设计图案三、解答题(本大题共9小题,满分66分,各小题都必须写出解答过程)17.(2019广东省,17,6分)解不等式组:{x−1>2①2(x+1)>4②【思路分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解题过程】解:{x−1>2①2(x+1)>4②解不等式组①,得x>3解不等式组②,得x >1 则不等式组的解集为x >3 【知识点】解一元一次不等式组18. (2019广东省,18,6分)先化简,再求值:(x x−2−1x−2)÷x 2−xx 2−4,其中x =√2 【思路分析】先化简分式,然后将x 的值代入计算即可. 【解题过程】解:原式=x−1x−2⋅(x+2)(x−2)x(x−1)=x+2x 当x =√2时, 原式=√2+2√2=√2+1【知识点】分式的化简求值19.(2019广东省,19,6分)如图,在△ABC 中,点D 是AB 边上的一点.(1)请用尺规作图法,在△ABC 内,求作∠ADE ,使∠ADE =∠B ,DE 交AC 于E ;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若AD DB=2,求AE EC的值.【思路分析】(1)利用基本作图(作一个角等于已知角)作出∠ADE =∠B ;(2)先利用作法得到∠ADE =∠B ,则可判断DE ∥BC ,然后根据平行线分线段成比例定理求解. 【解题过程】解:(1)如图,∠ADE 为所作;(2)∵∠ADE =∠B ∴DE ∥BC , ∴AE EC=AD DB=2.【知识点】相似三角形的判定与性质;作图20.(2019广东省,20,7分)为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A、B、C、D四个等级,绘制如下不完整的统计图表,如图表所示,根据图表信息解答下列问题:成绩等级频数分布表成绩等级频数A24B10C xD2合计y(1)x=,y=,扇形图中表示C的圆心角的度数为度;(2)甲、乙、丙是A等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲,乙两名学生的概率.【思路分析】(1)随机抽男生人数:10÷25%=40(名),即y=40;C等级人数:40﹣24﹣10﹣2=4(名),即x=4;扇形图中表示C的圆心角的度数360°×440=36°;(2)先画树状图,然后求得P(同时抽到甲,乙两名学生)=26=13.【解题过程】解:(1)随机抽男生人数:10÷25%=40(名),即y=40;C等级人数:40﹣24﹣10﹣2=4(名),即x=4;扇形图中表示C的圆心角的度数360°×440=36°.故答案为4,40,36;(2)画树状图如下:P (同时抽到甲,乙两名学生)=26=13. 【知识点】频数(率)分布表;扇形统计图;列表法与树状图法21. (2019广东省,21,7分)某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球,足球各买了多少个? (2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?【思路分析】(1)设购买篮球x 个,购买足球y 个,根据总价=单价×购买数量结合购买篮球、足球共60个\购买这两类球的总金额为4600元,列出方程组,求解即可;(2)设购买了a 个篮球,则购买(60﹣a )个足球,根据购买篮球的总金额不超过购买足球的总金额,列不等式求出x 的最大整数解即可.【解题过程】解:(1)设购买篮球x 个,购买足球y 个, 依题意得:{x +y =6070x +80y =4600.解得{x =20y =40.答:购买篮球20个,购买足球40个; (2)设购买了a 个篮球, 依题意得:70a ≤80(60﹣a ) 解得a ≤32.答:最多可购买32个篮球.【知识点】二元一次方程组的应用;一元一次不等式的应用22. (2019广东省,22,7分)在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,△ABC 的三个顶点均在格点上,以点A 为圆心的EF ̂与BC 相切于点D ,分别交AB 、AC 于点E 、F . (1)求△ABC 三边的长;(2)求图中由线段EB 、BC 、CF 及EF̂所围成的阴影部分的面积.【思路分析】(1)根据勾股定理即可求得;(2)根据勾股定理求得AD,由(1)得,AB2+AC2=BC2,则∠BAC=90°,根据S阴=S△ABC﹣S扇形AEF即可求得.【解题过程】解:(1)AB=√22+62=2√10,AC=√62+22=2√10,BC=√42+82=4√5;(2)由(1)得,AB2+AC2=BC2,∴∠BAC=90°,连接AD,AD=√22+42=2√5,∴S阴=S△ABC﹣S扇形AEF=12AB•AC−14π•AD2=20﹣5π.【知识点】勾股定理;切线的性质;扇形面积的计算23.(2019广东省,23,9分)如图,一次函数y=kx+b的图象与反比例函数y=k2x的图象相交于A、B两点,其中点A的坐标为(﹣1,4),点B的坐标为(4,n).(1)根据图象,直接写出满足kx+b>k2x的x的取值范围;(2)求这两个函数的表达式;(3)点P在线段AB上,且S△AOP:S△BOP=1:2,求点P的坐标.【思路分析】(1)根据一次函数图象在反比例图象的上方,可求x的取值范围;(2)将点A,点B坐标代入两个解析式可求k2,n,k1,b的值,从而求得解析式;(3)根据三角形面积相等,可得答案.【解题过程】解:(1)∵点A 的坐标为(﹣1,4),点B 的坐标为(4,n ).由图象可得:kx +b >k 2x的x 的取值范围是x <﹣1或0<x <4; (2)∵反比例函数y =k 2x 的图象过点A (﹣1,4),B (4,n )∴k 2=﹣1×4=﹣4,k 2=4n∴n =﹣1∴B (4,﹣1)∵一次函数y =kx +b 的图象过点A ,点B∴{−k +b =44k +b =−1, 解得:k =﹣1,b =3∴直线解析式y =﹣x +3,反比例函数的解析式为y =−4x ;(3)设直线AB 与y 轴的交点为C ,∴C (0,3),∵S △AOC =12×3×1=32, ∴S △AOB =S △AOC +S △BOC =12×3×1+12×3×4=152, ∵S △AOP :S △BOP =1:2,∴S △AOP =152×13=52,∴S △COP =52−32=1, ∴12×3•x P =1,∴x P =23,∵点P 在线段AB 上,∴y =−23+3=73,∴P (23,73).【知识点】反比例函数与一次函数的交点24.(2019广东省,24,9分)如图1,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过点C作∠BCD=∠ACB交⊙O于点D,连接AD交BC于点E,延长DC至点F,使CF=AC,连接AF.(1)求证:ED=EC;(2)求证:AF是⊙O的切线;(3)如图2,若点G是△ACD的内心,BC•BE=25,求BG的长.【思路分析】(1)由AB=AC知∠ABC=∠ACB,结合∠ACB=∠BCD,∠ABC=∠ADC得∠BCD=∠ADC,从而得证;(2)连接OA,由∠CAF=∠CF A知∠ACD=∠CAF+∠CF A=2∠CAF,结合∠ACB=∠BCD得∠ACD=2∠ACB,∠CAF=∠ACB,据此可知AF∥BC,从而得OA⊥AF,从而得证;(3)证△ABE∽△CBA得AB2=BC•BE,据此知AB=5,连接AG,得∠BAG=∠BAD+∠DAG,∠BGA=∠GAC+∠ACB,由点G为内心知∠DAG=∠GAC,结合∠BAD+∠DAG=∠GDC+∠ACB得∠BAG=∠BGA,从而得出BG=AB=5.【解题过程】解:(1)∵AB=AC,∴∠ABC=∠ACB,又∵∠ACB=∠BCD,∠ABC=∠ADC,∴∠BCD=∠ADC,∴ED=EC;(2)如图1,连接OA,∵AB=AC,∴AB̂=AĈ,∴OA⊥BC,∵CA=CF,∴∠CAF=∠CF A,∴∠ACD=∠CAF+∠CF A=2∠CAF,∵∠ACB=∠BCD,∴∠ACD=2∠ACB,∴∠CAF=∠ACB,∴AF∥BC,∴OA⊥AF,∴AF为⊙O的切线;(3)∵∠ABE=∠CBA,∠BAD=∠BCD=∠ACB,∴△ABE∽△CBA,∴ABBC=BEAB,∴AB2=BC•BE,∴BC•BE=25,∴AB=5,如图2,连接AG,∴∠BAG =∠BAD +∠DAG ,∠BGA =∠GAC +∠ACB ,∵点G 为内心,∴∠DAG =∠GAC ,又∵∠BAD +∠DAG =∠GDC +∠ACB ,∴∠BAG =∠BGA ,∴BG =AB =5.【知识点】圆心角定理;切线的判定与性质;相似三角形的判定与性质25. (2019广东省,25,9分)如图1,在平面直角坐标系中,抛物线y =√38x 2+3√34x −7√38与x 轴交于点A 、B (点A 在点B 右侧),点D 为抛物线的顶点,点C 在y 轴的正半轴上,CD 交x 轴于点F ,△CAD 绕点C 顺时针旋转得到△CFE ,点A 恰好旋转到点F ,连接BE .(1)求点A 、B 、D 的坐标;(2)求证:四边形BFCE 是平行四边形;(3)如图2,过项点D 作DD 1⊥x 轴于点D 1,点P 是抛物线上一动点,过点P 作PM ⊥x 轴,点M 为垂足,使得△P AM 与△DD 1A 相似(不含全等).①求出一个满足以上条件的点P 的横坐标;②直接回答这样的点P 共有几个?【思路分析】(1)利用抛物线解析式求得点A 、B 、D 的坐标;(2)欲证明四边形BFCE 是平行四边形,只需推知EC ∥BF 且EC =BF 即可;(3)①利用相似三角形的对应边成比例求得点P 的横坐标,没有指明相似三角形的对应边(角),需要分类讨论;②根据①的结果即可得到结论.【解题过程】解:(1)令√38x 2+3√34x −7√38=0, 解得x 1=1,x 2=﹣7.∴A (1,0),B (﹣7,0).由y =√38x 2+3√34x −7√38=√38(x +3)2﹣2√3得,D (﹣3,﹣2√3);(2)证明:∵DD 1⊥x 轴于点D 1,∴∠COF =∠DD 1F =90°,∵∠D 1FD =∠CFO ,∴△DD 1F ∽△COF ,∴D 1DPD 1=CO OF ,∵D (﹣3,﹣2√3),∴D 1D =2√3,OD =3,∴D 1F =2,∴2√32=OC 1, ∴OC =√3,∴CA =CF =F A =2,∴△ACF 是等边三角形,∴∠AFC =∠ACF ,∵△CAD 绕点C 顺时针旋转得到△CFE ,∴∠ECF =∠AFC =60°,∴EC ∥BF ,∵EC =DC =√32+(√3+2√3)2=6,∵BF =6,∴EC =BF ,∴四边形BFCE 是平行四边形;(3)∵点P 是抛物线上一动点,∴设P 点(x ,√38x 2+3√34x −7√38), ①当点P 在B 点的左侧时,∵△P AM 与△DD 1A 相似,∴DD 1PM =D 1A MA 或DD 1AM =D 1A PM , ∴2√3√3B x 2+3√34x−7√38=41−x 或2√31−x =4√38x 2+3√34x−7√38,解得:x1=1(不合题意舍去),x2=﹣11或x1=1(不合题意舍去)x2=−37 3;当点P在A点的右侧时,∵△P AM与△DD1A相似,∴PMAM=DD1D1A或PMMA=D1ADD1,∴√38x2+3√34x−7√38x−1=2√34或√38x2+3√34x−7√38x−1=42√3,解得:x1=1(不合题意舍去),x2=﹣3(不合题意舍去)或x1=1(不合题意舍去),x2=−53(不合题意舍去);当点P在AB之间时,∵△P AM与△DD1A相似,∴PMAM=DD1D1A或PMMA=D1ADD1,∴√38x2+3√34x−7√38x−1=2√34或√38x2+3√34x−7√38x−1=42√3,解得:x1=1(不合题意舍去),x2=﹣3(不合题意舍去)或x1=1(不合题意舍去),x2=−5 3;综上所述,点P的横坐标为﹣11或−373或−53;②由①得,这样的点P共有3个.【知识点】待定系数法求函数的解析式;全等三角形的判定和性质;平行四边形的判定;相似三角形的判定和性质。
2019 年广东省中考数学信息卷四一.选择题( 30 分)1. 3 的相反数是()A .﹣ 3B.3C.D.﹣2.最近几年来,中国高铁发展快速,高铁技术不停走出国门,成为展现我国实力的新名片.此刻中国高速铁路运营里程将达到22000 公里,将22000 用科学记数法表示应为()A .2.2× 104B .22× 103C. 2.2×103D. 0.22× 1053.以下运算正确的选项是()A .2a 3+a= 3a4B.( 2x3y)2= 4x6y2C. a( a﹣ b+1)= a 2﹣ ab D. 2ab﹣ 3a( b﹣a)=﹣ ab﹣ 3a24.以下图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.5.某车间 20 名工人每日加工部件数如表所示:每日加工零45678件数人数36542这些工人每日加工部件数的众数、中位数分别是()A .5,5B.5,6C.6,6D.6,56.如图,在△ABC中, D ,E 分别在边AC与AB 上, DE ∥ BC,BD 、CE订交于点O,=, AE= 1,则EB 的长为()A .1B.2C.3D.47.一次函数y=(m 2x+(m1m的取值范围是()﹣)﹣)的图象以下图,则A .m<2B .1< m< 2C. m< 1D. m> 28.如图,⊙O 的直径 AB= 2,弦 AC =1,点 D 在⊙O 上,则∠ D 的度数是()A .30°B .45°C. 60°D. 75°9.以下图,四边形ABCD是边长为3的正方形,点E在BC上,BE1ABE绕点A逆=,△时针旋转后获得△ADF ,则 FE 的长等于()A .3B.2C.3D.210.如图,边长分别为1 和 2 的两个等边三角形,开始它们在左侧重合,大三角形固定不动,而后把小三角形自左向右平移直至移出大三角形外停止.设小三角形挪动的距离为 x,两个三角形重叠面积为 y,则 y 对于 x 的函数图象是()A.B.C.D.二.填空题(24 分)11.因式分解: 16a 3﹣ 4a=.12. 若对于 x 的一元二次方程2﹣ 2x+a﹣ 1= 0有实数根,则 a 的取值范围是.x13.若点 P(4,﹣ 5)和点 Q( a,b)对于原点对称,则 a的值为.14.如图,矩形ABCD中, AB= 2,AD = 4,点E 在边BC上,把△DEC沿 DE翻折后,点C落在C′处.若△ABC′恰为等腰三角形,则CE的长为.15.如图,四边形ABCD 内接于⊙O,对角线 AC 过圆心 O,且 AC⊥ BD ,P 为 BC 延伸线上一点, PD ⊥ BD ,若 AC= 10, AD = 8,则 BP 的长为.16.反比率函数y=,y=在同向来角坐标系中的图象以下图,则△AMN的面积为.(用含有k1、k2代数式表示)三.解答题( 18 分)17.计算:(﹣ 1)2019﹣ 2°;+(﹣)﹣ |2﹣|+4sin6018.先化简,再求值:,此中.19.已知,如图,△ABC C 90°,E为BC边中点.中,∠ =( 1)尺规作图:以AC 为直径,作⊙O,交 AB 于点 D(保存作图印迹,不需写作法).( 2)若 AC= 5, DE =,求 BD 的长.四.解答题( 21 分)20.为认识本校学生均匀每日的课外学习时间状况,学校随机抽取部分学生进行问卷检查,并将检查结果分为A,B,C,D 四个等级,设学习时间为t(小时): A:t<1, B: 1≤ t< 1.5,C:1.5≤ t< 2,D :t ≥ 2,依据检查结果绘制了以下图的两副不完好的统计图.请你依据图中信息解答以下问题:( 1)本次抽样检查共抽取了名学生,请将条形统计图增补完好;( 2)求表示 B 等级的扇形圆心角α的度数;( 3)在此次问卷检查中,甲班有 2 人均匀每日课外学习时间超出 2 小时,乙班有 3 人均匀每日课外学习时间超出 2 小时,若从这 5 人中任选 2 人去参加会谈,请用列表或画树状图的方法求选出的 2 人中起码有 1 人来自甲班的概率.21.如图,一棵大树在一次强台风中折断倒下,未折断树杆AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树杆AB 形成 53°的夹角.树杆AB 旁有一座与地面垂直的铁塔DE,测得 BE= 6 米,塔高 DE = 9 米.在某一时辰的太阳照耀下,未折断树杆AB 落在地面的影子FB 长为 4 米,且点F、 B、 C、E 在同一条直线上,点 F 、A、 D 也在同一条直线上.求这棵大树没有折断前的高度.(参照数据: sin53°≈ 0.8, cos53°≈ 0.6,tan53°≈1.33)22.某学校准备购置A 、B 两种型号篮球, 咨询了甲、 乙两间学校认识这两款篮球的价钱,下表是甲、乙两间学校购置 A 、 B 两种型号篮球的状况:购置学校 购置型号及数目(个)购置支出款项(元)A B甲 3 8 622乙5 4 402( 1)求 A 、B 两种型号的篮球的销售单价;( 2)若该学校准备用不多于1000 元的金额购置这两种型号的篮球共20 个,且 A 种型号的篮球数目小于 B 种型号的篮球,问A 种型号的篮球采买多少个?五.解答题( 27 分)23.已知抛物线 y = ax 2+bx+c ( a ≠ 0)上的一点A ( m ﹣ b , n )( m ≠ b ),且 n = m 2﹣ mb+c .( 1)若 a = b , c = 0,求抛物线 y = ax 2+bx+c 与 x 轴的交点坐标( 2)若抛物线 y ═ ax 2+bx+c 与 x 轴只有一个交点,求 b 与 c 的数目关系( 3)在( 2)的条件下,若抛物线 y ═ax 2+bx+c 经过点(﹣ 1,0),则当 m 为什么值时,n有最小值?24.如图, CD 是 ⊙ O 的直径, AB 是 ⊙ O 的一条弦,= , AO 的延伸线交 ⊙ O 于点 F 、交 DB 的延伸线于点 P ,连结 PC 且恰巧 PC ∥ AB ,连结 DF 交 AB 于点 G ,延伸 DF 交 CP 于点 E ,连结 BF .( 1)求证: PC 是 ⊙O 的切线;(2)求证: CE= PE;(3)当 BF =2 时,求 tan∠ APD 的值.25.已知,如图①,直角梯形 ABCD ,AB∥ CD ,∠ A= 90°, DC= 6,AB=12,BC= 10. Rt△ EFG(∠ EGF =90°)的边 EF 与 BC 完好重合, FG 与 BA 在同向来线上.现将 Rt △EFG 以 3cm/s 的速度水平向左作匀速平移(如图② ),EF、EG分别交AC于点H、Q,同时点 M 以cm/s 的速度从点 B 出发沿 BC 向点 C 作匀速运动,连结FM ,当点 E 运动到点 D 时, Rt△ EFG 和点 M 都停止运动.设点M 运动的时间为t( s)(1)当点 Q 是 AC 的中点时,求 t 的值;(2)判断四边形 CHFM 的形状,并说明原因;( 3)如图③,连结 HM ,设四边形ABMH 的面积为s,求 s 与 t 的函数关系式及s 的最小值.2019 年广东省中考数学信息卷四一.选择题( 30 分)1. 3 的相反数是()A .﹣ 3B.3C.D.﹣【剖析】依照相反数的定义回答即可.【解答】解: 3 的相反数是﹣3.应选: A.【评论】本题主要考察的是相反数的定义,掌握相反数的定义是解题的重点.2.最近几年来,中国高铁发展快速,高铁技术不停走出国门,成为展现我国实力的新名片.此刻中国高速铁路运营里程将达到22000 公里,将22000 用科学记数法表示应为()A .2.2× 104B .22× 103C. 2.2×103D. 0.22× 105【剖析】科学记数法的表示形式为a× 10n的形式,此中1≤ |a|< 10, n 为整数.确立n 的值时,要看把原数变为 a 时,小数点挪动了多少位,n 的绝对值与小数点挪动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n 是负数.【解答】解: 22000= 2.2× 104.应选: A.【评论】 本题考察科学记数法的表示方法.科学记数法的表示形式为中 1≤ |a|< 10, n 为整数,表示时重点要正确确立a 的值以及 n 的值.a × 10n 的形式,其3.以下运算正确的选项是()A .2a 3+a = 3a 4B .( 2x 3 y ) 2= 4x 6y 2C . a ( a ﹣ b+1)= a2﹣ abD . 2ab ﹣ 3a ( b ﹣a )=﹣ ab ﹣ 3a 2【剖析】 分别依照归并同类项法例、答案.单项式的乘方、 单项式乘多项式法例逐个计算即可得出【解答】 解: A . 2a 3与 a 不是同类项,不可以归并,此选项错误;B .( 2x 3y ) 2= 4x 6y 2,此选项正确;C . a ( a ﹣ b+1)= a 2﹣ ab+a ,此选项错误;D .2ab ﹣ 3a ( b ﹣ a )= 2ab ﹣ 3ab+3a 2=﹣ ab+3a 2,此选项错误;应选: B .【评论】 本题主要考察单项式乘多项式,解题的重点是掌握归并同类项法例、单项式的乘方、单项式乘多项式法例.4.以下图形中,是中心对称图形,但不是轴对称图形的是( )A .B .C .D .【剖析】 依据中心对称图形的定义旋转 180°后能够与原图形完好重合即是中心对称图形,以及轴对称图形的定义: 假如一个图形沿一条直线折叠, 直线两旁的部分能够相互重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.【解答】解: A、此图形是中心对称图形,不是轴对称图形,故此选项正确;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形不是中心对称图形,是轴对称图形,故此选项错误.应选: A.【评论】本题主要考察了中心对称图形与轴对称的定义,重点是找出图形的对称中心与对称轴.5.某车间 20 名工人每日加工部件数如表所示:每日加工零45678件数人数36542这些工人每日加工部件数的众数、中位数分别是()A .5,5B.5,6C.6,6D.6,5【剖析】依据众数、中位数的定义分别进行解答即可.【解答】解:由表知数据 5 出现次数最多,因此众数为5;由于共有20 个数据,因此中位数为第10、 11 个数据的均匀数,即中位数为=6,应选: B.【评论】本题考察了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据依照从小到大(或从大到小)的次序摆列,假如数据的个数是奇数,则处于中间地点的数就是这组数据的中位数;假如这组数据的个数是偶数,则中间两个数据的均匀数就是这组数据的中位数.6.如图,在△ ABC 中, D ,E 分别在边AC 与 AB 上, DE ∥ BC,BD 、CE 订交于点O,=, AE= 1,则 EB 的长为()A .1B.2C.3D.4【剖析】先由 DE ∥ BC,依据平行线分线段成比率定理获得==;相同获得==,而后计算出AB,从而获得BE 的长.【解答】解:∵ DE∥ BC,∴==;∵DE∥ BC,∴==,∴AB= 3AE= 3,∴BE= 3﹣ 1= 2.应选: B.【评论】本题考察了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考察了平行线分线段成比率定理.7.一次函数y=( m﹣ 2) x+(m﹣ 1)的图象以下图,则m 的取值范围是()A .m<2B .1< m< 2C. m< 1D. m> 2【剖析】依据一次函数的图象经过第二、三、四象限判断出函数k 及b 的符号,获得对于m 的不等式组,解不等式组即可.【解答】解:∵一次函数y=( m﹣ 2) x+(m﹣1)的图象在第二、三、四象限,∴,解得 1< m<2.应选: B.【评论】本题主要考察一次函数图象在座标平面内的地点与k、b 的关系.解答本题注意理解:直线 y= kx+b 所在的地点与 k、 b 的符号有直接的关系.三象限. k< 0 时,直线必经过二、四象限. b> 0 时,直线与直线过原点; b< 0 时,直线与 y 轴负半轴订交.k>0 时,直线必经过一、y 轴正半轴订交.b= 0 时,8.如图,⊙O 的直径 AB= 2,弦 AC =1,点 D 在⊙O 上,则∠ D 的度数是()A .30°B .45°C. 60°D. 75°【剖析】由⊙ O 的直径是AB,获得∠ ACB=90°,依据特别三角函数值能够求得∠ B 的值,既而求得∠ A 和∠ D 的值.【解答】解:∵⊙ O 的直径是AB,∴∠ ACB= 90°,又∵ AB= 2,弦 AC= 1,∴sin∠ CBA =,∴∠ CBA= 30°,∴∠ A=∠ D= 60°,应选: C.【评论】本题考察的是圆周角定理及直角三角形的性质,比较简单,但在解答时要注意特别三角函数的取值.9.以下图,四边形ABCD 是边长为3 的正方形,点 E 在 BC 上, BE= 1,△ ABE 绕点 A 逆时针旋转后获得△ADF ,则 FE 的长等于()A .3B.2C.3D.2【剖析】由题意可得EC= 2, CF = 4,依据勾股定理可求EF 的长.【解答】解:∵四边形ABCD 是正方形∴AB= BC= CD =3∵△ ABE 绕点 A 逆时针旋转后获得△ADF∴DF= BE=1∴CF= CD+DF =3+1= 4CE= BC﹣ BE= 3﹣ 1=2在 Rt△EFC 中, EF == 2应选: D.【评论】本题考察了旋转的性质,正方形的性质,勾股定理,娴熟运用这些性质解决问题是本题的重点.10.如图,边长分别为 1 和 2 的两个等边三角形,开始它们在左侧重合,大三角形固定不动,而后把小三角形自左向右平移直至移出大三角形外停止.设小三角形挪动的距离为x,两个三角形重叠面积为y,则 y 对于 x 的函数图象是()A.B.C.D.【解答】解:① x≤ 1 时,两个三角形重叠面积为小三角形的面积,∴ y=× 1×=,②当 1< x≤ 2 时,重叠三角形的边长为2﹣ x,高为,y = ( 2﹣ x )× = 2﹣ x+,x ③ 当 x =2 时,两个三角形没有重叠的部分,即重叠面积为 0,应选: B .二.填空题( 24 分)11.因式分解: 16a 3﹣ 4a =.【剖析】 原式提取公因式,再利用平方差公式分解即可.【解答】 解:原式= 4a (4a 2﹣ 1)= 4a ( 2a+1 )( 2a ﹣1),故答案为: 4a (2a+1)( 2a ﹣ 1)【评论】 本题考察了提公因式法与公式法的综合运用,娴熟掌握因式分解的方法是解本题的重点.13. 若对于 x 的一元二次方程 2a 的取值范围是 .x ﹣ 2x+a ﹣ 1= 0 有实数根,则 【剖析】由方程根的状况, 依据根的鉴别式可获得对于 a 的不等式,则可求得 a 的取值范围.【解答】 解:∵对于 x 的一元二次方程x 2﹣ 2x+a ﹣ 1= 0 有实数根,∴△≥ 0,即(﹣ 2) 2﹣ 4( a ﹣ 1)≥ 0,解得 a ≤ 2,故答案为: a ≤ 2.【评论】 本题主要考察根的鉴别式,娴熟掌握一元二次方程根的个数与根的鉴别式的关系是解题的重点.13.若点 P ( 4,﹣ 5)和点 Q ( a ,b )对于原点对称,则 a 的值为 .【剖析】 依据对于原点对称的点的坐标特色:两个点对于原点对称时, 它们的坐标符号相反可得答案.【解答】 解:∵点 P ( 4,﹣ 5)和点 Q ( a , b )对于原点对称,∴点 Q 的坐标为(﹣4, 5),即 a=﹣ 4.故答案为:﹣4.【评论】本题主要考察了对于原点对称的点的坐标,重点是掌握点的坐标的变化规律.14.如图,矩形ABCD 中, AB= 2,AD = 4,点 E 在边 BC 上,把△ DEC 沿 DE 翻折后,点C落在 C′处.若△ ABC′恰为等腰三角形,则CE 的长为.【剖析】分两种情况分别求解即可解决问题.【解答】解:如图 1 中,当 C′ A= C′ B 时,作 C′ H⊥ AD 于 H 交 BC 于 F.易知 HC′= FC ′= 1,在 Rt△DHC ′中, DH ==,由△ DHC ′∽△ C′ FE,可得:=,∴=,∴EF=,∵四边形DHFC 是矩形,∴CF= DH=,∴CE=﹣=.如图 2 中,当 AB= AC′时,点C′在 AD 上,此时四边形CEC ′ D 是正方形, CE= 2.综上所述,知足条件的CE的值为 2或.【评论】本题考察矩形的性质,翻折变换,等腰三角形的性质等知识,解题的重点是学会用分类议论的思想思虑问题属于中考常考题型.15.如图,四边形ABCD 内接于⊙O,对角线 AC 过圆心 O,且 AC⊥ BD ,P 为 BC 延伸线上一点, PD ⊥ BD ,若 AC= 10, AD = 8,则 BP 的长为.【剖析】依据圆周角定理获得∠ADC =90°,依据勾股定理获得CD==6,推出点 C 是 PB 的中点,依据直角三角形的性质即可获得结论.【解答】解:∵ AC 是⊙ O 的直径,∴∠ ADC= 90°,∵ AC= 10,AD= 8,∴CD==6,∵AC⊥ BD,∴AC 均分 BD,∵PD⊥ BD,∴ AC∥ PD,∴点 C 是 PB 的中点,∴ PB= 2CD =12,故答案为: 12.【评论】本题考察了圆周角定理,垂径定理,平行线的判断和性质,直角三角形的性质,正确的辨别图形是解题的重点.16.反比率函数y=,y=在同向来角坐标系中的图象以下图,则△AMN 的面积为.(用含有k1、k2代数式表示)【剖析】依照 A( a,),即可获得M( a,),N(a,),从而得出AN= a﹣a, AM =﹣,再依据△ AMN的面积=AN× AM 进行计算即可.【解答】解:设 A( a,),则M(a,),N(a,),∴ AN= a﹣a, AM=﹣,∴△ AMN 的面积=AN×AM =×(a﹣a)×(﹣)=,故答案为:.【评论】本题主要考察了反比率函数图象上点的坐标特色,解题时注意:在反比率函数y =图象上任一点的横坐标与纵坐标的乘积等于k.三.解答题( 18 分)17.计算:(﹣ 1)2019+(﹣)﹣2﹣|2﹣|+4sin60°;【剖析】本题波及乘方、负指数幂、二次根式化简、绝对值和特别角的三角函数 5 个考点.在计算时,需要针对每个考点分别进行计算,而后依据实数的运算法例求得计算结果.【解答】解:原式= -1+4 ﹣( 2﹣2)+4×,= -1+4 ﹣ 2+2+2,= 5.【评论】本题主要考察了实数的综合运算能力,是各地中考题中常有的计算题型.解决此类题目的重点是娴熟掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.先化简,再求值:,此中.【剖析】原式括号中两项通分并利用同分母分式的加法法例计算,同时利用除法法例变形,约分获得最简结果,把 a 的值代入计算即可求出值.【解答】解:原式=?=?=,当 a=﹣1时,原式=.【评论】本题考察了分式的化简求值,娴熟掌握运算法例是解本题的重点.19.已知,如图,△ABC 中,∠ C= 90°, E 为 BC 边中点.( 1)尺规作图:以AC 为直径,作⊙O,交 AB 于点 D(保存作图印迹,不需写作法).( 2)若 AC= 5, DE =,求BD的长.【剖析】(1)依据要求作图即可得;( 2)证 Rt△ BDC ∽ Rt△ BCA 得=,代入计算可得.【解答】解:( 1)如图 1,(2)∵ E 为 BC 边中点,∴BC= 2DE=,∵ AC= 5,∴AB=,∵∠ DBC=∠ CBA,∴Rt△BDC ∽ Rt△BCA,∴=,即=,∴BD=.【评论】本题主要考察作图﹣复杂作图,解题的重点是娴熟掌握切线的判断与性质、相似三角形的判断与性质等知识点.四.解答题( 21 分)20.为认识本校学生均匀每日的课外学习时间状况,学校随机抽取部分学生进行问卷检查,并将检查结果分为A,B,C,D 四个等级,设学习时间为t(小时): A:t<1, B: 1≤ t< 1.5,C:1.5≤ t< 2,D :t ≥ 2,依据检查结果绘制了以下图的两副不完好的统计图.请你依据图中信息解答以下问题:( 1)本次抽样检查共抽取了名学生,请将条形统计图增补完好;( 2)求表示 B 等级的扇形圆心角α的度数;( 3)在此次问卷检查中,甲班有 2 人均匀每日课外学习时间超出 2 小时,乙班有 3 人平均每日课外学习时间超出 2 小时,若从这 5 人中任选 2 人去参加会谈,请用列表或画树状图的方法求选出的 2 人中起码有 1 人来自甲班的概率.【剖析】( 1)依据 A 类的人数和所占的百分比即可求出总数,用总数减去其余等级的人数求出 C 等级的人数,从而补全统计图;( 2)用 B 的人数除以总人数再乘以360°,即可获得圆心角α的度数;(4)先设甲班学生为 A1, A2,乙班学生为 B1,B2, B3依据题意画出树形图,再依据概率公式列式计算即可.【解答】解:( 1)本次抽样检查共抽取的学生数是:60÷ 30%= 200;C 等级的人数有:200﹣60﹣ 30﹣70= 40(人),补图以下:故答案为: 200;( 2)∵ B 等级所占的比为:× 100%=15%,∴a= 15%× 360°= 54°;( 3)设甲班的 2 名同学分别用A1, A2表示,乙班 3 名同学分别用B1,B2,B3表示,随机选出两人参加座谈的树状图如下:∵共有 20 种等可能结果,而选出 2 人中起码有 1 人来自甲班的有14 种,∴所求概率为:=.【评论】本题考察的是条形统计图和扇形统计图的综合运用,读懂统计图,从不一样的统计图中获得必需的信息是解决问题的重点.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反应部分占整体的百分比大小.21.如图,一棵大树在一次强台风中折断倒下,未折断树杆AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树杆AB 形成 53°的夹角.树杆AB 旁有一座与地面垂直的铁塔DE,测得 BE= 6 米,塔高 DE = 9 米.在某一时辰的太阳照耀下,未折断树杆AB 落在地面的影子FB 长为 4 米,且点F、 B、 C、E 在同一条直线上,点 F 、A、 D 也在同一条直线上.求这棵大树没有折断前的高度.(参照数据: sin53°≈ 0.8, cos53°≈ 0.6,tan53°≈1.33)【解答】解:∵ AB⊥ EF, DE ⊥ EF,∴∠ ABC= 90°, AB∥DE ,∴△ FAB∽△ FDE ,∴=,∵FB= 4 米, BE= 6 米, DE =9 米,∴=,得AB=3.6米,∵∠ ABC= 90°,∠ BAC= 53°, cos∠ BAC=,∴AC===6米,∴AB+AC= 3.6+6= 9.6 米,即这棵大树没有折断前的高度是9.6 米.22.某学校准备购置A、B 两种型号篮球,咨询了甲、乙两间学校认识这两款篮球的价钱,下表是甲、乙两间学校购置A、 B 两种型号篮球的状况:购置学校购置型号及数目(个)购置支出款项(元)A B甲38622乙54402( 1)求 A、B 两种型号的篮球的销售单价;( 2)若该学校准备用不多于1000 元的金额购置这两种型号的篮球共20 个,且 A 种型号的篮球数目小于 B 种型号的篮球,问 A 种型号的篮球采买多少个?【剖析】( 1)设 A 种型号的篮球的销售单价为x 元 /个, B 种型号的篮球的销售单价为y元 /个,依据总价=单价×数目联合甲、乙两校购置篮球所花销用及购置数目,即可得出对于 x、y 的二元一次方程组,解之即可得出结论;( 2)设购置m 个 A 种型号的篮球,则购置(20﹣ m)个 B 种型号的篮球,依据 A 种型号的篮球数目小于 B 种型号的篮球及购置总花费不多于1000 元,即可得出对于m 的一元一次不等式组,解之即可得出m 的取值范围,再联合m 为整数即可求出结论.【解答】解:( 1)设 A 种型号的篮球的销售单价为x 元 /个, B 种型号的篮球的销售单价为 y 元 /个,依据题意得:,解得:.答: A 种型号的篮球的销售单价为26 元 /个, B 种型号的篮球的销售单价为68 元 /个.( 2)设购置 m 个 A 种型号的篮球,则购置(20﹣ m)个 B 种型号的篮球,依据题意得:,解得:≤ m< 10.又∵ m 为整数,∴m= 9.答: A 种型号的篮球采买9 个.【评论】 本题考察了二元一次方程组的应用以及一元一次不等式组的应用,解题的重点是:( 1)找准等量关系,正确列出二元一次方程组;( 2)依据各数目之间的关系,正确列出一元一次不等式组.五.解答题( 27 分)23.已知抛物线 y = ax 2+bx+c ( a ≠ 0)上的一点A ( m ﹣ b , n )( m ≠ b ),且 n = m 2﹣ mb+c .( 1)若 a = b , c = 0,求抛物线 y = ax 2+bx+c 与 x 轴的交点坐标( 2)若抛物线 y ═ ax 2+bx+c 与 x 轴只有一个交点,求b 与c 的数目关系( 3)在( 2)的条件下,若抛物线 y ═ax 2+bx+c 经过点(﹣ 1,0),则当 m 为什么值时, n 有最小值?【剖析】 (1) a = b , c = 0 代入表达式获得 ax 2+ax = 0,即可求点;( 2)A ( m ﹣ b , m 2﹣ mb+c )代入表达式得 a = 1,△= b 2﹣ 4c = 0 求关系式;( 3)将点(﹣ 1,0)代入分析式, c = 1,b = 2 获得 n = m 2﹣ mb+c =( m ﹣ 1)2即可求解;【解答】 解:( 1)∵ a =b , c = 0,∴ y = ax 2+ax ,ax 2+ax = 0,∴ x = 0 或 x =﹣ 1,∴抛物线与 x 轴交点坐标( 0, 0),(﹣ 1, 0);( 2)∵ n = m 2﹣ mb+c ,∴ A ( m ﹣b , m 2﹣ mb+c ),将点 A 代入抛物线 y = ax 2+bx+c ,∴ a (m ﹣ b )2+b ( m ﹣ b ) +c =m 2﹣ mb+c , 整理,得( m ﹣ b ) 2(a ﹣ 1)= 0,∵ m ≠ b ,∴ a = 1,∴ y = x 2+bx+c ,△= b 2﹣4c = 0;∴ b 2= 4c ;2( 3)∵ y = x +bx+c ,将点(﹣ 1, 0)代入分析式,∴ b = 1+c ,∴( 1+c ) 2= 4c ,∴ c = 1, b = 2,∴ n =m 2﹣ mb+c =( m ﹣1) 2,当 m = 1 时, n 有最小值 0;【评论】 本题考察二次函数的性质;掌握函数点与分析式之间的关系,函数图象与x 轴交点的存在条件,二次函数最值的求法是解题的重点.24.如图, CD 是 ⊙ O 的直径, AB 是 ⊙ O 的一条弦,= , AO 的延伸线交 ⊙ O 于点 F 、交 DB 的延伸线于点 P ,连结 PC 且恰巧 PC ∥ AB ,连结 DF 交 AB 于点 G ,延伸 DF 交 CP 于点 E ,连结 BF .( 1)求证: PC 是 ⊙O 的切线;( 2)求证: CE = PE ;( 3)当 BF =2 时,求 tan ∠ APD 的值.【剖析】 ( 1)依据垂径定理 明CD ⊥ AB ,由 PC ∥ AB ,可得 PC ⊥ CD ,可得 ;( 2) 明△ FEP ∽△ PED ,得,PE 2= EF ?ED ,同理得:△ ECF ∽△ EDC ,EC 2= EF?ED ,可得 CE = PE ;( 3)依据平行 分 段成比率定理得:, , ,可得 GH = BG ,明△ DHG ≌△ FBG ( ASA ),得 DH = BF = 2,作 助 , 依据等腰三角形三 合一得:,分 由勾股定理 算各 段的 ,最后由三角函数定 可得 .【解答】 ( 1) 明:∵ CD 是 ⊙ O 的直径,∴ CD ⊥ AB ,又∵ PC ∥ AB ,∴ PC ⊥ CD ,∴ PC⊙O 的切 ; ⋯⋯( 3 分)( 2)∵ PC ∥ AB ,∴∠ EPF =∠ PAB ,∠ FDB =∠ PAB ,∴∠ EPF =∠ FDB ,∵∠ PEF =∠ DEP ,∴△ FEP ∽△ PED ,∴ ,∴ PE 2= EF?ED ,接 CF ,同理得:△ ECF ∽△ EDC ,∴,即 EC 2= EF?ED ,∴ CE 2= PE 2,∴ CE = PE ;⋯⋯( 7 分)( 3)∵ PC ∥ AB ,∴ , ,∴ ,由( 2)知: CE = PE ,∴ GH =BG ,∴∠ HGD =∠ BGF ,∠ DHG =∠ FBG = 90°,∴△ DHG ≌△ FBG ( ASA ),∴ DH =BF = 2,又 AO = OF , AH = HB ,∴OH = BF =1,∴OD =3,CD =6,接 OB , 点 O 作 OM ⊥ DB , OB =OD = 3,∴,∴,,∴,又 PC∥ AB,∴,∴,∴,∴MP=5 ,在 Rt△POM 中, tan∠ APD ===⋯⋯(10分)【点】本考了切的判断和性,三角形全等的判断和性,相像三角形的判断和性,平行分段成比率定理,三角函数等,第三有度,作出助建立直角三角形,依据平行分段成比率定理和勾股定理求各的是解的关.25.已知,如①,直角梯形ABCD ,AB∥ CD ,∠ A= 90°, DC= 6,AB=12,BC= 10. Rt△ EFG(∠ EGF =90°)的EF 与 BC 完好重合, FG 与 BA 在同向来上.将Rt △EFG 以 3cm/s 的速度水平向左作匀速平移(如② ),EF、EG分交AC于点H、Q,同点 M 以cm/s 的速度从点 B 出沿 BC 向点 C 作匀速运,接FM ,当点 E 运到点 D , Rt△ EFG 和点 M 都停止运.点M 运的t( s)(1)当点 Q 是 AC 的中点时,求 t 的值;(2)判断四边形 CHFM 的形状,并说明原因;( 3)如图③,连结 HM ,设四边形ABMH 的面积为s,求 s 与 t 的函数关系式及s 的最小值.【剖析】(1)依据点 Q 是 AC 的中点时,得出EC= 3,即可得出t 的值即可;( 2)依据平行四边形的判断与性质第一得出四边形CEFB 是平行四边形,从而得出四边形 CHFM 是平行四边形;( 3)依据MN ∥CR,得出=,从而求出MN 的长,再利用三角形面积相等求出HW 的长,从而利用三角形面积求出即可.【解答】解:( 1)∵点 Q 是 AC 的中点时,得出E, G 分别在 DC ,AG 中点,即 EC= 3,∴ t= 1;(2)平行四边形原因:∵ Rt△EFG 以 3cm/s 的速度水平向左作匀速平移,点M 以cm/s 的速度从点 B 出发沿BC 向点 C 作匀速运动,∴当运动t 秒时, BF= 3t, CE=t,∴==,==,∴=,∴MF ∥AC,∵EC= BF(平移的性质), AB∥ CD,∴四边形 CEFB 是平行四边形,∴ EF∥ BC,∴HF∥ CM,CH∥MF,∴四边形 CHFM 是平行四边形;( 3)作 CR⊥ AB, NM ⊥AB ,FZ⊥ BM, HW ⊥BC,∴MN∥CR,∴=,∵ DC = 6, AB= 12, BC= 10,将 Rt△ EFG 以 3cm/s 的速度水平向左作匀速平移(如图②), EF 、 EG 分别交 AC 于点 H、 Q,同时点M 以cm/s 的速度从点 B 出发沿 BC 向点 C 作匀速运动,∴=,∴MN = 2t ,∵MN× FB=FZ ×MB,∴2t× 3t= FZ× t,∴FZ=t,∴HW=t,∴S=S△ABC﹣S△ HMC,= 48﹣×t ×( 10﹣t ),=3t 2﹣ 12t+48=3( t﹣ 2)2+36 ,∴ S 最小值=36.【评论】本题主要考察了三角形的面积求法以及相像三角形的判断与性质等知识,依据三角形面积公式求出S△ABC与 S△HMC是解决问题的重点.。
2019年广东省中考数学信息卷四一.选择题(30分)1.3的相反数是()A.﹣3B.3C.D.﹣2.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到22000公里,将22000用科学记数法表示应为()A.2.2×104B.22×103C.2.2×103D.0.22×1053.下列运算正确的是()A.2a3+a=3a4B.(2x3y)2=4x6y2C.a(a﹣b+1)=a2﹣ab D.2ab﹣3a(b﹣a)=﹣ab﹣3a24.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.5.某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是()A.5,5B.5,6C.6,6D.6,56.如图,在△ABC中,D,E分别在边AC与AB上,DE∥BC,BD、CE相交于点O,=,AE=1,则EB的长为()A.1B.2C.3D.47.一次函数y=(m﹣2)x+(m﹣1)的图象如图所示,则m的取值范围是()A.m<2B.1<m<2C.m<1D.m>28.如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是()A.30°B.45°C.60°D.75°9.如图所示,四边形ABCD是边长为3的正方形,点E在BC上,BE=1,△ABE绕点A逆时针旋转后得到△ADF,则FE的长等于()A.3B.2C.3D.210.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.二.填空题(24分)11.因式分解:16a3﹣4a=.12.若关于x的一元二次方程x2﹣2x+a﹣1=0有实数根,则a的取值范围是.13.若点P(4,﹣5)和点Q(a,b)关于原点对称,则a的值为.14.如图,矩形ABCD中,AB=2,AD=4,点E在边BC上,把△DEC沿DE翻折后,点C落在C′处.若△ABC′恰为等腰三角形,则CE的长为.15.如图,四边形ABCD内接于⊙O,对角线AC过圆心O,且AC⊥BD,P为BC延长线上一点,PD⊥BD,若AC=10,AD=8,则BP的长为.16.反比例函数y=,y=在同一直角坐标系中的图象如图所示,则△AMN的面积为.(用含有k1、k2代数式表示)三.解答题(18分)17.计算:(﹣1)2019+(﹣)﹣2﹣|2﹣|+4sin60°;18.先化简,再求值:,其中.19.已知,如图,△ABC中,∠C=90°,E为BC边中点.(1)尺规作图:以AC为直径,作⊙O,交AB于点D(保留作图痕迹,不需写作法).(2)若AC=5,DE=,求BD的长.四.解答题(21分)20.为了解本校学生平均每天的课外学习时间情况,学校随机抽取部分学生进行问卷调查,并将调查结果分为A,B,C,D四个等级,设学习时间为t(小时):A:t<1,B:1≤t <1.5,C:1.5≤t<2,D:t≥2,根据调查结果绘制了如图所示的两副不完整的统计图.请你根据图中信息解答下列问题:(1)本次抽样调查共抽取了名学生,请将条形统计图补充完整;(2)求表示B等级的扇形圆心角α的度数;(3)在此次问卷调查中,甲班有2人平均每天课外学习时间超过2小时,乙班有3人平均每天课外学习时间超过2小时,若从这5人中任选2人去参加座谈,请用列表或画树状图的方法求选出的2人中至少有1人来自甲班的概率.21.如图,一棵大树在一次强台风中折断倒下,未折断树杆AB与地面仍保持垂直的关系,而折断部分AC与未折断树杆AB形成53°的夹角.树杆AB旁有一座与地面垂直的铁塔DE,测得BE=6米,塔高DE=9米.在某一时刻的太阳照射下,未折断树杆AB落在地面的影子FB长为4米,且点F、B、C、E在同一条直线上,点F、A、D也在同一条直线上.求这棵大树没有折断前的高度.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.33)22.某学校准备购买A、B两种型号篮球,询问了甲、乙两间学校了解这两款篮球的价格,下表是甲、乙两间学校购买A、B两种型号篮球的情况:(1)求A、B两种型号的篮球的销售单价;(2)若该学校准备用不多于1000元的金额购买这两种型号的篮球共20个,且A种型号的篮球数量小于B种型号的篮球,问A种型号的篮球采购多少个?五.解答题(27分)23.已知抛物线y=ax2+bx+c(a≠0)上的一点A(m﹣b,n)(m≠b),且n=m2﹣mb+c.(1)若a=b,c=0,求抛物线y=ax2+bx+c与x轴的交点坐标(2)若抛物线y═ax2+bx+c与x轴只有一个交点,求b与c的数量关系(3)在(2)的条件下,若抛物线y═ax2+bx+c经过点(﹣1,0),则当m为何值时,n 有最小值?24.如图,CD是⊙O的直径,AB是⊙O的一条弦,=,AO的延长线交⊙O于点F、交DB的延长线于点P,连接PC且恰好PC∥AB,连接DF交AB于点G,延长DF交CP于点E,连接BF.(1)求证:PC是⊙O的切线;(2)求证:CE=PE;(3)当BF=2时,求tan∠APD的值.25.已知,如图①,直角梯形ABCD,AB∥CD,∠A=90°,DC=6,AB=12,BC=10.Rt△EFG(∠EGF=90°)的边EF与BC完全重合,FG与BA在同一直线上.现将Rt△EFG以3cm/s的速度水平向左作匀速平移(如图②),EF、EG分别交AC于点H、Q,同时点M以cm/s的速度从点B出发沿BC向点C作匀速运动,连接FM,当点E运动到点D时,Rt△EFG和点M都停止运动.设点M运动的时间为t(s)(1)当点Q是AC的中点时,求t的值;(2)判断四边形CHFM的形状,并说明理由;(3)如图③,连接HM,设四边形ABMH的面积为s,求s与t的函数关系式及s的最小值.2019年广东省中考数学信息卷四一.选择题(30分)1.3的相反数是()A.﹣3B.3C.D.﹣【分析】依据相反数的定义回答即可.【解答】解:3的相反数是﹣3.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到22000公里,将22000用科学记数法表示应为()A.2.2×104B.22×103C.2.2×103D.0.22×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:22000=2.2×104.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列运算正确的是()A.2a3+a=3a4B.(2x3y)2=4x6y2C.a(a﹣b+1)=a2﹣ab D.2ab﹣3a(b﹣a)=﹣ab﹣3a2【分析】分别依据合并同类项法则、单项式的乘方、单项式乘多项式法则逐一计算即可得出答案.【解答】解:A.2a3与a不是同类项,不能合并,此选项错误;B.(2x3y)2=4x6y2,此选项正确;C.a(a﹣b+1)=a2﹣ab+a,此选项错误;D.2ab﹣3a(b﹣a)=2ab﹣3ab+3a2=﹣ab+3a2,此选项错误;故选:B.【点评】本题主要考查单项式乘多项式,解题的关键是掌握合并同类项法则、单项式的乘方、单项式乘多项式法则.4.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.【解答】解:A、此图形是中心对称图形,不是轴对称图形,故此选项正确;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:A.【点评】此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.5.某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是()A.5,5B.5,6C.6,6D.6,5【分析】根据众数、中位数的定义分别进行解答即可.【解答】解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B.【点评】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.如图,在△ABC中,D,E分别在边AC与AB上,DE∥BC,BD、CE相交于点O,=,AE=1,则EB的长为()A.1B.2C.3D.4【分析】先由DE∥BC,根据平行线分线段成比例定理得到==;同样得到==,然后计算出AB,从而得到BE的长.【解答】解:∵DE∥BC,∴==;∵DE∥BC,∴==,∴AB=3AE=3,∴BE=3﹣1=2.故选:B.【点评】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了平行线分线段成比例定理.7.一次函数y=(m﹣2)x+(m﹣1)的图象如图所示,则m的取值范围是()A.m<2B.1<m<2C.m<1D.m>2【分析】根据一次函数的图象经过第二、三、四象限判断出函数k及b的符号,得到关于m 的不等式组,解不等式组即可.【解答】解:∵一次函数y=(m﹣2)x+(m﹣1)的图象在第二、三、四象限,∴,解得1<m<2.故选:B.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.8.如图,⊙O的直径AB=2,弦AC=1,点D在⊙O上,则∠D的度数是()A.30°B.45°C.60°D.75°【分析】由⊙O的直径是AB,得到∠ACB=90°,根据特殊三角函数值可以求得∠B的值,继而求得∠A和∠D的值.【解答】解:∵⊙O的直径是AB,∴∠ACB=90°,又∵AB=2,弦AC=1,∴sin∠CBA=,∴∠CBA=30°,∴∠A=∠D=60°,故选:C.【点评】本题考查的是圆周角定理及直角三角形的性质,比较简单,但在解答时要注意特殊三角函数的取值.9.如图所示,四边形ABCD是边长为3的正方形,点E在BC上,BE=1,△ABE绕点A逆时针旋转后得到△ADF,则FE的长等于()A.3B.2C.3D.2【分析】由题意可得EC=2,CF=4,根据勾股定理可求EF的长.【解答】解:∵四边形ABCD是正方形∴AB=BC=CD=3∵△ABE绕点A逆时针旋转后得到△ADF∴DF=BE=1∴CF=CD+DF=3+1=4CE=BC﹣BE=3﹣1=2在Rt△EFC中,EF==2故选:D.【点评】本题考查了旋转的性质,正方形的性质,勾股定理,熟练运用这些性质解决问题是本题的关键.10.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.【解答】解:①x≤1时,两个三角形重叠面积为小三角形的面积,∴y=×1×=,②当1<x≤2时,重叠三角形的边长为2﹣x,高为,y=(2﹣x)×=x2﹣x+,③当x=2时,两个三角形没有重叠的部分,即重叠面积为0,故选:B.二.填空题(24分)11.因式分解:16a3﹣4a=.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=4a(4a2﹣1)=4a(2a+1)(2a﹣1),故答案为:4a(2a+1)(2a﹣1)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.若关于x的一元二次方程x2﹣2x+a﹣1=0有实数根,则a的取值范围是.【分析】由方程根的情况,根据根的判别式可得到关于a的不等式,则可求得a的取值范围.【解答】解:∵关于x的一元二次方程x2﹣2x+a﹣1=0有实数根,∴△≥0,即(﹣2)2﹣4(a﹣1)≥0,解得a≤2,故答案为:a≤2.【点评】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.13.若点P(4,﹣5)和点Q(a,b)关于原点对称,则a的值为.【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可得答案.【解答】解:∵点P(4,﹣5)和点Q(a,b)关于原点对称,∴点Q的坐标为(﹣4,5),即a=﹣4.故答案为:﹣4.【点评】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.14.如图,矩形ABCD中,AB=2,AD=4,点E在边BC上,把△DEC沿DE翻折后,点C落在C′处.若△ABC′恰为等腰三角形,则CE的长为.【分析】分两种情形分别求解即可解决问题.【解答】解:如图1中,当C′A=C′B时,作C′H⊥AD于H交BC于F.易知HC′=FC′=1,在Rt△DHC′中,DH==,由△DHC′∽△C′FE,可得:=,∴=,∴EF=,∵四边形DHFC是矩形,∴CF=DH=,∴CE=﹣=.如图2中,当AB=AC′时,点C′在AD上,此时四边形CEC′D是正方形,CE=2.综上所述,满足条件的CE的值为2或.【点评】本题考查矩形的性质,翻折变换,等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题属于中考常考题型.15.如图,四边形ABCD内接于⊙O,对角线AC过圆心O,且AC⊥BD,P为BC延长线上一点,PD⊥BD,若AC=10,AD=8,则BP的长为.【分析】根据圆周角定理得到∠ADC=90°,根据勾股定理得到CD==6,推出点C是PB的中点,根据直角三角形的性质即可得到结论.【解答】解:∵AC是⊙O的直径,∴∠ADC=90°,∵AC=10,AD=8,∴CD==6,∵AC⊥BD,∴AC平分BD,∵PD⊥BD,∴AC∥PD,∴点C是PB的中点,∴PB=2CD=12,故答案为:12.【点评】本题考查了圆周角定理,垂径定理,平行线的判定和性质,直角三角形的性质,正确的识别图形是解题的关键.16.反比例函数y=,y=在同一直角坐标系中的图象如图所示,则△AMN的面积为.(用含有k1、k2代数式表示)【分析】依据A(a,),即可得到M(a,),N(a,),进而得出AN=a ﹣a,AM=﹣,再根据△AMN的面积=AN×AM进行计算即可.【解答】解:设A(a,),则M(a,),N(a,),∴AN=a﹣a,AM=﹣,∴△AMN的面积=AN×AM=×(a﹣a)×(﹣)=,故答案为:.【点评】本题主要考查了反比例函数图象上点的坐标特征,解题时注意:在反比例函数y =图象上任一点的横坐标与纵坐标的乘积等于k.三.解答题(18分)17.计算:(﹣1)2019+(﹣)﹣2﹣|2﹣|+4sin60°;【分析】本题涉及乘方、负指数幂、二次根式化简、绝对值和特殊角的三角函数5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=-1+4﹣(2﹣2)+4×,=-1+4﹣2+2+2,=5.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.先化简,再求值:,其中.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=•=•=,当a=﹣1时,原式=.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.已知,如图,△ABC中,∠C=90°,E为BC边中点.(1)尺规作图:以AC为直径,作⊙O,交AB于点D(保留作图痕迹,不需写作法).(2)若AC=5,DE=,求BD的长.【分析】(1)根据要求作图即可得;(2)证Rt△BDC∽Rt△BCA得=,代入计算可得.【解答】解:(1)如图1,(2)∵E为BC边中点,∴BC=2DE=,∵AC=5,∴AB=,∵∠DBC=∠CBA,∴Rt△BDC∽Rt△BCA,∴=,即=,∴BD=.【点评】本题主要考查作图﹣复杂作图,解题的关键是熟练掌握切线的判定与性质、相似三角形的判定与性质等知识点.四.解答题(21分)20.为了解本校学生平均每天的课外学习时间情况,学校随机抽取部分学生进行问卷调查,并将调查结果分为A,B,C,D四个等级,设学习时间为t(小时):A:t<1,B:1≤t <1.5,C:1.5≤t<2,D:t≥2,根据调查结果绘制了如图所示的两副不完整的统计图.请你根据图中信息解答下列问题:(1)本次抽样调查共抽取了名学生,请将条形统计图补充完整;(2)求表示B等级的扇形圆心角α的度数;(3)在此次问卷调查中,甲班有2人平均每天课外学习时间超过2小时,乙班有3人平均每天课外学习时间超过2小时,若从这5人中任选2人去参加座谈,请用列表或画树状图的方法求选出的2人中至少有1人来自甲班的概率.【分析】(1)根据A类的人数和所占的百分比即可求出总数,用总数减去其它等级的人数求出C等级的人数,从而补全统计图;(2)用B的人数除以总人数再乘以360°,即可得到圆心角α的度数;(4)先设甲班学生为A1,A2,乙班学生为B1,B2,B3根据题意画出树形图,再根据概率公式列式计算即可.【解答】解:(1)本次抽样调查共抽取的学生数是:60÷30%=200;C等级的人数有:200﹣60﹣30﹣70=40(人),补图如下:故答案为:200;(2)∵B等级所占的比为:×100%=15%,∴a=15%×360°=54°;(3)设甲班的2名同学分别用A1,A2表示,乙班3名同学分别用B1,B2,B3表示,随机选出两人参加座谈的树状图如下:∵共有20种等可能结果,而选出2人中至少有1人来自甲班的有14种,∴所求概率为:=.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.如图,一棵大树在一次强台风中折断倒下,未折断树杆AB与地面仍保持垂直的关系,而折断部分AC与未折断树杆AB形成53°的夹角.树杆AB旁有一座与地面垂直的铁塔DE,测得BE=6米,塔高DE=9米.在某一时刻的太阳照射下,未折断树杆AB落在地面的影子FB长为4米,且点F、B、C、E在同一条直线上,点F、A、D也在同一条直线上.求这棵大树没有折断前的高度.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.33)【解答】解:∵AB⊥EF,DE⊥EF,∴∠ABC=90°,AB∥DE,∴△F AB∽△FDE,∴=,∵FB=4米,BE=6米,DE=9米,∴=,得AB=3.6米,∵∠ABC=90°,∠BAC=53°,cos∠BAC=,∴AC===6米,∴AB+AC=3.6+6=9.6米,即这棵大树没有折断前的高度是9.6米.22.某学校准备购买A、B两种型号篮球,询问了甲、乙两间学校了解这两款篮球的价格,下表是甲、乙两间学校购买A、B两种型号篮球的情况:(1)求A、B两种型号的篮球的销售单价;(2)若该学校准备用不多于1000元的金额购买这两种型号的篮球共20个,且A种型号的篮球数量小于B种型号的篮球,问A种型号的篮球采购多少个?【分析】(1)设A种型号的篮球的销售单价为x元/个,B种型号的篮球的销售单价为y 元/个,根据总价=单价×数量结合甲、乙两校购买篮球所花费用及购买数量,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购买m个A种型号的篮球,则购买(20﹣m)个B种型号的篮球,根据A种型号的篮球数量小于B种型号的篮球及购买总费用不多于1000元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可求出结论.【解答】解:(1)设A种型号的篮球的销售单价为x元/个,B种型号的篮球的销售单价为y元/个,根据题意得:,解得:.答:A种型号的篮球的销售单价为26元/个,B种型号的篮球的销售单价为68元/个.(2)设购买m个A种型号的篮球,则购买(20﹣m)个B种型号的篮球,根据题意得:,解得:≤m<10.又∵m为整数,∴m=9.答:A种型号的篮球采购9个.【点评】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.五.解答题(27分)23.已知抛物线y=ax2+bx+c(a≠0)上的一点A(m﹣b,n)(m≠b),且n=m2﹣mb+c.(1)若a=b,c=0,求抛物线y=ax2+bx+c与x轴的交点坐标(2)若抛物线y═ax2+bx+c与x轴只有一个交点,求b与c的数量关系(3)在(2)的条件下,若抛物线y═ax2+bx+c经过点(﹣1,0),则当m为何值时,n 有最小值?【分析】(1)a=b,c=0代入表达式得到ax2+ax=0,即可求点;(2)A(m﹣b,m2﹣mb+c)代入表达式得a=1,△=b2﹣4c=0求关系式;(3)将点(﹣1,0)代入解析式,c=1,b=2得到n=m2﹣mb+c=(m﹣1)2即可求解;【解答】解:(1)∵a=b,c=0,∴y=ax2+ax,ax2+ax=0,∴x=0或x=﹣1,∴抛物线与x轴交点坐标(0,0),(﹣1,0);(2)∵n=m2﹣mb+c,∴A(m﹣b,m2﹣mb+c),将点A代入抛物线y=ax2+bx+c,∴a(m﹣b)2+b(m﹣b)+c=m2﹣mb+c,整理,得(m﹣b)2(a﹣1)=0,∵m≠b,∴a=1,∴y=x2+bx+c,△=b2﹣4c=0;∴b2=4c;(3)∵y=x2+bx+c,将点(﹣1,0)代入解析式,∴b=1+c,∴(1+c)2=4c,∴c=1,b=2,∴n=m2﹣mb+c=(m﹣1)2,当m=1时,n有最小值0;【点评】本题考查二次函数的性质;掌握函数点与解析式之间的关系,函数图象与x轴交点的存在条件,二次函数最值的求法是解题的关键.24.如图,CD是⊙O的直径,AB是⊙O的一条弦,=,AO的延长线交⊙O于点F、交DB的延长线于点P,连接PC且恰好PC∥AB,连接DF交AB于点G,延长DF交CP于点E,连接BF.(1)求证:PC是⊙O的切线;(2)求证:CE=PE;(3)当BF=2时,求tan∠APD的值.【分析】(1)根据垂径定理证明CD⊥AB,由PC∥AB,可得PC⊥CD,可得结论;(2)证明△FEP∽△PED,得,则PE2=EF•ED,同理得:△ECF∽△EDC,则EC2=EF•ED,可得CE=PE;(3)根据平行线分线段成比例定理得:,,则,可得GH=BG,证明△DHG≌△FBG(ASA),得DH=BF=2,作辅助线,根据等腰三角形三线合一得:,分别由勾股定理计算各线段的长,最后由三角函数定义可得结论.【解答】(1)证明:∵CD是⊙O的直径,∴CD⊥AB,又∵PC∥AB,∴PC⊥CD,∴PC为⊙O的切线;……(3分)(2)∵PC∥AB,∴∠EPF=∠PAB,∠FDB=∠PAB,∴∠EPF=∠FDB,∵∠PEF=∠DEP,∴△FEP∽△PED,∴,∴PE2=EF•ED,连接CF,同理得:△ECF∽△EDC,∴,即EC2=EF•ED,∴CE2=PE2,∴CE=PE;……(7分)(3)∵PC∥AB,∴,,∴,由(2)知:CE=PE,∴GH=BG,∴∠HGD=∠BGF,∠DHG=∠FBG=90°,∴△DHG≌△FBG(ASA),∴DH=BF=2,又AO=OF,AH=HB,∴OH=BF=1,∴OD=3,CD=6,连接OB,过点O作OM⊥DB,则OB=OD=3,∴,∴,,∴,又PC∥AB,∴,∴,∴,∴MP=5,在Rt△POM中,tan∠APD===……(10分)【点评】本题考查了切线的判断和性质,三角形全等的判定和性质,相似三角形的判断和性质,平行线分线段成比例定理,三角函数等,第三问有难度,作出辅助线构建直角三角形,根据平行线分线段成比例定理和勾股定理求各边的长是解题的关键.25.已知,如图①,直角梯形ABCD,AB∥CD,∠A=90°,DC=6,AB=12,BC=10.Rt△EFG(∠EGF=90°)的边EF与BC完全重合,FG与BA在同一直线上.现将Rt△EFG以3cm/s的速度水平向左作匀速平移(如图②),EF、EG分别交AC于点H、Q,同时点M以cm/s的速度从点B出发沿BC向点C作匀速运动,连接FM,当点E运动到点D时,Rt△EFG和点M都停止运动.设点M运动的时间为t(s)(1)当点Q是AC的中点时,求t的值;(2)判断四边形CHFM的形状,并说明理由;(3)如图③,连接HM,设四边形ABMH的面积为s,求s与t的函数关系式及s的最小值.【分析】(1)根据点Q是AC的中点时,得出EC=3,即可得出t的值即可;(2)根据平行四边形的判定与性质首先得出四边形CEFB是平行四边形,进而得出四边形CHFM是平行四边形;(3)根据MN∥CR,得出=,进而求出MN的长,再利用三角形面积相等求出HW的长,进而利用三角形面积求出即可.【解答】解:(1)∵点Q是AC的中点时,得出E,G分别在DC,AG中点,即EC=3,∴t=1;(2)平行四边形理由:∵Rt△EFG以3cm/s的速度水平向左作匀速平移,点M以cm/s的速度从点B出发沿BC向点C作匀速运动,∴当运动t秒时,BF=3t,CE=t,==,∴=,∴MF∥AC,∵EC=BF(平移的性质),AB∥CD,∴四边形CEFB是平行四边形,∴EF∥BC,∴HF∥CM,CH∥MF,∴四边形CHFM是平行四边形;(3)作CR⊥AB,NM⊥AB,FZ⊥BM,HW⊥BC,∴MN∥CR,∴=,∵DC=6,AB=12,BC=10,将Rt△EFG以3cm/s的速度水平向左作匀速平移(如图②),EF、EG分别交AC于点H、Q,同时点M以cm/s的速度从点B出发沿BC向点C作匀速运动,∴=,∴MN=2t,∵MN×FB=FZ×MB,∴FZ=t,∴HW=t,∴S=S△ABC ﹣S△HMC,=48﹣×t×(10﹣t),=3t2﹣12t+48=3(t﹣2)2+36,∴S最小值=36.【点评】此题主要考查了三角形的面积求法以及相似三角形的判定与性质等知识,根据三角形面积公式求出S△ABC 与S△HMC是解决问题的关键.。